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I Introduction 
Although many theoretical models of intertemporal portfolio allocation have been 

devised, the long run is under-represented in practical portfolio theory and its 

outgrowths such as hedging algorithms. Computation and use of one-period returns 

remains the predominant raw material for portfolio constructs and construction. It is 

understandable why this should be the case: one period returns are stationary or 

nearly so, so they are well adapted for standard statistical measures of reward and 

variation, which in turn can be easily incorporated into mean-variance portfolios. 

Extensions such as GARCH or similar volatility modelling can be used to derive 

hedges that vary with time along with conditional properties of asset returns. But the 

problem with short run data is that the user can easily become preoccupied with the 

short term frame of mind. Market or other noise can swamp signals that while weak 

in the short run are far from weak in the long run. Weak local dependence can be 

quite consistent with strong global dependence. 

When the focus of attention shifts to the longer run, one has to incorporate 

environmental influences that also act in the longer run: the macroeconomics of 

business cycles, interest rates or exchange rates, economic policy and structural 

change.  The pricing of a stock, for instance, can be taken as the discounted sum of 

expected future earnings, and the latter are driven by the business cycle. If the market 

is fully efficient and far sighted, then even over the longer run the total return index 

for a stock or market index should follow a canonical model such as an exponential 

Ito process, in which the drift term incorporates the required rate of return or cost of 

investor capital, and the volatility term encompasses the revisions in expectations 

about future earnings and the economy in general. To be sure, macroeconomics can 

still enter via the cost of capital, reflecting a variable risk premium associated with 

human capital or other systematic risks.  Likewise, the volatility term can incorporate 

risks associated with the particular stage of the business cycle, or concerns about 

exchange or interest rate movements. But the model itself remains virtually intact.  

In practice, things do not quite work out that way over the longer run, no matter 

that such models can be adequate approximations over the short run. In the first 

instance this is an empirical judgement. Many studies on exchange rates have shown 

that uncovered interest parity does not hold, with or without a risk premium; 

equivalently, the return to a forward contract is not a martingale difference process. 
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Likewise some of the longer term patterns of national stock market indices (see 

below) are hard to reconcile with the above exponential Ito process - it would require 

a dramatic and unrealistic state-dependent specification of the drift and volatility 

processes to make them so.  

A second difficulty is that the market models, whether theoretical or empirical, 

must have the flexibility to encompass different information sets. Investors are not all 

the same: they operate off different models (whether mental or otherwise) of the 

market and the underlying macroeconomics that drives it. Over time, different 

investors enter or leave the market, so that the operative information sets themselves 

follow a dynamics. Attempts have been made in the rational expectations literature to 

formalise such effects (e.g. Bowden 1988, §5.3). A good way of looking at things is 

to say that some investors have more detailed knowledge of the market and its 

dynamics than others, who even in the best (most rational) of worlds, could perceive 

only the broader brush. A given empirical model should be flexible enough to allow 

for differences of this kind, or a way of formalising them. 

In the longer run therefore, it may be a bad idea to assume automatically that 

canonical models of value will hold. Empirical work should not assume that they do. 

In turn, portfolio selection methodology that relies on empirical returns should not 

assume that they ate temporally independent over the longer run. It would make more 

sense for a passive or long-term ‘buy and hold’ portfolio to be predicated not so 

much on one period returns, as on properties of the path as whole.  The long-term 

paths of different assets classes follow quite different dynamic behaviour. It does not 

automatically follow that the future path will exhibit the same long term volatility 

pattern, in just the same way that one should not assume in classic mean-variance 

analysis that future asset return distributions will necessarily mirror the past. 

Nevertheless there may be a predisposition of some assets to exhibit characteristic 

long-term volatility patterns, in the same way that business cycles and longer-term 

exchange rate variation have not yet vanished from world economies. It may be that 

economic behaviour and economic policy rules have between them a predisposition 

to cause large-scale volatility, even if precise causal models are hard to evolve. How 

to measure these patterns is one of the topics to be explored. The way in which they 

are measured should feed naturally into portfolio selection methodology.  

What is needed is a concept of empirical path risk. Path risk is concerned with 

properties of the path as a whole, including but not limited to terminal values. The 
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pricing of exotic derivatives is usually path dependent, but in this context, the path 

risk is commonly thought of as synonymous with model risk and is in any case linked 

to some presumed data generating model. The task for an empirical path risk concept 

is to measure the risk of an entire time path without making too many assumptions.  

In a portfolio context, mean-variance and related problems such as hedging are 

concerned only with metrics for distributional risk: means, variances and higher order 

moments relative to some assumed probability distribution. The task for path risk 

metrics is to assist judgements about how long-term path behaviour of differing asset 

classes can be measured. Moreover, path risk and measurement should be able to 

encompass dynamic generalisations of many of the risk metrics in common use: 

means, variances, extreme values, or value at risk (VaR). Finally, the results should 

assist the design of portfolios that are superior on the same path behaviour metrics; 

and once again, should have a correspondence with notions associated with static 

portfolios such as the mean - variance efficient frontier.  

