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Reflexive shifting of a given distribution, using its own distribution function, can 
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1. Introduction 
The central idea developed in this paper is that shifting a given distribution in a reflexive 

manner, by using its own distribution function, can reveal information.  The resulting 

operation can be applied in such contexts as latent mixtures to reveal more of the underlying 

structure. The shift framework can also be useful in originating metrics relating to spread and 

asymmetry of a distribution. The latter generally assume a benchmark such as the normal 

distribution, or that symmetry is just a matter of odd-order moments.  But in very long tail 

densities such as the Levy distribution, excess kurtosis and asymmetry metrics based on 

moments do not even exist. The present paper utilises entropy as the basis for a more 

systematic approach. The entropy concept employed for the purpose is binary entropy applied 

at any specified point to the upper and lower half sets defined with the point as boundary. It is 

a measure of the uncertainty as to whether a number drawn at random is going to be greater or 

less than the given marker point. The locational entropy so defined declines away from the 

median, and the rate at which it declines provides a measure of the width of the distribution, 

as well as its symmetry.   

Locational entropy is not just an arbitrary measurement number. It can be identified as 

the difference between two distribution functions that can in turn be regarded as unit shifts to 

the left and right of the original. The shift operations can be accomplished via simple Radon-

Nikodym derivatives, which in this context are scaling functions derived from the distribution 

function itself, the reflexivity aspect. The wider the parent distribution’s spread, the more the 

separation of the right and left hand unit shifts. In other words, unit distribution shifts reveal 

information. 

 Symmetry and spread aspects can be explored using convex combinations of the unit 

shifts, most usefully an equal weighting of the left and right hand unit shifts, which can be 

called the central shift. The points at which the centrally shifted density intersects the parent 

density define an entropy bandwidth.  In turn, metrics based on entropy bandwidth, and its 

position relative to the median, can be used to characterise the asymmetry and the spread of 

the given distribution in a way that is independent of any assumed benchmark such as the 

Gaussian, or of the requirement that relevant moments exist. Construct validity is helped by 

the existence of some useful invariance properties. If the subject distribution admits a 

standardisation, then the asymmetry metric is an invariant for that type of distribution.  

The scheme of the paper is as follows. Section 2 reviews some entropy concepts, and 

their relationship with the log odds function. The core results of the paper are contained in 
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section 3, which covers unit left and right hand shifts and convex combinations, followed by 

the relationship with locational entropy together with some invariance properties. The case of 

the centred shift, which is an equally weighted combination of unit right and left hand shifts, 

is explored in section 4. This is applied to develop asymmetry and spread metrics, with a 

further discussion of how unit shifts can reveal information structure. Section 5 offers some 

concluding remarks, canvassing multivariate extensions, as well as cross shifting by means of 

an ancillary distribution.  

2. Locational entropy 
The object of analysis in this section is a probability space ),,( PℑΩ on which is defined a 

real-valued random variable )(ωx , measurable with respect to ℑ , with probability 

distribution function F. For expositional convenience, the support of F will be taken as the 

entire real line or else R+ , but the extension to a compact subset can readily be made. Section 

5 discusses extensions to the multivariate case. It will also be convenient to assume that F(x) 

is absolutely continuous and a density f(x) exists, over the entire support. Sometimes it will be 

necessary to make distinction between a specific value X of the random variable (i.e. x = X) 

and the generic outcome x; the specific X will then be referred to as a ‘marker’ or ‘marker 

value’.  

Let X be such a value and define two subsets }{)(},{)( XxXRXxXL >=≤=  

corresponding to the left and right hand division of the support space at boundary X. The log-

odds function will be defined as 

)
)(1

)(ln()(
XF

XFX
−

=λ .  (1) 

This is the logarithm of the odds that a point x taken at random will lie in L(X) relative to 

R(X). For a generic point x, the log-odds is related to the density by 

 )(1)(()(')( xFxFxxf −= λ . (2) 

A familiar information concept for continuous distributions is differential entropy, 

defined as  

 )]([ln( xfE=κ . (3) 

This is a useful measure of the uncertainty in the distribution as a whole, although unlike 

Shannon entropy for discrete distributions, it can have negative values. It often appears in the 

form of relative entropy or Kullback-Leibler entropy, which takes the expectation, with 

respect to a base distribution, of the log ratio of an alternative density to the base density. 

