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1. Introduction 
In fields such as financial risk management and option pricing, concern attaches not so much 

to total uncertainty over the entire range of potential outcomes, as in its concentration over 

designated ranges, commonly the left or right hand tails. Traditional uncertainty or spread 

metrics, such as differential entropy or moment based statistics, do not capture the regime 

specific exposures. In addition, they can fail for very long tailed distributions e.g. the Levy, 

because the relevant moments do not exist. The problem arises in contexts such as value at 

risk, or at the other extreme, venture capital and related high risk investments.  

 As an instance, value at risk (VaR) has become a favoured tool of financial 

regulators, originally in bank capital adequacy, more recently extending into fields such as 

insurance and fund management. Managers fix a tolerance probability for losses in excess of a 

stated amount, the VaR critical point. The basic welfare reference is therefore to a cumulative 

probability, i.e. the value of the distribution function at the VaR critical point. This has 

attracted criticism on the grounds that two distributions can have just the same tail 

probability, but if one has a much longer tail than the other, then the firm is exposed to greater 

potential losses once the critical point is breached; welfare metrics should incorporate this 

contingency in some way. In other words, the VaR probability underestimates the sting in the 

tail. Conditional tail moments have been suggested as a criterion. Thus expected shortfall, or 

conditional value at risk, refers to the censored mean in the tail and has become popular in 

insurance circles (e.g. Uryasev 2000, Palmquist at al 2001, Rockafellar and Uryasev 2002, 

Alexander and Baptista 2004).  Other proposals have suggested specific higher order 

moments (e.g. Yamai and Yoshiba 2002). On the other hand, Bowden (2006) has pointed out 

an inconsistency between value at risk and conditional value at risk. Moreover, the required 

moments must actually exist, which is not automatically the case. 

Venture capital and related investments such as patents are oriented towards the other 

end of the distribution – the right hand tail, for traditional call type structures. Options and 

warrants are obvious examples, and indeed, venture capital investments are very often 

structured in just this form. The task becomes one of identifying the investments that do have 

tail information content and structure, and of designing optimal exposures in the light of that 

structure. A problem here is just where to set the strike price for maximal leverage. Of 

relevance is the flow of information. That information comes in stages over time has long 

been recognised in the practical pricing procedures adopted in the venture capital industry 

(e.g. Ruhnka and Young (1991), Chiampou and Kellett (1989) and Sahlman (1990)). At each 
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of these stages, information about the product and its prospects will accumulate and the value 

of options in hand will correspondingly change, at times rapidly. So one needs to set strike 

values that will result in maximal value change with respect to information changes. It may be 

noted that discovery processes help to determine the structure of the tail as well as its length, 

so it should not be assumed in what follows that the tail to a distribution is necessarily 

monotone decreasing. 

Applications such as value at risk, venture capital, or patent investment, share a more 

or less common theme, namely the importance of understanding and measuring uncertainty 

over the different regions of the support axis for the underlying distribution. As earlier noted, 

standard differential or total entropy has general but not sufficiently specific relevance, for it 

is a property of the entire distribution. The agenda for the present paper is to develop an 

entropy concept that can apply to designated support regions, e.g. the upper or lower tails, and 

to show how these may be applied to some common problems in financial economics and risk 

management. A checklist of contributions is as follows: 

(a) The paper develops an entropy concept called directional entropy, which is region 

specific but more informative than simply partitioning the differential entropy integral, or the 

conditional entropy in each region. Directional entropy is a metric for the uncertainty that 

arises specifically from the subject region, so that upper and lower directional entropies for a 

simple binary support partition will add up to total entropy, once weighted by regime 

probabilities. 

(b) Directional entropy is the entropy concept most closely related to contexts such as value 

at risk, or option pricing. The logistic distribution plays a key benchmarking role in this 

relationship for two reasons, first the linearity of its log odds function and second, because the 

tail probability is a sufficient proxy for expected shortfall, or option value. Comparisons or 

corrections are vectored by conversion of the subject distribution to an equivalent logistic 

distribution, one that has the same total entropy and directional entropy at the given marker 

value e.g. strike price or VaR critical point. The conversion is achieved by a scaling function 

that can be interpreted as a Radon-Nikodym measure for an implicit change of measure. The 

scaling factor can itself be used for metric purposes e.g. for kurtosis or asymmetry, as an 

alternative to the standard metrics based on the normal distribution. 

(c) The conversion to logistic-equivalent measure ( Lq) allows rescaling of tail probabilities 

in a way that is useful in value at risk and related contexts. If a distribution of investment 

outcomes has a standard 10% VaR tail probability but a long tail, then one can convert it to 

the equivalent logistic and look at the resulting tail probability. If this comes out at 20% , say, 
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it will suggest that the natural VaR probability ( 10% ) is misleading as a hazard indicator and 

a more conservative stance should be taken. Because directional entropy is monotonically 

related to most conceivable tail metrics, it becomes an effective hazard indicator once 

converted to equivalent probability terms via the Lq measure. 