The present paper tackles issues and algorithms associated with path risk. It 

does so on an empirical level, with the aim of developing practical portfolio solutions 

when the focus of investment attention is the long run, as with superannuation or long 

term growth investment funds. The chosen tool is wavelet analysis. This provides an 

elegant and quite general way of overcoming the restraints of static distributional 

theory, which are not well adapted to the intertemporal context and require restrictive 

maintained hypotheses as to the underlying data generation mechanism. One can use 

the energy decomposition to design portfolios tailored to preferences as between long 

or short run variation. Band pass portfolios can exclude altogether designated long or 

short-term value fluctuations.  

The scheme of the paper is as follows. Section II reviews wavelet technology 

for the benefit of readers who may be unfamiliar with it. Illustrative results introduce 

the application used in the body of the paper. Section III is a closer look at what is 

required for a practical theory of path risk, including the relationship with value at 

risk. Section IV contains the bulk of development as it relates to portfolio 

construction. It is shown how to generalise empirical mean-variance analysis to 

encompass entire paths rather than just a time series of returns. The performances of 

the two approaches – wavelet and classic mean variance – are compared. Other 

points of connection are with spectral utility functions, and to band pass filtering in 

electronic engineering. There is an application to a small international equities 
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portfolio with a foreign exchange hedging element. Section V offers some 

concluding remarks. 

II Wavelet concepts 
The methodology to be used in the present study draws on wavelet analysis. This is a 

very flexible way of breaking down a given time series into longer run and shorter 

run components, with very few maintained assumptions about the process generating 

the given series. It is in the first instance simply a descriptive tool, but a very 

powerful one. It overcomes many of the limitations associated with spectral analysis, 

while preserving the same insights. Readers familiar with spectral analysis will recall 

that this decomposes a given series into the sum of sinusoids of different frequencies 

(a process called ‘complex demodulation’). It also attaches amplitudes or power to 

these sinusoids, so that if one frequency is more powerful than others, much of the 

variance in the given series can be explained in terms of a well-defined cycle at this 

frequency.  However, the elementary sinusoids themselves do not change over time, 

either in their frequency or their amplitude. This is one of the limitations of spectral 

analysis, although from time to time suggestions were made as to how to develop 

time varying spectra (e.g. Priestley 1965). But even here the change had to be very 

slow over an extended period of time, or else there was implicit theorising as to the 

underlying data generation process. 

Limitations of such kinds were effectively removed by the development of 

wavelet theory and practice, notably by later authors such as Mallat (1989), 

Daubechies (1988, 1990, 1992) , Coifman et al (1990), Cohen et al (1992). For useful 

reviews of the use of wavelet analysis in economics, see Ramsay (1999), Schleicher 

(2002), or Crowley (2005).  

 A wavelet is rather like a sinusoid localised at a particular point in time, so that 

its power drops off rapidly on either side of that time point.  Moving along through 

time, one fits a succession of such wavelets. Each time point contains contributions 

from wavelets of the same ‘scale’ (quasi frequency) but centred at neighbouring 

points. In addition, it will also contain contributions from wavelets of different scales, 

corresponding to cycles of different frequencies. By a similar mathematical argument 

to complex demodulation, one can express the series at any point in time as a sum of 

the wavelets of different scales. The shorter scales represent higher frequency 

fluctuations, while the large scale wavelets capture the long run movements. A more 
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detailed account is given in Appendix 1, which also depicts the wavelet family used 

in the present study, namely the Coif 5  wavelets. Collectively across different scales, 

the wavelets of either family are flexible enough to allow for asymmetric local cycles 

of rather arbitrary form, so this is no longer a story requiring regular sinusoidal 

patterns.   

Although all chosen from the same generic family, the wavelets are normalised 

to refer either to the cycles (‘mother wavelets’) or long term trend or quasi trends 

(‘father wavelets’). The results of fitting mother (cyclical) wavelets of different 

scales are called the ‘details’ (D) and they are additive in their effect. Progressive 

sums, by adding more details, are called the ‘approximations’ (A). Figure 1 is a 

schematic decomposition. Level 1 is the smallest scale or highest quasi frequency, so 

D1 represents the cycle at this highest level of detail. The given series is then split 

into D1 + A1, where A1 is the series once the very shortest fluctuations have been 

removed. Levels 2,3…. contain successively less small-scale complexity. Extracting 

these leads to broader time frame approximations designed to reveal longer run 

cycles and ultimately the trend. An ‘average period’ construct for a given level of 

detail D can be derived by finding the sinusoid whose period most closely matches 

that of the wavelet fitted at any point in time, suitably adjusted for its scale. Then one 

simply averages out these local equivalent periods over time. This enables us to think 

of the successive details as corresponding to progressively longer cycles, just as in 

spectral analysis. 

The overall effect is rather like adjusting more and more exactly the focus of a 

microscope. One of the more celebrated images in wavelet exposition is that of Mme 

Daubechies’ eye as viewed from successively closer up. At long range one sees only 

the general features, with the rest being blurred. These are like D6 or D7 plus the A7, 

although in this case two dimensional. Moving closer, one see higher level details of 

the iris, ultimately up to D1.  
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Figure 1: Decomposition into successive details and approximations 

 

The above analogy is useful, for it gives us a way of thinking about the market 

efficiency problem. Suppose expectations were unbiased, but with respect to 

differing information filtrations. Those with poorer information would see only the 

lower level detail.  To such investors the path history would appear as something like 

the path A6 or A7, surrounded by an band of vagueness representing all the higher 

level detail, but appearing as a blur, as in the eye analogy. Investors with better 

information would see greater detail and hence potentially be able to make money at 

the expense of the average trader. The overall analogy is not exact, because 

information unfolds in real time whereas the wavelet record is a historical  

decomposition over a given time interval. Nevertheless, it remains a useful one, for it 

illustrates that path risk is not absolute: it depends upon who knows what and will not 

look the same to all investors, even before taking into account their differing personal 

circumstances or appetites for risk. 