Additional entropy metrics, such as mutual information and conditional entropy, will play a 
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tangential role in what follows. Standard references are Kullback and Leibler (1951), 

Kullback (1968), Pinsker (1964). 

Given a marker value X, the binary entropy quantity 

 ))](1ln())(1()(ln()([)( XFXFXFXFXl −−+−=κ  (4) 

will be defined as the locational entropy at X. For generic marker values, the function 

)(xlκ will be referred to as the locational entropy function. Where a specific marker value is 

relevant, the upper case X will be used. 

 Basic properties of the locational entropy function can be summarised as follows. 

 Proposition 1 

(a) For any distribution, 

    (i)   0)(lim =κ±∞→ xlx ;  

    (ii)  κl (x) has maximum value ln 2 at the median mXx =   of the distribution; 

    (iii) The average value
2
1)()()]([ ∫

∞

∞−
=κ=κ dxxfxxE ll . 

(b)  For any given marker value X, locational entropy can be written in terms of the 

conditional expectation of the log odds function as  

 ]|)([))(1(]|)([)()( XxxEXFXxxEXFXl >λ−=≤λ−=κ ,  (5) 

where the log odds function )x(λ refers to the  unconditional distribution function F(x). 

Proof: Definition (4) implies that 

 .  (6) )()()(' xxfxl λ−=κ

This has value zero only if , which means that x=X0)( =λ x m . Moreover, changes sign 

from negative to positive at x=X

)(xλ

m, so this is a maximum. The value ln 2 follows by direct 

substitution into expression (4). The limiting value in (a) (i) likewise follows from (4), while 

the average value in (iii) follows by repeated integration by parts, again based on expression 

(4). Part (b) expression (5) is the integrated version of (6). 

 

 Locational entropy can be regarded as a measure of the information about the value of x 

derived from knowing whether XxorXx >≤ , measured as the expected reduction in 

differential entropy that would stem from the conditionality.  In terms of entropy theory, it 

corresponds to the mutual information between variable x and a regime indicator function for 

the partition into either L(X), R(X). Appendix A contains a proof and fuller discussion. 
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 From expression (6), locational entropy is changing more rapidly where the log odds are 

non zero, i.e. away from the median, at points where the density remains high. If the density 

f(x) is symmetric about its median, then so is the entropy function. Figure 1 depicts the 

logistic locational entropy function for two values of the logistic dispersion parameter β, 

along with the densities. Locational entropy decays at a much slower rate for distributions 

with higher spread. For an asymmetric distribution, such as the Gumbel distribution, the 

locational entropy function is skewed in a fashion similar to the underlying density of the 

distribution, in this case to the right – there is higher entropy in the right hand tail, reflecting 

the slower decay rate of the log odds function. 
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Figure 1:  The effect of dispersion on locational entropy 

 Various decompositions exist involving locational entropy. It can be shown that total 

distribution entropy  splits into two contributions, the first being locational entropy as in 

(4), and the second being the entropies of the conditional distributions for  and , 

weighted by their respective probabilities of occurring. An analogy is with the between-group 

and within-group sums of squares in the analysis of variance.  The decomposition is in effect 

that for mutual information (Appendix A).  

κ

)(XL )(XR

3. Distribution shifting 
Locational entropy can be established as the difference between the values of two distribution 

functions that can be regarded as unit shifts of the parent distribution function to the left and 

right of the original, respectively. The shifts are accomplished via a process that corresponds 

to a change of measure, accomplished via appropriately left and right oriented Radon-
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Nikodym derivatives. For general treatments of measure changes, see Shilov and Gurevich 

(1977) and Billingsley (1986).  