(d) Much the same principle applies to option pricing.  Lq measure plays a useful 

convenience role in this, for the formulas for option pricing are particularly simple in the case 

of the logistic distribution. More important in this context is the response of value to flows of 

information. Directional entropy enables the user to see more clearly where the maximal 

informational value gain is likely to occur and to set strike prices to take advantage.  

(e) Perhaps contrary to usual ways of thinking, the passage of time can actually increase 

directional entropy, not diminish it.  Mixture distributions are a good way to think about 

discovery processes involved. In terms of venture capital usage, if the prior distribution 

consist of a mixture of a pessimistic ‘No-go’ and a blue sky ‘Go’ distribution,  then 

favourable news is likely to increase ex post entropy,  with favourable value outcomes for an 

option with a correctly set strike price. 

The scheme of the paper is as follows. Section 2 is introductory, reviewing the 

connection between the log odds ratio and entropy theory as the mathematical expectation of 

a scaling function derived from the log odds function. The core idea of directional entropy is 

developed in section 3, which introduces the change of measure via the scaling function. 

Critical probability adjustment in value at risk is an immediate application in section 4, and 

there is a further application to indicative option pricing. Section 5 provides an informal 

discussion of a more dynamic context involving progressive information revelation. Mixture 

distributions provide a good way of understanding how entropy evolves and the way that this 

generates financial value. Section 6 offers some concluding remarks. 

2. Information measures: log odds and entropy 
Statistical entropy is most naturally approached via the log odds function, so the first part of 

this section reviews some of this theory, expositing the general nature of the connection. It 

proceeds to introduce one of the key concepts, namely a scaling function based on the log 

derivative, and to relate this to differential or total entropy.  

The starting point is a probability space ),,( PℑΩ on which is defined a real-valued 

random variable )(ωx , measurable with respect to ℑ , with probability distribution function 

F. In financial applications the variable x might be taken as either returns, or financial value. 

It is assumed, at least initially, that the support of the distribution is the whole real line 
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∞<<∞− x . In practice, this might not be technically true, e.g. where a boundary constraint 

such as limited liability might apply. However, this need not be unduly limiting. For instance, 

one could imagine that the success or otherwise of a financial venture depends on some 

underlying latent variable x.  For positive values of the latent variable, returns are directly 

proportional to x. But if x<0, then the project fails and negative values of this latent variables 

are projected on to the value zero (or some limited loss of capital) in return space. This means 

that the probability density of returns will be a mixed in character1 , with a spike at zero 

generated by negative values of the underlying latent variable. It is convenient in what 

follows to merge the latent variable x with observed return or value, and to assume it has a 

density f(x).  

2.1 Properties of the log odds function 

Let X be any specific value of the random variable x, often denoted as a marker value in what 

follows. Denote the event  as , or just R}{ Xx ≤ )(XRL L where the regime marker value X is 

understood; similarly, or just R)(}{ XRXx U=> U . An initial question is how much 

information the given distribution function F(x) gives us about the prospects  and 

.  One measure of the information is the odds ratio. The magnitude 

)(XRL

)(XRU

 
)(

)(1ln)(
XF

XFX −
=λ  (1) 

will be referred to as the log odds of x being in RU(X) versus RL(X). Its complement 

)()( XX λλ −= will be the log odds ratio for the lower regime RL. If Xm is the median of the 

distribution, the sign of the log odds will depend on whether X < Xm (λ is positive) or X > Xm 

( λ is negative).  Measured thus, the log odds of regime RU (i.e. x >X) diminish as X becomes 

larger: for any proposed log odds function, we must have λ'(X)≤ 0 and also 

∞=−∞−∞=∞ )(;)( λλ , in an obvious sense. The derivative λ'(X) will sometimes be 

referred to as the rate of decay of the log odds at point X, with the upper regime in mind.  

Mathematically, many of the formulas that follow are more naturally written in terms of  

)(Xλ rather than )(Xλ , but interpretive elements such as decay rates are more naturally 

oriented from left to right so the negative sign will be carried throughout. Although the 

original logarithmic base for entropy theory was 2, natural logs will be assumed in what 

follows. 

The density f(x) corresponding to any given distribution function F(x) can always be 

written in terms of its generic log odds function λ(x) as  
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 ))(1)(()(')( xFxFxxf −−= λ . (2a) 

Written in the form  

 
)(1)((

)()('
xFxF

xfx
−

=− λ , (2b) 

the derivative of the log odds function is analogous to a signal to noise ratio.  The 

denominator product can be viewed in the light of fuzzy logic as the product of fuzzy 

membership functions for RU and RL , and incorporates the categorisation doubt as to which 

regime the value x  belongs.  It has a maximum at the median Xm , diminishing thereafter. The 

numerator can loosely be regarded as conveying a degree of information about the interval (x, 

x+dx). For symmetric densities, the signal to noise ratio ( -λ'(x)) has a minimum at the median 

and is itself symmetric about that point. 