As with spectral analysis, one can measure the amplitudes of each detail in the 

form of the variance of the wavelet detail. Unlike spectral analysis this is a local 

concept, differing over time. However, one can use compute the average variance 

over the given time horizon and present the results in the form of a table of average 
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wavelet energies (AWE) at the different levels of detail. Covariance concepts also 

exist, more or less corresponding to those of classical statistics.  

Wavelet decompositions 

Figure 2 illustrates wavelet decompositions for some for the asset classes used in the 

present study. The object variable (or dependent variable) in each case is the log of 

the total return index. Further discussion relating to the choice of object variable, 

including rates of return, appears in section III below. 

Table 1 is an AWE decomposition for the asset classes used in the present 

study using monthly data from Jan 1988 to Dec 2005 (see the Data Appendix for 

definitions and sources). The maximum detail available for such a data run is level 7. 

What is left over is taken to be the trend, though it may remain more complex than 

the standard log linear trend. Indeed this is one of the strengths of wavelet analysis 

that it makes no prejudgements about the form of any underlying trend or of any 

underlying stochastic process. The vantage point is that of an international equity 

portfolio for a New Zealand investor wishing to invest in the US and other major 

stock markets. The total return stock indexes as given refer to the own currency 

return, whereas in practice this would be a compound of the own currency return and 

the relevant exchange rate against the NZ dollar. Such aspects are considered in more 

detail in section IV, which deals with portfolio formation.  

 The remaining asset appearing in table 1 is the total return index on a one-

month forward contract on the US dollar against the NZ dollar. This corresponds to a 

portfolio long in zero coupon NZ bonds or bills, short in US, embodying the foreign 

exchange (FX) hedging component of the three- fund theorem of international 

finance (Solnik 1974). It assumes particular significance when the stock returns are 

expressed in home currency (here the NZD) as noted above.  In that case the bond 

portfolio can be referred to as a currency hedge portfolio against the USD, and is in 

effect a forward contract.   The relevant monthly return is defined by 

**)1(
1

01 r
e

ee
rr −

−
+−  

where: 

r = NZ one month bank bill rate as of start of month 

r* = one month US CD rate as of start of month 

e = exchange rate as 1USD = e NZD, i.e. with the US as commodity currency 

and NZ  as terms:  e1 = end of period rate, e0 = beginning of period. 
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Table 1: Average wavelet energy decomposition for asset classes 

Detail 
level 

Equivalent 
time period 
(months) 

NZ Stocks 
Detail Energy 

(%) 

US Stocks 
Detail Energy 

(%) 

Japan Stocks 
Detail Energy 

(%) 

Australia 
Stocks Detail 
Energy (%) 

USD/NZD 
Forward 

Detail Energy 
(%) 

1 2.9 2.41% 1.35% 2.15% 3.48% 1.00%

2 5.8 2.86% 1.58% 2.71% 4.02% 1.35%

3 11.6 4.84% 2.34% 5.26% 10.04% 2.85%

4 23.2 6.47% 3.38% 14.63% 16.06% 2.52%

5 46.4 5.57% 7.13% 22.46% 21.23% 5.95%

6 92.8 58.43% 59.30% 46.69% 30.87% 74.10%

7 185.6 19.42% 24.92% 6.11% 14.30% 12.23%

 

The power pattern in most cases shows an interior peak at level 6, which 

corresponds to an average cyclic period of 8.5 years. Note the higher energy of US 

stocks at longer run energies, especially detail 6.  

The asset value cycles are irregular both as to amplitude and period. Figures 

2a,b illustrate time series decompositions corresponding to figure 1 for the US stocks 

and the forward rate hedge instrument. It can be seen from these graphs that the 

details at level 7 and 6 have the highest power or energy among all the decomposed 

time series. However, the cycles are not necessarily regular as the details can have 

various amplitudes over time. By way of contrast, the standard exponential Ito model 

with constant drift has its power concentrated in level 7 and beyond, effectively 

becoming a stochastic trend. There is progressively little in detail levels below this, 

and certainly not an interior maximum as in table 1.  
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Figure 2a: Wavelet decomposition of US stock index accumulated return  
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Figure 2b: Wavelet decomposition of USD/NZD forward rate hedge 
instrument accumulated return 
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greater the energy.  The effect shows up in the present data (see Appendix 2). The 

situation is analogous to business cycle indicators, which are often prepared in two 

forms, the levels version and the growth or ‘growth cycle’ version, the latter referring 

to % rates of change (e.g. Bowden 2005 §5.4, for the US TCB indicators). Locating 

cycles and their turning points is easy with the first, but quite difficult with the 

second. 

Our preference has been to use log asset values ( log Vt) as an object, though 

there remains an issue as to whether this in turn should be normalised in some way. 