3.1 Unit shifts 

Lemma 1 

Write 

 )(ln)( xFxL −=ξ  (7a) 

 ))(1ln()( xFxR −−=ξ . (7b) 

Then the functions RL ξξ , qualify as Radon-Nikodym derivatives in a change of measure from 

P to QL ,QR respectively such that for any event ℑ∈B , ][)( LBL EBQ ξΙ= , where  denotes 

the indicator ( membership) function;  similarly

•I

][)( RBR EBQ ξΙ= . 

Proof: It suffices to show that ξL and ξR are nonnegative random variables such that 

1][][ == RL EE ξξ . The nonnegativity is immediate from the definitions (7a,b). The unit 

expectation follows by a straightforward integration by parts. 

 

Corollary: 

Any proper convex combination of the form 

 10);()1()()( <θ<ξθ−+θξ=ξθ xxx RL , (8) 

also qualifies as a Radon-Nikodym derivative for a change of measure from P to Qθ , say. 

 

Lemma 1 implies that for any measurable function g(x), )]())([ln()]([ xgxFExgEL −= , 

similarly for regime R using (7b). One can then establish the following: 

Proposition 1 

The density and distribution functions for the new measures QL and QR are given by 

 )).(ln(1)(()());(ln()()( xFxFxFxFxfxf LL −=−=  (9a) 

 ))(1ln())(1()()());(1ln()()( xFxFxFxFxFxfxf RR −−+=−−= . (9b)  

Proof: Set g as the set indicator functions in R for regimes L, R in turn. Thus if the regime 

marker value is X, set 0;1)( =≤= XxforxgL , otherwise. Then 

. ∫
∞−

==
X

LLL dxxFxfxgEXF ))(ln()()]([)(

Integrating by parts gives FL(X), as in expression (9a) with X = x, and the density follows by 

differentiation. Or obtain the latter directly by setting )()( Xxxg −= δ , the Dirac delta 
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function,  under smoothness assumptions on f  (Lighthill (1959)). Similarly, for the right hand 

regime R . 

 

Corollary: 

The density and distribution function corresponding to the convex combination (6) are given 

by 

 
.)()1()()(

);()1()()()()(
xFxFxF

xfxfxfxxf

RL

RL
θ−+θ=

θ−+θ=ξ=

θ

θθ  (10) 

 

Multi-step shifting, if desired, can be accomplished via a recursion: 

,...2,1;))(ln(1)(()( 11 =−= −− nxFxFxF L
n

L
n

L
n   

))(ln()()( 11 xFxfxf L
n

L
n

L
n −−−= , 

with a similar recursion for the right shifts based on (9b). Sequential shifting can be a useful 

way to generate distributional shapes. Thus starting from a symmetric distribution like the 

logistic, one can generate sequential right shifts that become more and more skewed to the 

right, with progressively longer right hand tails. However this is not a universal property; the 

right shifted normal densities continue to be symmetric, with a linear envelope. In general, 

non trivial stationary solutions do not exist for the above recursions.  

 Figures 2a,b illustrate unit density and distribution function shifts for the logistic 

distribution. As one should expect, the right shift FR is first order stochastic dominant over the 

natural distribution which is in turn dominant over the left shift. Figure 3 depicts shifted 

densities for the exponential distribution, which is asymmetric, and with support limited to the 

positive half line. Other details in these graphs, including the centred shift, will be commented 

on below. 

The relative or Kullback-Leibler entropy of the right and left shifted distributions, 

taken with respect to the original, can be obtained as 

 ))]([ln()]
)(
)([ln(;))]([ln()]

)(
)([ln( xE

xf
xfExE

xf
xfE Rf

R
fLf

L
f ξ−=−ξ−=− , 

where the expectational subscript (f) is inserted to remind us that the expectations have to be 

taken with respect to the natural (unshifted distribution).  The functions ))(ln( xLξ and 

))(ln( xRξ are concave for all the distributions considered in the present paper, so by Jensen’s 

inequality, 0)1ln())]((ln())]([ln( ==≥− xExE LL ξξ . Thus there is an increase of entropy 
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when measured relative to the original distribution, as we should expect – shifting adds 

information.  