 The logistic constitutes a benchmark distribution for entropy theory and related topics. It 

is one for which the log odds function λ(x) is linear in x: 0;1)(' >−= β
β

λ x . The density  is 

symmetric about the common mean and median Xm = µ, while β is a scale or dispersion 

parameter such that 3/βπσ = is the standard deviation. A convenient standardisation is 

β
µ−

=
xx~ . The kurtosis coefficient is 4.2 versus the normal 3. The logistic is one of the 

family of extreme value distributions, obtained as the limiting maxima of a collection of 

identically distributed random variables (Johnson and Kotz (1970)). This makes them 

potentially relevant in the analysis of rare events, which may depend upon a cluster of good or 

bad outcomes from a sequence of stages.  

Although the logistic kurtosis coefficient is higher than that for the normal 

distribution, later analysis shows that in fact the logistic is not too far removed from the 

normal: its tails are fatter, but far from obese. By way of contrast, consider another member of 

the extreme value family, the Gumbel (or Fisher -Tippett) distribution. This is often used in 

statistical reliability theory, where part failure, if it occurs, is more likely early on, and once 

this ‘probationary period’ is over, survival time is likely extended. The density is therefore 

asymmetric with a longer right hand tail. An analogy exists with venture capital, where the 

‘Go’ signal corresponds to early survival, and the blue sky prospects are enhanced. The 

Gumbel distribution and density functions are defined in terms of location and scale 