One possible normalisation is to divide by the square root of time, as tV
t

log1 .  

To see why, suppose that returns are generated by the continuous time 

exponential process  

tttt dBVVdV σ+µ=  

where the cost of capital µ just a constant  and  volatility σ is likewise constant, while  

Bt is a standard Brownian motion process. Taking V0 =1 and dividing by √t, we can 

write the solution as  

t
B

tV
t

t
t σ+σ−µ= )5.0(log1 2  , 

where .
0
∫=
t

st dBB  As Var(Bt) = t,  it follows that tV
t

log1 can be decomposed into 

a trend element of order √t and a zero mean detail 
t

Btσ , which has constant variance 

(energy, in this context). Thus one indication that the log value series is behaving like 

the classic accumulation process is that once normalised by t , the details should 

show no obvious expansion in amplitude over time.  

Component analyses 

On occasion, details might correspond to identifiable components. This is almost 

trivially true of the above exponential process, which can be written in the form 

ttt VVV 21 logloglog += , with 

tB
t

t
t eVVeVV σσ−µ == 202

)5.0(
101 ;

2
. 

The term V1t can be thought of as the single detail encompassing the stochastic part, 

with V2t as the residual approximation.  
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In general, however, seeking to identify components with details is not 

possible, simply because most assets are mutually related in one way or another and 

the orthogonal decompositions required by wavelet analysis will not apply. The 

closest analogy in Finance would be with factor models of returns, such as those used 

in the APT model (Ross 1976). 

A more fruitful path is to first identify functional components on economic 

grounds,  followed by a wavelet decomposition  of each to test for mutual buffering, 

or on the other hand, amplification. This could useful in studies of hedging or of 

other forms of portfolio enhancement. For instance, suppose a portfolio is divided 

into local (H for home) and foreign currency assets (F), and let e be the exchange 

rate. So 

FttHtt VeVV +=  

Then one can explore the advantage to adding foreign assets to a domestic base 

by working in terms of  

HttFt
Ht

t VeV
V
V

logloglog)1log( −+=−  

The right hand side can be regarded as the value to an enhancement portfolio 

(Bowden 2003) in which one has financed a foreign currency investment by going 

short the home portfolio. The enhancement portfolio value is now in a form amenable 

to a wavelet component analysis. One can ask questions such as whether the 

exchange rate buffers the foreign asset return or reinforces it and at what level of 

detail. A device essentially of this kind was used by Bowden and Zhu (2006), who 

showed that NZ farmers benefited until recently from a buffering relationship 

between world commodity prices and the NZ exchange rate, operating in the 

powerful 6-7 year wavelet detail.  

Comparator paths and dynamic value at risk 

Unforeseeable cyclical swings of large amplitude can create investor discomfort, 

especially if these occur at lower levels of detail, for it may take value longer to 

recover and in the meantime the investor will have become locked in. If this happens 

there will be investor regret that they that might have alternatively invested in some 

safer asset. They might even think that the depressed values were a signal of changed 

fund management or some other adverse contingency. Few investors would be 

unconcerned at a path that has an appreciable probability of values dipping below a 
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safe comparator, happening no matter that the original intent might have been to hold 

the investment for a very long time.  

Figure 3 will serve to illustrate the resulting value at risk concept (if we 

suspend belief that the cycles as illustrated are irregular and unpredictable!). The 

investor could have chosen an asset with a safe annual return of 5.5% per annum 

(lower trend line). Investing in the fund would give a higher long-term expected 

growth path (upper trend line). But in the early years it would expose the investor to a 

chance that fund value would fall below the comparator and stay there for some time. 

Episodes where this has happened are indicated with the shaded areas.  Only after 

some time has elapsed would the probability of this fall to below say 10%. The 

random stopping time where this happens can be called the 10% comparator value at 

risk clearance point. Long term cycles with high energy entail a longer stay in the 

value at risk ‘sin bin’ than do either shorter cycles, or cycles with lower energy.  

 

Figure 3: Dynamic VaR comparator clearance ( stylized) 

 

Figure 4 is a historical illustration, using the MSCI US total return index. The 

comparator path has been chosen as the one month US CD rate. Illustrated are both 

the trend on the stock index and the sum of details D4-D7, which carry the bulk of 

the cyclical power and are in themselves more threatening in terms of the lock-in 

effect. If we take the energy of the details as corresponding to the variance, the 10% 

VaR clearance point looks to be somewhere around 5 years from the start of the 

investment. After this date, there is only a progressively smaller probability of falling 
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below the comparator path. If the comparator path had been chosen as the long term 

bond rate this would have extended to about 10 years. 

0
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Figure 4: Historical comparison of US stock index and 1-month CD return 

 

IV Portfolio choice 
By combining assets into a portfolio one aims to achieve paths that are less risky for 

any given level of reward. In the familiar case of mean variance analysis, the reward 

is taken as the mean (µ) of returns. Risk is taken as the variance (σ2 ); we could call 

this the penalty element. To get the portfolio efficient frontier, one solves a 

programming problem that maximises the reward for a given level of risk, subject to 

constraints on the penalty element. Alternatively, one can formulate an expected 

utility function as  

(1) U = µ - λσ2, 

where λ is a trade-off parameter between reward and risk, and maximises U subject 

to feasibility constraints. The two approaches are almost equivalent. Thus the 

programming version, with σ2 to be less than or equal to some pre-assigned number, 

is locally equivalent to the expected utility version, with the parameter λ identifiable 

as the Lagrange multiplier at the optimal solution point. The equivalence between the 

two approaches has been fruitful in related contexts such as solving for portfolios in 

the presence of value at risk constraints (Bowden 2006). It can also be used in the 

present context. In this case, however, we do not have any natural notion of a mean, 

and the variance idea also differs to some degree. Thus the first task is to define 

appropriate reward and penalty elements. 