In the particular case of the left shift for a Gumbel (or Fisher-Tippett) distribution, 

relative entropy is constant, equal to the Euler-Mascheroni 57721.0≈γ . To see this, note that 

for the Gumbel, βµ /)(~));~exp(exp()( −=−−= xxxxF , where µ is the mode and β the 

dispersion parameter. Now  and relative entropy requires , 

which reduces to 

))(ln()( xFxL −=ξ )]([ln xE Lξ−

γ=]~[xE . 
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Figure 2a: Density shifting, logistic distribution  
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Figure 3: Density shifting, exponential distribution 

3.2 Properties  

Left and right shifted distributions and densities have a number of relativities, both to each 

other and to locational entropy.  

(a) Locational entropy 

Using expression (4) together with (9a,b), it follows that 

 )()()( xxFxF RL lκ=− . (11) 

Locational entropy can be obtained as the difference between the left and right shifted 

distribution functions. One could think of this as an uncertainty test for position. If it makes 

very little difference to the distribution function to move it either way by one shift, then the 

position must be known with some certainty. The wider the separation accomplished by the 

left and right shifts, the greater the inherent locational uncertainty at any given point. 

(b) Relativities at the median 

A number of relational properties hold at the median Xm of the natural distribution. 

(a) 2ln)
2
1(

2
1)( −θ+=θ XF  

(b) 2ln)()()( ==− mmRmL XXFXF lκ  

(c) . 1)()( =+ mRmL XFXF

Putting θ = 0.5, property (a) implies that )()( mmc XFXF = , i.e. that the centred and natural 

distributions intersect at the natural median. Property (b) says that regardless of the 

distribution, the vertical difference between the right– and left– shifted distribution functions 

has the same value at the median, namely ln2. Property (c) says that at the median, the 
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distribution functions sum to unity. Properties (b) and (c) are consistent with property (a) by 

setting θ = 1, 0.  

 Further relativities hold with respect to the densities. From expressions (9a,b), together 

with the definition (1) of the log odds function, it follows that: 

 )()()()( xxfxfxf LR λ=− . 

In particular at the median 0)( =mXλ , so 

 .  (12) 2ln)()()( mmRmL XfXfXf ==

So the left and right hand densities must intersect at the median at 0.6931 of the value of the 

natural density value, and this property must be shared by every convex combination as in 

expression (10). Figures 2a,b illustrate; the centred density has θ = ½. 

4. Entropy bandwidth and distribution diagnostics 

The most important special case of a convex combination is θ = ½, which will be called the 

‘centred shift’. The associated density and distribution functions are: 

 ))()((
2
1)(;))()((

2
1)( xFxFxFxfxfxf RLcRLc +=+=   

The centred densities are marked in figures (2a,b) for the logistic distribution. As noted above 

they must intersect with the unit right and left hand shifts at a common point, corresponding 

to the natural median Xm . If the natural density is symmetric, then the centred density is also 

symmetric (e.g. figure 2a), but this will not be true if the original is asymmetric. Figure 4 

illustrates with a Gumbel distribution, with the dispersion parameter β = 1. 
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Figure 4: Gumbel distribution: centred shift 
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The centred shift can be explicitly written in the form 

 )()()( xfxxf cc ξ= , (13a) 

where  

 ))](1)((ln[5.0)( xFxFxc −−=ξ . (13b) 

Integrating both sides of expression (13a) over the entire support, and using expression (2) 

and (3), gives an expression for differential or total entropy as )]('[ln(2 xE λκ −= .  

4.1 Entropy bandwidth and its uses 

The notion of entropy bandwidth and associated symmetry and spread metrics flow more or 

less immediately from the following invariance properties. 