parameters µ, ϕ by 
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ϕ
µ

ϕϕ
−

==−−=−= −−− xxxFeexxfexF xxx ~);(1)~exp(1)();exp()(
~~~

. (3) 

The mean is given by γϕµ + , where γ ≈ 0.57721 is the Euler-Mascheroni constant. The mode 

is at µ, the median is given by ))2ln(lnϕµ − , and the standard deviation is ϕπ
6

. The  

Gumbel log odds function λ(x) is a diminishing convex function, asymptotically tangent from 

above as ∞→x to the line 
ϕ
µλ −

−=
x ,  so that 

ϕ
−=λ∞→

1)('lim xx . An more extreme 

example of a distribution with a long right hand tail is the Levy, for which 0)('lim =λ∞→ xx , 

so the log odds decay even less rapidly. 

 The logistic, normal and Gumbel distributions will be used throughout for illustrative 

comparisons. Figure 1 depicts the log odds functions for three distributions, the normal, 

logistic and Gumbel, all standardised to have the same Shannon entropy and median. The log 

odds derivative decays faster for the normal distribution indicating a shorter right hand tail. 

For the Gumbel the log odds rise quite quickly going away from the median in the left hand 

direction, indicating a short tail in this zone,  but a much slower decay rate to the right. 
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Figure 1: Comparative log odds functions and their decay. 

 

2.2 Differential  entropy  

For a continuous distribution, differential entropy is defined as  

 . (4) )]([ln)(ln)( xfEdxxfxf −=−=κ ∫
∞

∞−
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Continuous entropy metrics appear in various forms. Kullback-Leibler entropy measures the 

entropy gain of one distribution relative to another (Kullback-Leibler  (1951), Kullback 

(1968)).  Conditional and mutual entropy refer to the gains in information arising from 

associated information (Pinsker (1964)). Such extensions also figure in the present treatment, 

but the initial development runs in terms of the parent differential entropy concept, which for 

brevity will sometimes be referred to as total entropy. 

 Expression (2) can be used to write differential entropy in terms of the log odds 

function. The result serves to introduce a function of subsequent importance. 

Lemma 1  

Differential  entropy satisfies 

 . (5) ))]('ln(2[ xE λ−−=κ

 Equivalently, if we define a function: 

))]('ln(2[1)( xx λ
κ

ξ −−= , 

 then 1)]([ =xE ξ . 

Proof: Apply property (2) to , and use)]([ln( xfE−=κ .1))](1[ln())]([ln( −=−= xFExFE  

 

 The function )(xξ of Lemma 1 will be referred to a ‘scaling function’ in what follows. 

Later development identifies it with a Radon-Nikodym derivative for a change of measure, 

under suitable regularity conditions. Its slope and shape will depend on the particular 

distribution being considered. Figure 2 illustrates for the normal, Gumbel and logistic, all 

benchmarked to have the same differential entropy κ = 1.25.  Note that )(xξ can be negative 

over certain ranges for some distributions, typically associated with very low values of the 

denominator ‘doubt’ product F(x)(1-F(x) in expression (2b). For skewed distributions like the 

Gumbel, this will occur in the shorter left hand tail, associated with very low cumulative 

probabilities at that point. 
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Figure 2:  Scaling functions ξ compared 

 

Differential or total entropy is a property of the distribution as a whole. It says little 

about the precise way that uncertainty is distributed along the support axis. Given a marker 

point X, one might think of partitioning the entropy integral into upper and lower half 

integrals. This has no real informational meaning, and is open to a mathematical objection 

that the adding up constraint F(∞) = 1 is not adequately incorporated in the partitioning. 

However, for applications such as value at risk or options pricing it is necessary to consider 

just how uncertainty is distributed along the support axis.  

A first approach to this problem might be to measure the binary entropy associated 

with a categorical random variable that signals whether the value x belongs to the upper or 

lower regime RL(X) or RU(X), for a given marker value X: 

 ))](1ln())(1()(ln)([)( XFXFXFXFXl −−+−=κ . (6) 

This is called locational entropy in Bowden (2007). It can be related to the conditional 

expectations of the log odds function: 

 ]|)([))(1(]|)([)()( XxxEXFXxxEXFXl >−−=≤= λλκ .  (7) 

Locational entropy has a number of applications, including the derivation of spread and 

asymmetry distribution diagnostics that do not depend upon benchmarks such as the 

Gaussian; or any assumption that relevant moments necessarily exist, which can be a problem 

very long tail densities such as the Levy distribution. However, it is not well adapted to the 

current context. One can certainly expect higher total entropy distributions of the same basic 
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shape to have higher locational entropy at any given marker point X away from the median. 

Nevertheless, locational entropy is a purely positional concept, lacking a complete reference 

to total entropy, simply because it is always normalised to have value ln2 at the median (put 

X= Xm in expression (6)). But an option written at a specific strike price will depend not only 

on how far from the median it is set, but also upon which direction, and upon total uncertainty 

in the distribution. Directional entropy provides an inherently asymmetric entropy concept 

that encompasses both aspects, and is the subject of the next section. 

 

3. Directional entropy and the scaling factor 
This section introduces the key concept of directional entropy. As with locational entropy, it 

emerges naturally from the log odds function – locational entropy from λ(x),  and directional 

entropy from its derivative λ'(x). The relationship with the log odds function facilitates a 

change of measure concept that converts natural to logistic measure, for which the log odds 

function is just a constant. 

3.2 Directional entropy 

From section 2.1 Lemma 1, the function κλξ /)))('ln(2()( xx −−=  is such that 1)]([ =xE ξ .  

Given a marker value X and lower and indicator functions IL, IU for the respective regimes 

and , define conditional expectations in each regime as: )(XRL )(XRU

  ]|)([][/][)( XxxEEEX LLL ≤=ΙΙ= ξξξ  ;  (8a) 

  ]|)([][/][)( XxxEEEX UUU >=ΙΙ= ξξξ  .  (8b) 

Proposition 1 shows that total differential entropy can be decomposed into components 

derived from each regime. 

Proposition 1 

Given a marker value X of the random variable x, let 

 .)()()( XFXX LL ξκκ =   (9a) 

  ;)(1)(()( XFXX UU −= ξκκ  (9b) 