In the wavelet based approach, we choose to carry out the portfolio analysis in 

terms of (log) values directly, and not returns as such. However, there is a natural 

relationship between the two. If a set of assets {i} have values Vi, then the asset 
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proportions are VVx ii /= and log accumulation per period is taken as ,log∑ ∆
i

ii Vx  

which is a portfolio return. In some formulations, return elements can appear in the 

objective function (see below). However, in what follows wavelet approximations 

(A) and details (D) refer to log portfolio value.   

 Reward or objective 

In long run investment decisions, the objective is most naturally taken as some metric 

assigned to the high level approximations, such that higher values at any time point 

are preferred to lower values. Let A* denote the terminal approximation series i.e. 

that of maximal order consistent with historical data availability, taken as T 

observations. For brevity we shall sometimes loosely refer to this as the trend. In the 

preceding sections this was taken as A7 . A general objective might then be of the 

form 

(2) Max ∑
=τ

τ∆τ
T

AfT
1

*)( , 

which is a weighted sum of the historical value increments. 

In expression (2), )(τf is a  semipositive weighting function such that  

∑
=τ

=τ
T

f
1

1)(   . It can be chosen to accord with some preference as between early or 

late return accumulation. Useful special cases are as follows: 

(i) The uniform weighting function 
T

f 1)( =τ  all τ, corresponds to the usual 

geometric rate of return over the whole horizon. Multiplying this by T as in the above 

objective  gives 0** AA T − . Hence the objective is simply to maximise the terminal 

value of the trend. If the wavelet decomposition is carried out on logs to begin with, 

then the objective is the compounded value growth. If the factor T was missing in the 

objective (2), and logs were used, then the objective would be interpreted as the long 

run trend geometric average rate of return. 

(ii) Take 10;)( <θ<θ∝τ τ−Tf . The higher the value chosen for θ, the more 

we weight later values of value growth. The idea behind this is that later value 

increments of the historical record might have more predictive content for what is to 

come in the present real time. 

 



 16

Penalties and constraints: band pass portfolios 

In passive or ‘strategic’ long-term investment plans, penalties are assigned to the 

detail energies, on the grounds that variation as such is regarded as unpleasant, 

exposing fund value to local losses before growth is eventually resumed.  

The simplest way to handle differential welfare costs to energies is to combine 

them into a single constraint of the form 

(3) 10; =≥≤ ∑∑
k

kkk
k

k wandwvEw . 

In expression (3),  Ek denotes the average energy at detail level k; {wk} is a set of 

semipositive weights; and ν is a user-assigned constant, interpreted as an average 

allowable energy. Thus by setting some of the {wk} to zero, and assigning heavy 

penalties to the others, the resulting portfolios will favour variation in the former, but 

not the latter.  Once could call these band pass portfolios, motivated by similar usage 

in electronic system design, where one filters out signals at designated frequencies, 

allowing others to pass through unhindered. For example, a fund manager concerned 

that excessive short run fluctuations might unsettle investors, might elect wk = 0 for 

k>2. This would allow lower level details to pass through unhindered while 

penalising short run fluctuations ( k =1,2).  

The empirical illustration below takes an opposite tack, where the fund 

manager is driven by investor fear of large-scale opportunity losses. Suppose that the 

fund did experience a period of negative value growth. Investors would start actively 

considering whether to exit from the fund, especially if competitor funds were seen to 

be doing well. The alternative to exit (which itself involves penalties) is to wait until 

fund value recovers, if and when. But if the energy in longer details is high, the 

recovery may be years off instead of months. Investor outflow is more probable, 

leading to risks for fund sustainability and to future career prospects for fund 

managers. Conversely, if the bulk of energy is concentrated in shorter details, then the 

investor may feel better about simply staying put. Fund managers would have 

forewarned investors about short-term losses, so these are viewed with more 

equanimity. In effect, the economic holding cost is over short horizons. Alternative 

possibilities are mentioned below. 

Optimisation problem and equivalent utility function 

The optimisation problem is to choose the asset weights to maximise (2) subject to 

(3). Also incorporated are standard portfolio constraints, such as asset proportions 
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have to add up to unity if they require capital, or be semipositive if fund policy 

requires this. By varying the allowable energy parameter ν, and solving the resulting 

portfolio, one can trace out an efficient frontier in just the same way as for classical 

mean-variance analysis. 

The equivalent utility function is  

(4)  =U ∑
=τ

τ∆τ
T

AfT
1

*,)( -λ k
k

k Ew∑ . 

The utility function (4) represents a generalisation of the expected spectral utility 

function developed in Bowden (1977); see also Otrok (2001) for related constructs. 