Proposition 2 

(a) The natural density and its centred shift intersect just twice at points  such that ** , RL xx

 )411(5.0*)( 2−−±= exF , (14) 

so that .  838622.0)(;161378.0)( ** ≈≈ RL xFxF

(b) At the points of intersection, , so that 

are points of binary entropy symmetry on each side of the median. 

441948.0)()()()( **** ≈−=κ=κ RLRL xFxFxx ll

** , RL xx

Proof: Any point x* where the natural f(x) and centred  fc(x) densities intersect must satisfy  

1*))](1*)((ln[5.0*)( =−−= xFxFxcξ . This yields two solutions )411(5.0*)( 2−−±= exF , 

as in part (a). Part (b) follows because  and locational entropy is 

symmetric as between F(x), (1-F(x), with the actual value obtained from expression (11). 

Thus the vertical distance between the right and left hand shifted distribution functions must 

be the same.  

))(1ln()(ln( **
RL xFxF −=

 

The distance will be referred to as the ‘entropy bandwidth’ of the given 

distribution. It is marked as such in figures 2a and 4.  

**
LR xx −=∆

A useful bandwidth property arises where the distribution admits a standardisation 

induced by a linear affine transformation, usually identified with location and scale 

parameters. Thus suppose that a two parameter distribution admits a standardisation 

β
µ−

=
xx~ such that )~(~)1,0;~(),;( xFxFxF ==βµ , say. The normal, logistic and Gumbel are 

all instances. From expression (14), the entropy bandwidth is then also standardised on the 
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difference )161378.0(~)838622.0(~~ 11 −− −=∆ FF . The bandwidth in terms of the 

unstandardised x will be ∆=∆ ~β , and hence proportional to the scale parameter β.  In terms 

of a situation such as that depicted in figure 4, the intervals AM, MB will expand in 

proportion.  

The bandwidth can be used for metrics of asymmetry or spread that do not depend 

upon the normal distribution as benchmark, or of moment existence. 

(a) Asymmetry metric 

Distributional symmetry can be cast as referring to whether locational entropy is equally 

concentrated on either side of the median. The centring of the bandwidth interval relative to 

the median can be taken as an asymmetry metric:  

 
2
1

**

*
−

−

−
=ν

LR

mR
xx
Xx  (15) 

Positive (negative) values would indicate positive (negative) skewness. The limits are ½, - ½. 

Thus for the Gumbel distribution of figure 4,  the asymmetry metric would be taken as 

2
1

−
AB
MB  , with a positive value indicating that the distribution is skewed toward the right.  

A useful invariance property arises where the distribution admits a standardisation. In 

this case the asymmetry metric ν, as defined by expression (15), is an invariant for the 

distribution type; it is in effect that for the standardised version. For a standard Gumbel with 

mode µ = 0 and β =1, the median is )2ln(ln(β−µ = 0.3665, and the entropy bandwidth is the 

interval ( -0.5994, 1.7325), giving an asymmetry metric ν = 0.0858, so the distribution is 

mildly skewed to the right. By way of contrast, for the exponential distribution of figure 3 the 

symmetry metric comes out as ν = 0.1863; the bandwidth asymmetry is very evident from the 

figure. The Levy distribution (see below) is even more asymmetric. 

(b) Spread 

The entropy bandwidth ∆ of the interval could also be taken as an index of the spread of the 

distribution. For the normal distribution, the entropy bandwidth would be 1.9776σ. For the 

logistic it is 1.6759β = 0.9240σ. This is consistent with the classic result that the normal is the 

distribution that maximises differential entropy for a given variance, provided the latter exists. 