Then total entropy divides as 

 )()( XX UL κκκ += . (10) 

Proof: Follows by splitting the domain of integration implicit in Lemma 1 expression (5). 
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Given a marker value X, the decomposition (10) splits total entropy into a forward looking 

component )(XUκ and a backward looking component )(XLκ .  It follows from expression 

(10) that as the marker point X changes, there is an entropy tradeoff between the lower and 

upper regimes: 

 ).(')()()(' XXfXX UL κξκ −==  (11) 

 The logistic distribution constitutes a benchmark, for in this case the log odds function is 

linear, βλ /1)(' −=x  and 1)( =xξ  for all x, meaning that 1)()( == XX UL ξξ  also. Hence for 

any given marker value X 

 )()( XFXL κκ = ; )(1()( XFXU −=κκ . (12) 

Directional entropy for the logistic is a simple function of the regime probability and total 

entropy. In a VaR context, lower directional entropy and critical probabilities effectively 

coincide. For different points along the support axis, the total entropy is just a constant, and 

tail probabilities (F(X) for the lower, 1-F(X) for the upper) are sufficient statistics for the 

directional entropy. Compared across different logistic scale parameters, tail probabilities 

would be insufficient to capture the potential for risk, but the adjustment via total entropy is 

nevertheless straightforward.  

For other distributions,  lower and upper directional entropy diverge in more intrinsic 

fashion from F(X) or 1-F(X) as the marker point X varies   If directional entropy is thought to 

be more closely related to welfare objectives, then tail probabilities and hence VaR, are 

insufficient welfare metrics in their natural form. However, a change of measure can be used 

to generate a closer correspondence and this is the topic of ensuing development. 

For many purposes it will be convenient to renormalise by dividing directional entropy 

by total entropy. Given a subject distribution function F(x) with differential entropy κ, set the 

marker X at a generic value x, and define a  function  by either of the equivalent 

relationships: 

)(xFq

 )()()(1)( xFxxxF LLq ξ=κ
κ

=  (13a) 

))(1)(()(1)(1 xFxxxF UUq −==− ξκ
κ

. (13b) 

Indeed if the function ξ(x) is non-negative, the renormalisation (13) yields a proper 

distribution function in its own right. 

Proposition 2 
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(a) Suppose ∞<<∞−≥ xx ;0)(ξ . Then as defined by (13) is a probability 

distribution function. If it is differentiable, then its density

)(xFq

)()()( xfxxfq ξ= .  

(b) For a logistic distribution, )()( xFxFq = . 

Proof: Note that ξ is non-negative and 1][ =ξE , so that ξ qualifies as a Radon-Nikodym 

derivative on . Hence given a marker value X, we can define a new measure such that 

]|)([)()]([)( XxxEXFXEXF Lxq ≤ξ=Ιξ= , which is expression (13a). The density follows 

by differentiation. Part (b) follows because for a logistic, 1)( =ξ XL , for any marker value X. 

 

In what follows, Fq will be referred to as the distribution function for Lq measure or 

simply as the Lq distribution function, where Lq refers to ‘logistic equivalent’. The 

interpretation is as follows. Given a marker value X, the ordinate  is equal to that of a 

logistic with (i) the same total entropy as F; and (ii) the same directional entropy at X. In other 

words, one is effectively locating the two logistic degrees of freedom, namely β and µ,  by the 

requirement that the total and directional entropies coincide at X. This does not mean that the 

L

)(XFq

q distribution is itself necessarily globally logistic in form; the effective logistic parameters 

β,µ are local and will move with the marker point X. The idea has similarities2 to an envelope 

relationship, although the local logistics are not in general tangent.  If the underlying 

distribution is logistic to begin with, then F and Fq are one and the same. It may also be noted 

that if the parent density f(x) is symmetric, then so is fq(x). This follows because for a 

symmetric distribution )(1)( δδ −−=+ mm XFXF , so that the log odds function λ(x) is 

symmetric about the median Xm. 

 The function ξ plays a role very similar to the state price deflator of financial asset 

pricing, which also entails a change of measure. Because it can either deflate or inflate, it will 

be referred to in the current context as a scaling function. Thus if ξ(x) >1 for x > X, this will 

mean that the equivalent logistic at X will have greater tail probability to match the entropy of 

the subject distribution, so in this case ξ is a local inflator. For a normal distribution, on the 

other hand, the reverse is true in the more distant tails, and ξ will be a local deflator in such 

zones. Scaling function values using the logistic reference could also become distribution 

diagnostics, of the same character as the common normal-based kurtosis or symmetry 

measures. For instance, if the distribution is known to be symmetric, then ξ(Xm) > 1 would 

tell us that it needs to be inflated at that point to achieve the same half entropy as the logistic, 
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so it is not as pointy headed as the logistic. Figure 4b illustrates. Or ξ(Xα) > 1 at a chosen 

VaR critical point for significance probability α would indicate a fat tail relative to the 

equivalent logistic. 

In some cases the scaling function ξ can be negative, if only over certain ranges. The 

problem, if it occurs, arises from very high values of the signal to noise ratio (expression (2b) 

section 2.1), so that over the small interval dx, information rises very quickly from left to 

right, or falls too fast in the reverse direction; equivalently, uncertainty declines very quickly 

relative to the length of the interval.  As expression (11) indicates, if 0)( <ξ X  over any zone, 

lower directional entropy can actually fall over such zones as X rises, which is 

counterintuitive. However, the point of the exercise is to obtain a logistic standardisation that 

has meaning in terms of the average uncertainty over the zone of interest. Thus for the 

Gumbel distribution, negative ξ values occur at the short tail end, which is not typically the 

zone of interest for value at risk or investment purposes. Alternatively, the zone of negative 

values may be negligible in probability. For the standard normal distribution, ξ < 0 at 

approximately 25604.7~ ±=X , at which point τL,U = 1.5166E-23. Thus in practice, the 

requirement that ξ be a non-negative function is not as restrictive as it might appear. The 