Collectively the wavelet energies {Ek} correspond to the spectral power function f(w), 

which are the variances of the demodulated series at each frequency. The weights 

{wk} correspond to the spectral utility function U(w). In the present contribution we 

have added a reward function, though this in itself has a mean dimension rather than 

a variance.  

The parallel to the mean-variance utility function is also clear. Using the 

second mean value theorem, the effect of a weighted sum of energies is as though 

there is a single energy E* , which in turn has the dimension of a variance. So the 

equivalence can be expressed as:  

2
** ~ σ=∑ EEw k

k
k  

∑
=τ

τ µ∆τ
T

AfT
1

*, ~)( . 

The equivalence of the weighted sum of energies with a variance is useful in 

choosing  the constant ν in the programming specifications (see below).  

Application 

Figure 5 depicts the reward - energy efficient frontier associated with the assets 

appearing in table 1. These are intended to be operational portfolios, so each of the 

stock returns have been converted to home currency.  The portfolio devotes semi-

positive weight to the five country stock market portfolios, and there is a single zero 

capital element, namely the USD/NZD forward contract, which can be shorted. In the 

objective function we used the time weight θ = 0.9 which has a mean distributed lag 

of 9 months, indicating that most of the value increment weight is assigned to the last 

18 months of the horizon.  For the energy weights {w} we assumed equal weights for 
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details 4-7 but zero weights for energy levels1-3, i.e. that investors are unconcerned 

about short run fluctuations. In mean variance analysis,  investors are assumed to be 

equally worried by short and long run power elements. Thus we are allowing power 

bands 1-3.  i.e. the shorter run fluctuations,  to pass freely.  

 

 

 

 

 

 

Figure 5: Efficient frontier 

 

The efficient frontier is strikingly similar to that of standard mean variance 

analysis, with the same parabolic shape extending into the lower inefficient half. A 

with mean variance, the trade-off (implied λ value) is higher as the energy bounds 

diminish.  

Table 2 gives the optimal asset weights as one moves along the efficient 

frontier. Note that these do not have to add up to unity because of the presence of a 

zero capital element, namely the forward contract. Only the stock weights add up to 

unity. As the energy bounds become more restrictive, the optimal portfolio moves 

more to local NZ stocks, although the proportion devoted to US stocks is pretty much 

constant. It is also evident that the use of the USD/NZD forward contract diminishes. 

At first sight this looks puzzling; one might have expected a forward to be variance 

diminishing. However it is consistent with the finding of Thorp (2005) also Bowden 

and Zhu (2006), that preserving an exposure to unhedged spot USD/NZD is actually 

conservative  risk management practice in Australasia. 
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It is of interest to see whether the similarity with mean-variance extends to the 

path properties of the optimal portfolios. If the two give similar results, this could be 

taken as comfort in the use of mean-variance analysis. If not, then the issue of 

optimality and long-term stability would have to be addressed, with the REF portfolio 

as a useful starting point.  

Comparison of the two approaches can never be rigorous, as they refer to 

different reward or variation concepts, and standardisation is needed on one or the 

other.  Our approach is to assume that locally dependent returns may be possible, so 

that wavelet analysis is the more appropriate. For the wavelet approach the 

specifications are chosen as above for the reward and energy weightings θ and {wk}. 

Two alternative comparisons along these lines are as follows. 

(a) Normalise on the MV reward i.e. a given mean return over the entire 

horizon.  Select the corresponding portfolio along the REF frontier that generates this 

mean.  Compare the time paths and energy decompositions of the two portfolios, the 

one on the MV efficient frontier and the other on the REF frontier. Figure (6a) 

illustrates, while table (2a) gives the energies, and the respective portfolio 

compositions. 

(b) Normalise on the wavelet energy E*. Start with a MV efficient 

portfolio and calculate its total wavelet energy.  Find the portfolio along the REF 

frontier that has the same total energy. Figure (6b) plots the two time paths of the 

resulting portfolios, while table (2b) contains the energies and portfolio 

compositions. 

A third possible approach (not illustrated here) might be to normalise on the 

trade-off parameter λ between reward and variation, with appropriate interpretation 

of these dimensions in the respective contexts. Variation would be taken as σ2 for 

MV and as weighted energy for the REF portfolio.  

Normalising on the reward as in (a) shows the smoothing effect of the wavelet 

based approach. The REF portfolio was slower to rise between 1996-2000, but with 

much less of a subsequent fall. The effect is apparent in the lower detail 6 energy. In 

portfolio terms, it is produced by down-weighting the US stocks component in favour 

of Australian stocks. The latter have virtually the same mean as the US, but 

materially lower long-term variation. The hedge proportion allocated to the US dollar 

has also diminished. The Japan weighting disappears altogether.  
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Normalisation (b), with fixed energy, results in a higher accumulation path for 

the REF portfolio. As before the Australian weight is increased at the expense of US 

stocks, but the tendency to use USD/NZD forwards remains roughly the same.  