 The Levy distribution provides an instructive case study for asymmetry and spread. The 

Levy density is defined by 5.1

2/

2
);(

x
eccxf

xc−

π
=  with cumulative )/5.0();( xcerfccxF = , 
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where c is a scale parameter.  It is standardised via the ratio x/c. For the Levy distribution, the 

usual skewness and excess kurtosis metrics are undefined, as the relevant moments do not 

exist. Figure 5 sketches the shifted densities for c = 1; note the position of the median.  The 

entropy bandwith is 23.6004 and the asymmetry metric ν = 0.4285, quite close to the 

theoretical upper limit of 0.5. If the scale constant c is increased to 4, then the bandwidth 

enlarges to 94.4012, so the distribution has four times the spread. However, the asymmetry 

metric stays just the same at 0.4285, the invariance arising from the standardisation with 

respect to the scale parameter.   
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Figure 5: Unit shifts for the Levy density 

 

4.2 Shift operations and information revelation 

It is implicit in the foregoing that unit left and right shifts can be used to reveal the 

informational structure; separation width is an indicator of locational entropy. A more 

informal way to reveal information is to compare the centrally shifted distribution with the 

original. The following discussion is intended to illustrate this. 

 Figure 6 depicts a scenario under which an investor is contemplating a new venture that 

can result in one of two alternative future scenarios by the end of a development period. In the 

good case, a density fg will apply to the capital value of the project. In the bad case, a density 

fb will result. The distributions in both cases are imagined to be logistic, with the parameters µ 

(median, mean), β (dispersion) as indicated. The good state distribution has higher differential 

or total entropy (κ) – our investor hopes it has plenty of blue sky potential. The investor does 
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not know which of the two distributions, good or bad, will apply, but assesses the probability 

of the good state as θ = 0.275.  The resulting density f  is a mixture, as illustrated. Indeed, 

mixture densities have been suggested as a systematic way to model asymmetry; see 

McLachlan and Peel (2000). 

The mixture aspect is not immediately apparent (e.g. to another investor without the 

same prior knowledge). However, figure 7 shows what happens when unit left and right shifts 

are applied, followed by the central shift. The central shifted distribution now has a quite 

obvious second mode, there is a wide entropy bandwidth (double headed arrow) and a fair 

degree of asymmetry is revealed. The second investor might reasonably conclude that there is 

an underlying mixture distribution, one element of which seems to have considerable upside 

potential.  
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Figure 6:  Original density mixture 
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Figure 7:  Shifted densities 

 

5. Concluding remarks 
Distribution with long tails are of interest in a number of contexts: reliability theory, 

investments including option pricing, income or wealth distributions, mortality, to name a 

few. Some of these distributions may not possess the full range of moments; others may have 

irregular or lumpy bits in their tails, perhaps reflecting mixture elements. The purpose of the 

present paper has been to put forward an approach to distribution diagnostics that calls upon 

information theory rather than on moments. The approach could perhaps be described as 

information mining; there is no better place to look for information than in the distribution 

itself, hence the reflexivity terminology.  

It is possible to extend the approach in various ways. Bowden (2007) utilises a more 

directional approach to entropy that is useful in particular contexts such as options pricing or 

financial risk management. The approach does call on distributional benchmarking, in that 

case employing an alternative measure change that establishes a local logistic-equivalent 

distribution. In that sense it is more limiting than the present paper, which does not require 

any particular benchmark. Two further possible extensions are as follows.  

(a) A corresponding theory for multivariate distributions (as F(x) with x a vector valued 

random variable) would require attention to the definition of direction, i.e. what is to 

constitute right and left. The directional derivative provides a possible framework. Given a 

marker point X, define a vector , along a suitably normalised direction h, where z is a hX z+
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scalar. The entire mass of the distribution is then projected along the direction line, i.e. as the 

marginal distribution, to obtain a univariate density , which has z as a scalar random 

variable. A natural direction to take might be that of maximal increase in the parent 

distribution function F at the given point X, in which case 

);( Xzfh

Xxx
h =∂

∂
∝ ]F , i.e. the steepest 

ascent direction. Once the direction is decided, the univariate framework applies as in the 

foregoing discussion, with the understanding that locational entropy and distribution shifting 

are specific to the designated direction. 