general issue is revisited in section VI. If the region in which ξ(x) has negative values has 

very low  measure,  then outside this region, Fq as defined by expressions (13a,b) will be 

close to an Lq distribution function; one could call it ‘quasi –Lq’. The quasi-Lq approximation 

has been employed in figures 4a,b, which compare the natural and Lq versions for both 

normal and Gumbel distributions, standardised to have the same total entropy. The symmetry 

of the normal density is reflected in that of the companion density.  For the normal, the figure 

also indicates that the tail is restricted relative to an invariant. For the Gumbel, which is 

asymmetric with a long right hand tail, the companion density is shifted bodily to the right. 
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Figures 4a,b: Lq and natural densities compared 
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4. Applications to value at risk and option value 
The applications that follow, in this and the next section, make use of a convenient property 

of the logistic, namely that expected shortfall or option values are expressible in turns of the 

relevant tail probabilities. This means that for the logistic distribution, applications such as 

value at risk and expected shortfall amount have a proxy relationship with each other. In a 

risk management context, it would add little to perform an expected shortfall, simply because 

the value at risk is an adequate substitute. This convenient property is not true for general 

distributions. However Lq measure allows us to translate to an equivalent logistic and in this 

way adjust the original. The ensuing development illustrates the methodology. 

4.1 VaR rescaling  

With long tail distributions,  the measured value at risk is in general an understatement of the 

potential losses and a better proxy is based on the directional entropy. By converting the 

natural measure to equivalent logistic measure Lq , directional entropy becomes converted to 

an equivalent probability for value at risk purposes. 

    The technique can be illustrated with a reverse Gumbel, meaning one with density reflected 

backwards around the original median to capture a long left hand tail.  In figure 5, the natural 

and Lq distribution functions are plotted on the same diagram. The lower 10% VaR point for 

the natural distribution is marked as . Also marked is the lower 10% point  for 

the companion distribution, which is the VaR point for the L

%10X %10,qX

q distribution. This means that at 

, the equivalent logistic would have the same directional entropy. Now as earlier 

remarked, directional entropy for a logistic is a satisfactory proxy for tail probability. This 

suggests that a correction is going to be necessary for the Gumbel, and the effective 10% VaR 

critical point is really  rather than . Alternatively, if the critical point is fixed at 

, this would correspond to an equivalent tail probability of 21.8%,  i.e. the scaling 

factor  

%10,qX

%10,qX %10X

%10X

Lξ  is about 2.18 at the natural VaR critical point. 

A similar construction applied to the lower tail of the normal distribution indicates that 

the normal and its logistic equivalent companion distributions are much closer together than 

for the Gumbel. For total entropy corresponding to that used in figure 5, the 10% normal VaR 

probability has to be lowered to about 8%, indicating that the normal-based VaR is a slight 

overestimate of directional entropy relative to the logistic benchmark.  
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Figure 5: Adjusting value at risk via Lq measure 

 

4.2 Indicative option value 

Where distributions are badly asymmetric or fat tailed, directional entropy, and hence Lq 

measure, gives a better guide than does tail probability to the creation of investment value or 

that of similar location-dependent investments. Distributions that have higher upper 

directional entropy are likely to provide more productive opportunities for writing or 

investing in call options and related instruments such as warrants. In what follows, 

conventional call options are used extensively for illustrative purposes. These depend upon 

payoffs beyond the strike price, as distinct from binary or lump sum options. Locational 

entropy, which depends only on tail probability, would provide a better information-based 

guide to the value of instruments of the latter type. 

Let x denote a value or return outcome for an underlying investment on which options 

or warrants are to be written.  The function defined by 

 . (14) )]|[))((1()()()( XXxxEXFdxxfXxX
X

−>−=−= ∫
∞

π

may be described as the core value for a single-period European call option with strike price 

or return value at X, relative to a designated probability measure with distribution function 

F(x). The latter could refer any one of natural, risk-neutral (Harrison and Kreps (1979)), or 

even  subjective probability measures, as in Kahneman and Tversky (1979), depending on the 
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application. For expositional convenience, time is discrete and the usual interest rate or 

discount factor is disregarded (it can otherwise be accommodated by adjusting parameters3). 

The core option value can also be written 

 )X(X)X( Φµπ +−=  (15) 

where ]X[E=µ  and  . The function Φ(X) is the distribution 

accumulator familiar from stochastic dominance theory: distribution A is second order 

stochastically dominant (SSD) over distribution B if and only if  

∫
∞−

=
X

dx)x(F)X(Φ

)X()X( BA ΦΦ ≤ , for all 

X.  However, it is quite possible to have distribution A SSD over distribution B, yet call 

options written on B are more valuable. There is indeed an options theory embedded in SSD 

but it more naturally refers to put options on the downside (Bowden 2005).  

Once again, the logistic provides a natural benchmark: 

Lemma 2:  If F(x) is logistic with scale parameter β, then for any marker value X,   

 ))(1ln()( XFX −−=Φ β ; (16a) 

 . (16b) ))(ln()( XFX β−=π

Proof: Using expression (2), with βλ /1)(' −=x , we get 

))(1ln(
))(1(
)()()( XFdx

xF
xfdxxFX

X X
−−=

−
==Φ ∫ ∫

∞− ∞−

ββ , which is part (a). Part (b) follows by 

substituting in expression (15) and using βµ /)(~);ln(~ ~
−== XXeX X .  

 

The above suggests that a reasonable guide to option value for an arbitrary distribution might 

be to find the equivalent logistic-equivalent (Lq) distribution as in section 3.2 and use 

expression (16b).  The relationship with directional entropy and option value is not 

necessarily linear; one is simply saying that the more entropy there is in the tail, the higher 