 

 Mean-variance 
efficient portfolio MV 

Reward-energy 
efficient portfolio REF 

Assets   
NZ 15.05% 19.57% 
US 53.73% 31.26% 
JP 10.13% 0.00% 
AU 21.09% 49.17% 

Forward 59.47% 39.43% 
Energies   

E(D1) 0.04  0.05  
E(D2) 0.06  0.07  
E(D3) 0.11  0.15  
E(D4) 0.18  0.25  
E(D5) 0.43  0.44  
E(D6) 1.67  1.16  
E(D7) 0.26  0.15  
Mean 0.00977 0.00977 

Variance 0.001222 0.001408 
 

Table 2a:  Mean-normalised comparison between MV and REF portfolios 

 

 

 

Figure 6a:  Path comparison between MV and REF portfolios: mean-
normalised 
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 Mean-variance 
efficient portfolio MV 

Reward- energy 
efficient portfolio REF 

Assets   
NZ 15.05% 7.30% 
US 53.73% 40.23% 
JP 10.13% 0.00% 

AU 21.09% 52.46% 
Forward 59.47% 63.78% 
Energies   

E(D1) 0.0448  0.0506 
E(D2) 0.0555  0.0683 
E(D3) 0.1086  0.1534 
E(D4) 0.1825  0.2538 
E(D5) 0.4343  0.4576 
E(D6) 1.6674  1.5941 
E(D7) 0.2575  0.2359 
Mean 0.00977 0.01110 

Variance 0.00122 0.00141 
 

Table 2b:  Energy-normalised comparison between MV and REF 
portfolios 

 
 

 

 

 

 

Figure 6b:  Path comparison between MV and REF portfolios: energy-

normalised 
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Extensions 

Preceding development assumes that the manager’s objective is to maximise long-

term reward while minimising path risk. A quite different scenario might be that of a 

hedge fund concerned with identifying portfolios that actually maximise path risk 

over some designated detail band, perhaps one much shorter than assumed above. 

This could be accommodated by requiring a minimal reward element – or even 

deleting it – and maximising the energy E* with an appropriate choice of the energy 

weights {wk}. This looks a bit like a dual formulation from the classic theory of 

mathematical programming (Dantzig 1963, Rockafellar 1968, Murty 1976). 

However, the latter would require one to minimise the energy subject to reward 

constraints, so the ‘hedge fund problem’ is not quite dual to the long run strategic 

approach.  

 

V Concluding remarks 
The underlying objective has been to develop portfolio technology that allows for 

non-independent return elements, dependence that may be weak in the short run but 

have a cumulative impact over the long run. There are other ways of attempting the 

same thing, notably by developing formal models of conditional returns, but they do 

require additional macroeconomic or time series modelling, which may be difficult.  

Explicit structural or time series modelling also requires the manager to vest a lot of 

faith in the predictive veracity of the model, which is problematic, given that 

economists are not all that good at long range forecasting of business cycles.  

The wavelet based reward-energy approach is much less demanding in 

assumptions or informational requirements, than either mean-variance or formal 

causal modelling. On the other hand, it does have some maintained hypotheses of its 

own, notably that the long-term volatility patterns are characteristic of the data 

generation process, e.g. an underlying business cycle, and are likely to be repeated in 

the years to come. There is some comfort in the ability of wavelet analysis to detect 

structural breaks, which typically appear as sudden energy bursts in the high detail 

bands (Vuorenmaa 2005, also Bowden and Zhu 2006).  

It may also be possible to endow the wavelet approach with a priori 

macroeconomic information, with the objective of increasing confidence in the long-

term volatility patterns. For instance, if asset returns and value accumulation depend 
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on exchange rates, one might have a fair idea about the causal factors involved for a 

particular home country. In terms of our example, the NZ dollar is well known to be 

driven by world commodity price cycles, although the impact mechanism is itself 

variable. Cycles can therefore be expected. It is not possible to pick very precisely 

their timing and periodicity, but one can expect a considerable degree of power in the 

average 5-7 year detail zone.  

Further points of contact in finance are with factor models of returns. In 

standard factor models such as the APT model, asset returns are generated in terms of 

unobservable orthogonal factors, but the latter continue to require the efficient market 

accumulation model. In the wavelet- based approach, the factors are orthogonal but 

no longer necessarily temporally independent. As with APT, there may exist dual 

portfolios that embody the factors. It would be of interest to explore what such 

portfolios might look like in different capital markets, and how they could be 

exploited in funds management or even as a basis for generic classes of fund.  
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Appendix 1:  Wavelet analysis 
Wavelet decompositions 

Wavelets for a given family are generator functions, indexed by two parameters 

called the scale (j) and the translation or location (k). For the wavelet function we 

employed in the paper, namely coiflets, there are two different sorts of wavelets: the 

father wavelet φ  and the mother wavelet ψ .  The former are normalised to integrate 

to unity, while the latter integrate to zero, as they are meant to span the cyclical 

influences. The two functions are respectively of the form: 

 )
2
2(2)( 2/

. j

j
j

kj
ktt −= − φφ ; )

2
2(2)( 2/

. j

j
j

kj
ktt −= − ψψ . 

The scale parameter determines the span of the wavelet, meaning its non-zero 

support, as each wavelet damps down to zero on either side of its centre. For a given 

time t, there are contributions from neighbouring wavelets translated to either side of 

t. The wavelet transform based on the above function is a dyadic procedure. 

Therefore, the maximum level decomposition of signal cannot exceed the integral 

part of N
2log , where N is the number of observations.  

Figures 7a,b depicts the two wavelet generators used in the present study. 