(b) A further extension might be to consider cross shifting, where one distribution is used to 

shift another. Thus starting with F(x), one might think of shifting with ));(ln()( θxGxL −=ξ , 

where G is another distribution function  that depends on a set of parameters θ.  The new left 

shifted density would be . For this to be valid, one would need 

, where the subscript means the expectation with respect to the subject 

distribution function F. This amounts to a restriction on the parameters θ . Thus suppose a 

normal distribution is to be shifted left by a Gumbel distribution function G that 

depends on a dispersion parameter β and a location parameter m. In order to satisfy the above 

unit scaling requirement, it is necessary to have 

)()( xfxLξ

1)];(ln([ =− θxGE f

),;( 2σµxN

2
2
1)( σ=−µβ m . If this is the case, then the 

shifted distribution turns out to be itself normal with the same variance , but with a new 

mean equal to 

2σ

β
σ

−µ
2

; in other words, a simple translation to the left depending on the 

relative dispersion parameters. On the other hand, the precise meaning of cross shifting is less 

clear, in terms of locational entropy and related concepts of distributional spread. 

 

Appendix A: Locational entropy as mutual information 
The following discussion enlarges on an earlier remark that locational entropy has a technical 

meaning in terms of the mutual information between regime membership and the actual value. 

It will be helpful to begin by formally extending the dimensionality of the problem. Given 

two random variables (x, α), let  their joint and marginal density functions be φ(x,α), f(x) and 

p(α), respectively. The following differential entropy concepts apply: 

 Joint entropy:   )],([ln(,, αφ−=κ αα xExx ; (A1a) 
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 Marginal entropy for x:   )]([ln( xfExx −=κ ; (A1b) 

 Marginal entropy for α:   )]([ln( α−=κ αα pE . (A1c) 

The subscripts in the above indicate the dimension of variation. Conditional entropy concepts 

also arise, defined in terms of the conditional density )|( αφ x : 

 ))]|([ln(|| αφ−=κ αα xExx , (A2) 

where the subscript denotes that the expectation is taken with respect to the conditional 

distribution of x, given α.   

Lemma A1: 

Joint entropy can be decomposed as  

 mx κκκ αα +=, , (A3) 

where ][ |αα κκ xm E= . 

Proof: Using the iterated expectation: 

)]([ln()],([ln(]
)(
),([ln()]|([ln([ ,, αα

α
αακ αααα pExfE

p
xfExfEE xxxm −===− .  

Expression (A3) follows from definitions (A1a,c). 

 

A final definition sourced from information theory is that of mutual information 

(Pinsker 1964), which refers to the information that knowing the value of α gives about the 

value of x . In the present context, this corresponds to  

 αα κκκ ,, xxxaI −+=  (A4) 

Equivalent definitions apply in terms of the difference between marginal and expected 

conditional entropy. Although  is a symmetric measure, the subscripts are ordered in the 

sense that  α is imagined to provide information about x.  

xI ,α

Extending the dimensionality in the above way is a useful way to handle distribution 

mixtures, where α plays the role of a mixing variable. However for present purposes, it may 

be noted that locational entropy can be regarded as a degenerate case of bivariate mutual 

entropy. Given a marker value X, we can imagine α to have categorical values labelled as L, 

R, with density elements )(1)();()( XFRpXFLp −== . It is apparent from definition (4) 

of the text  that )(Xlκ=κα , locational entropy at X. Moreover, set 

 , otherwiseXxxfLx 0;),(),( =≤=φ
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with a complementary definition for  ),( Rxφ , and set the corresponding log densities 

identically equal to zero wherever 0),( =∗φ x . Then 

.

}))(ln()())(ln()({

))},(ln(),()),(ln(),({,

x

X

X

x

dxxfxfdxxfxf

dxRxRxLxLx

κ=

+−=

φφ+φφ−=κ

∫∫

∫

∞−

∞

∞

∞−
α

 

It follows from Lemma A1 that 

 . )(, XI x lκ=κ= αα

Thus locational entropy has a mutual information dimension, as a measure of information 

about the value of x derived from knowing whether .XxorXx >≤   
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