option value is likely to be, i.e. the general relation is monotonic. In fact, the correspondence 

can be quite close, especially in the tail areas.  Figure 6 is based on the Gumbel distribution, 

and compares:  

(i) The exact option price, based on the Gumbel; and 

(ii) An option price derived by using the Lq distribution and formula (17b), with βln2+  set 

equal to the Shannon entropy κ of the Gumbel as in section 2.2. 
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The correspondence is remarkably close for strike prices greater than the median Xm, but 

diverges for smaller strike prices, though the relationship between prices (i) and (ii) remains 

monotonic. Section 5 discusses how this might be used. 
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Figure 6: Exact versus Lq-equivalent option price: Gumbel distribution 

 

5. Discovery processes and value revelation 
Discussion in this section turns to a more dynamic context in which information is revealed 

through time. A simple framework is a two period discovery process, represented by a mixed 

distribution. At time zero, the investor in a venture capital does not know which of two 

prospects or states will be true. If bad, the project has little value; if good, it may have 

considerable value or again may not, so that a greater spread exists in the good state.  

Analogies exist with value at risk on the downside. Thus a bank asset and liability manager 

may think in terms of normal business continuing,  or on the other hand, the existence of 

some unknown event that could cause a radical change in bank capital, perhaps extending to a 

disaster scenario as an extreme value. The framework is used first to re-examine locational 

and directional entropy in terms of bivariate entropy, then to show how the latter evolves and 

financial value along with it. 

Mixture distributions provide a convenient framework for thinking about discovery 

processes. Suppose that the distribution of the variable x of primary interest depends upon that 

of another, α . Thus there might be two possible states of the world or latent properties of the 

venture, ‘good’ and ‘bad’ say, and the realised value of x would depend upon which turned 

out to hold. In this case α would be a categorical variable with two possible states g, b. In 
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state g, the relevant joint density element is g)|p(g)f(x  g) f(x, = ; similarly for state b. The 

marginal distribution is given schematically by 

 1)()();|()()|()(),(),()( =++=+= bpgpbxfbpgxfgpbxfgxfxf , 

so that p(g), p(b) play the role of mixing parameters. Mixtures have been suggested as a 

systematic way to model asymmetric distributions; see McLachlan and Peel (2000). 

 The mixing model can be applied to analyse the impact of information upon financial 

value. One usually thinks of entropy as diminishing4 with information. In the extreme case, a 

final value is revealed and options that have been written at what is ex post now in the money, 

as a favourable outcome, will have generated a positive return on their initial value. In the 

stages approach to venture capital, the final value may not yet be revealed, but at the next 

stage the distribution may have shifted to the right and/or become more concentrated. The 

options will likely be worth more, particularly if they have been written at a point to the left 

of the median of the ex post distribution. 
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Figure 7: Component and combined Lq densities 

However, option value can be generated also where locational entropy has increased 

following the revelation of information. If bad outcome has at the outset been viewed as more 

probable, this narrows the ex ante distribution relative to what happens if the good state is 

revealed.  Figure 7 illustrates a case where the ex post distribution has more total entropy than 

the ex ante distribution.  The ex ante distribution mixes logistic good (g) and bad (b) 

outcomes to end up with a combined (c) distribution that is not itself logistic, but has a longer 

right hand tail. The Lq version of the respective densities has been depicted in each case, as a 
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better guide to option value. For the parent logistics (b and g) the natural and Lq densities 

coincide, but the Lq density for the mixed (c) is now shifted to the right relative to the natural 

measure, which is why the natural combined median, marked in as , looks wrong in the 

picture.  Any option that has been initially priced off the ex ante density at a strike price a 

little to the right of    will have generated considerable increase in value if the new 

information indicates that the good state holds. 

c
mX

c
mX

 The gains in directional entropy in the good state are illustrated explicitly in figure 8, 

based on parameters as in table 1. There are two core possibilities as seen at time zero, a good 

state or the world, and a bad state, with the probability of the good state seen as 0.25, which 

becomes the mixing parameter. The distributions in each case are logistic; the bad state has a 

lower median µ and also a lower dispersion parameter β. The good state is intended to capture 

a more blue sky outcome, with a higher median and dispersion, and a higher total entropy, 

than for the bad state. 

Base distributions 
g = good; b = bad. 
µg 0.8
βg 0.55
µb 0.1
βb 0.25
Mixing probabilities  
θ ( good) 0.25
Total  entropies (κ)  
 g 1.402163
 b 0.613706
Mixed (c) 0.9465

 

Table 1: Data for figure 8 

 The initial distribution mixes the good and bad outcomes with probabilities 0.25, 0.75 to 

create a mixture marginal distribution for x (c = combined). This has total entropy 

intermediate between the two. The upper directional entropy is denoted by . Suppose 

now that time has moved on, and it becomes apparent that it is the good state that will hold. 

The upper directional entropy has changed to . As one might expect, the curve has 

shifted to the right. Note however that the gain is not uniform – it has a maximum around X 

=0.5. This approximately coincides with a point of inflection in the graph of gain against 

strike price for options written on the ex ante (combined) distribution. 

)(Xc
Uκ

)(Xg
Uκ

 19



That information could increase uncertainty is counterintuitive at first sight.  In fact, 

this may be just what happens for many ‘blue sky’ ventures. Investors think that should the 

project be successful, the prospective gains might have an extended range of possible values, 

ranging from the moderate to very large. So the ‘success’ contingent distribution has high 