 

Figure 7a: Coiflet father wavelet (left) and mother wavelet (right) 

 

The family of functions defined as above are mutually orthogonal. In a manner 

analogous to Fourier analysis one can form coefficients as  

dtttxs kJkJ ∫ φ= )()( ,, ;  dtttxd kjkj ∫ ψ= )()( ,, , 
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for j = 1,2…J , where J is limited by the number of observations  available on the 

given series x(t), supposed continuous here for simplicity. As with the inverse 

transform in Fourier analysis, we can recover x(t) in terms the wavelet functions as: 

∑∑∑∑ ψ++ψ+ψ+φ= −−
k

kk
k

kJkJ
k

kJkJ
k

kJkJ tdtdtdtstx )(...)()()()( ,1,1,1,1,,,,

. 

We write ∑ ψ=
k

kjkjj tdtD )()( ,, .  Note that just the one father wavelet has been 

used in the above, with maximal scale.  

Computational procedure 

The quasi Fourier approach illustrated above would be slow computationally.   In the 

present paper, computations were done in Matlab (Misiti et al 2005) using Mallat’s 

algorithm, which is considerably more efficient.  The algorithm follows through the 

basic sequence as illustrated in figure 2 of the text. The original signal x(t) is fed 

through a high pass and low pass filter, one the quadrature of the other, which 

ensures orthogonality of the two outputs. The low pass filter is adapted to the longer 

run father wavelets and the higher to the mother wavelets. Output from the high pass 

filter is downloaded as the level 1 detail D1, and the output from the low pass filter 

becomes the level 1 Approximation. Starting afresh with A1, the process is 

successively repeated.  

Wavelet variances and covariances 

By decomposing the time series into orthogonal components as above, the variance 

of components at different scales can be derived. The DWT provides a simple way of 

computing these that closely parallels the classical statistical formulas. For each 

detail level j, the average energy or power over the horizon can be expressed as the 

percentage contribution of each level of detail relative to the whole as:  

∑∑∑

∑∑
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The DWT variance computations can be improved using the maximal-overlap 

discrete wavelet transform (MODWT) estimator of the wavelet variance (Percival 

1995). We have chosen not to use this as it assumes circularity, in other words the 

historical series simply repeats itself at each end.  
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Scale and frequency 

To connect the scale to frequency, a pseudo frequency is calculated.  The algorithm 

works by associating with the wavelet function a purely periodic signal of frequency 

Fc that maximizes the Fourier transform of the wavelet modulus. When the wavelet is 

dilated by the scaling factor 2j, the pseudo frequency corresponding to the scale is 

expressed as: 

,
2 ∆×

= j
c

s
F

F  

where ∆ is the sampling interval. 

Taking the wavelet ‘coif5’ as an example, the centre frequency as seen from figure 

10 is 0.68966 and thus the pseudo frequency corresponding to the scale 25 is 0.02155. 

As the sampling period is one month, the period corresponding to the pseudo 

frequency is 3.87 years.  

 
Figure 8:  Scale in terms of equivalent sinusoidal frequency 

 

Appendix 2:  Energy in returns versus levels 
Table 3 is an energy table for returns as distinct from the levels (values) used in the 

text. As the table indicates, wavelet energy now concentrates in the high detail band, 

and there is little indication of any interior maximum or other sign of power at higher 

details.  
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Table 3: Energy decomposition for monthly asset returns 

 

 

NZ monthly 
return 
wavelet 
transform 

US monthly 
return 
wavelet 
transform 

JP monthly 
return 
wavelet 
transform 

AU monthly 
return 
wavelet 
transform 

USD/NZD 
forward 
monthly 
return 
wavelet 
transform 

E(A7)(value) 0.0054 0.0316 0.0069 0.0242 0.0013

E(D1) 0.3671 0.2267 0.4494 0.2476 0.0869

E(D2) 0.1456 0.1016 0.219 0.1025 0.0398

E(D3) 0.0885 0.0754 0.1077 0.0615 0.0243

E(D4) 0.0285 0.0248 0.062 0.0264 0.0077

E(D5) 0.0108 0.0086 0.0399 0.0126 0.0047

E(D6) 0.0035 0.0324 0.0229 0.0054 0.0103

E(D7) 0.0049 0.0037 0.0009 0.0006 0.0018

 

 
Appendix 3: Data definitions and sources 
 

Table 4: Data definitions and sources 

 
Data Definition Resource 

MSCI USA USA stock total return index MSCI 
MSCI NEW ZEALAND New Zealand stock total return index MSCI 
MSCI AUSTRALIA Australia stock total return index MSCI 
MSCI JAPAN Japan stock total return index MSCI 

MSCI NZD TO 1 USD 
Spot exchange rate (USD as the commodity 
currency and NZD as the terms currency, 
1USD=SNZD) 

MSCI 

MSCI JPY TO 1 USD 
Spot exchange rate (USD as the commodity 
currency and JPY as the term currency, 
1USD=SJPY) 

MSCI 

AUSTRALIAN $ TO US 
$ 

Spot exchange rate (USD as the commodity 
currency and AUD as the term currency, 
1USD=SAUD) 

BB 

NEW ZEALAND $ TO 
US $ 1MFWD 

One month forward exchange rate (same 
expression as the spot rate) BB 

US CD 1M US one month CD rate 
US Federal 
Reserve 
Bank 
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