total entropy. But in the early stages, the probability distribution is dominated by a prospect of 

failure (‘No Go’). This constricts the probability distribution. If a ‘Go’ signal becomes 

revealed, then the distribution broadens out into the blue sky prospect. 
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Figure 8: Directional entropy gain function 

 

Finally, the mixed distribution framework as above is not the only possible model of 

distributional mixtures. The Appendix develops a model based on the logistic distribution in 

which the log odds of the initial distribution are a mixture of good and bad state odds, instead 

of the densities themselves. If the new information favours a good outcome (‘Go’), then the 

effective dispersion parameter β rises, as does directional entropy and option value.  

 

6. Concluding remarks 
The directional entropy concepts developed in the present paper provide uncertainty metrics 

suitable for the longer tail distributions that have become a focus of concern for risk 

management and similar contexts. The associated framework of measure change to an 

equivalent local logistic enables the user to assess the adequacy of tail probabilities such as 

value at risk, as against more structured alternatives such as expected shortfall or higher order 
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tail moments. The magnitude of the VaR rescaling factor tells just how sad the tail could 

potentially be. Transforming to Lq measure also enables one to see at a glance the option 

value potential or to understand how it might be generated. The following remarks elaborate 

on some of the practicalities. 

(a)  The logistic Lq benchmark is an infinite support distribution, which raises an issue as to 

the meaningfulness of using it as a benchmark for distributions with a naturally limited 

support, such as the exponential or Pareto. With such distributions, however, the risk 

management problem is typically at the long end rather than the short, which for the Pareto 

would be the right hand tail. In that case, the concern would shift to upper directional entropy 

rather than lower. The problem is in some respects the same as  that referred to in section 3.2, 

where the scaling function can be negative over zones not of primary interest. For such 

purposes, what happens to the left of the marker point is virtually immaterial.  One could 

think in both cases of annealing the original distribution in the immaterial  left hand region 

with a more regular one  with the same total entropy, but  without the scaling negativity 

problem. In effect one is operating from expressions (9b) and (13b) of section 3.2, so only 

values x, f(x) for which  x>X are involved.  The Lq standardisation to an upper VaR point, 

should this be the context, would remain meaningful. 

(b)  Concepts developed in the present paper do not appear to be any more demanding in their 

empirical implication than standard value at risk, as a leading application. As noted in 

sections 3.2-3, transformation to equivalent logistic measure is accomplished via the lower or 

upper conditional mean functions  )(),( XX UL ξξ . An empirical estimate of the necessary 

scaling function ξ(x) can be obtained by fitting a smoothing function e.g. via splines, to the 

empirical log odds table, and obtaining the derivative. Even if relatively few historical 

observations lie outside ( e.g. to the left of ) the desired VaR point, one can establish lower or 

upper limits for the desired conditional mean,  and from this ascertain whether significant 

correction needs to be made to value at risk probabilities. 

(c)  Applications to risk management  and to investment have homologies arising from the 

interpretation of loss measures like expected shortfall as implied put options with payoffs in a 

financial distress zone to third parties such as competitors or liquidators. The value of 

expected shortfall options is readily computable for a logistic distribution in terms of the 

critical probability, together with the total entropy (lemma 2, section 3.4). Thus for a general 

distribution, tail risk metrics based on expected shortfall reduce to a value at risk, once 
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conversion is made to the Lq-equivalent logistic. It is in this sense that corrections to the value 

at risk succeed in capturing expected shortfall elements.  

 

 

Appendix: Alternative mixtures, based on log odds (section 5) 
Another possibility is to assume that it is the log odds that are a mixture, and not the densities. 

Assume both good and bad state distributions are logistic. Thus the investor could assess the 

prior distribution as having log odds given by 

 1);1,0(,);X()X()X( bgbgbbggc =+∈+= θθθθλθλθλ , 

where the subscript c denotes the combination and  bg ,θθ  are probabilities. The combined 

prior or ex ante distribution continues to be logistic, but with dispersion parameter given by 

the harmonic means of those for the two regimes: 
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Once the new information is at hand, the distribution collapses to one or other of the two 

regimes. Assume it is the good state: thus gcgc ; µµββ →→ . This has the effect of 

raising β (increasing entropy) and also the median µ, shifting the distribution to the right. 

Both are potent sources of option value. In particular, an option written ‘out of the money’ 

with respect to the initial combined median will show very high value growth.   
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Endnotes 

                                                 

)(XL

1 The convention in statistics is to refer to a distribution that contains both discrete and continuous values ( jumps 
in F(x)) as ‘mixed’; while linear combinations of distribution function are said to generate ‘mixtures’ of 
distributions.  
2 More precisely, for any given marker value X, we find a logistic distribution Fl  say, such that Fl(X;µ,β)= 

κ . We set β to give the required total entropy κ, i.e.  so the condition becomes F2−= κβ e

)(XL

l(X;µ, eκ-2)= 

κ . Solving gives µ =µ(X). So the local logistic is Fl(x;µ(X),eκ-2). Then Fq(X)= Fl(X;µ(X),eκ-2).  

 
3 For instance in the logistic option formula (17a), simply replace β by β/(1+r), where r is the chosen discount 
rate for an option with maturity one period, if that is the holding horizon. 
 
4 In contrast with the second law of thermodynamics in physics, which says the entropy of a closed system 
always increases through time. 
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