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Abstract
Directional calls are often more successful than precise value prediction,
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binomial or trinomial step processes to establish nonhomogeneous multinomial
directional probabilities over coarser time intervals and show how such
frameworks can be used for forecasting and hedging, including dynamic
persistence. Problems of signal compression and outcome definition can be
addressed using methods analogous to neuronal nets and fuzzy membership
functions. The methods are applied to derive forecasting and conditional hedge
procedures for foreign exchange exposures.
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1. INTRODUCTION
Directional forecasting is concerned with calls as to whether a given series will move

up, stay the same, or move down, preferably by means of assigning numerical probabilities
to the outcomes, given the available information. Assigning directions rather than actual
values is a natural response to limited information situations where managers do not have
any very precise structural or casual model, as is commonly the case. Thus business cycle
commentators are willing to call only the basic direction of movement, based on implicit
theorizing as to choice of indicators, and abandoning any pretence that they are able to
answer very precisely the ‘when’ and ‘by how much’ questions. Consumer or producer
confidence surveys likewise ask respondents for directional assessments, and how strongly
they feel about them - they do not ask respondents to guess an actual value. Central bankers
tailor their monetary policy announcement in similar terms, for example signalling that
future cash rate tightening may be necessary, without saying just how much. Even in
supposedly efficient financial markets, there is some evidence that directional forecasting
may be successful (e.g. Leung, Daouk and Chen 2000; Levich 2001; Christofferson and
Diebold 2004; Pesaran and Timmermann 2004), no matter that value forecasting is not.

The categorical directional framework is a much used dynamic modelling device in a
number of other contexts. In security pricing, binomial or trinomial jump processes are
used to approximate Brownian motion or other continuous time processes, where the time
interval is small. In the case of nonhomogeneous jump processes, the jump probabilities
can be made to depend upon observable state variables or exogenous variables, and the
methods of the present paper can certainly apply to modelling of this kind. In most
forecasting or risk management situations, however, data limitations imply relatively
coarse time intervals: a month, quarter or year, so that one is no longer necessarily thinking
in terms of continuous time approximations. The directional models that result may be
viewed as nonhomogeneous multinomial processes.

Managers might also feel that if a directional probability is high, the value of the
movement itself is likely to be appreciable and should be acted upon. It does not
automatically follow that this should be the case – e.g. the probability could be higher
simply because the variance is lower, without materially affecting the expected size of the
movement. Nonetheless, if the probability of a rise in the home exchange rate is assessed as
0.9 say, then export managers would load up on foreign exchange forwards to protect their
foreign currency receipts, on the grounds that the size of the movement is also likely to be
significant. The general problem is how to map directional calls and probabilities into
actions. A first step is to establish a suitable welfare or loss function associated with
possible outcomes. Loadings can then be devised that weight the directional probabilities
according to the welfare consequences of state transitions, so that the resulting hedge ratios
reflect not only directional probabilities, but also welfare outcomes. The resulting decision
problem can also be used to inform the statistical inference associated with variable
selection in the estimation phase. The link between forecast and action appears in the
literature on the choice of loss function for forecast evaluation, including limitations of the
mean square error criterion (e.g. Leitch and Tanner 1991; Diebold and Mariano 1995;
Leung et al 2000). In a directional context, it is necessary to go beyond this to devise
decision rules that map directional probabilities into actions.

As earlier indicated, directional forecasting is often a response to limited but still useful
information. One problem about partial information is that it may be technically
incomplete. The US Conference Board (TCB) business cycle indicators provide an
illustration, with their broad classification into leading, coincident and lagging indicators,
each made up of a number of economic variables. The leading indicator is used to describe
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when the economy looks like coming out of a recession, and the lagging indicator when the
economy looks like slowing down. This is not to say that the leading indicator is altogether
useless in detecting a slowdown, just that the focus of attention has shifted. So these are
partial indicators: one could think of the leading series as the ‘up state’ signal and the
lagging series as the ‘down state’ signal. They can also conflict, so that an ‘up’ signal could
potentially light up at the same time as a ‘down.’ Technically this would mean that for
some configurations of the indicator signals, there could be multiple possible outcomes,
and the observer has to choose which seems the most probable based on judgements such
as the relative strengths of the signals, or by some simple randomization device. The lack
of a unique functional relationship mapping between the signal space and the outcome
space is what makes the information incomplete. The word ‘incomplete’ can also be used
with respect to missing data in the estimation phase (see below).

The purpose of the present paper is to establish procedures for directional forecasting
with incomplete information, and to show how to adapt the forecasts to an underlying
welfare function. The standard model has two underlying signals, which we can
characterize as respectively up and down in orientation, and either two outcomes
(up/down) or three outcomes (up/no change or stable/down). The signals are noisy signals,
and this being the case it is quite possible that they conflict, so that in general there are 4
possible signal configurations, which have to be mapped into either the 3 or 2 observable
outcomes. Decision theorists would say that the signals lack 100% validity. In addition, the
signals are themselves not directly observable. Instead one has available a number of
observable economic variables that one can use as signal indicator variables. In present
terminology, the TCB leading, coincident and lagging business cycle indicators would in
fact be signals, and the economic variables that go toward making them (M2, inventories,
employment etc.) would be the indicator variables. One can say that these are noisy signals,
noisily observed. There are similar frameworks in the economics of incomplete
information, but the primary objective in the present paper is conformance with the
common predicaments of commercial life. To be sure, there may be other agendas to the
use of such models. For instance, they are highly nonlinear and can be used to re-examine
issues of capital market efficiency; assuming, of course, that the market does not already
know about them.

The resulting model can be regarded as a sequence of multinomial trials (3 outcomes)
or binomial (2 outcomes), one trial for each time period. At each time period the
probabilities change in accordance with economic conditions, so that these are
nonhomogeneous multinomial models. The probabilities themselves have to be derived by
mapping the indicators into probability densities. This can be done by using standard
distribution models such as the logistic or normal probit, supplemented with rule-based
judgment calls where the signals can conflict. There are useful commonalities with the
neuronal (neural) network literature, which involves a similar compression process (e.g.
McCulloch and Pitts 1943; Rosenblatt 1957, 1958; Kuan and White 1994; Turban 1995).
Most of our models can be cast as neuronal nets, with several layers. The three-outcomes
become collectively a hidden feed forward layer if the primary objective is a two outcome
model, so the parallel with neuronal nets becomes even closer. However, a greater degree
of prior structure is imposed than would be normal with the neuronal net models, with the
purpose of contributing data economy within a macroeconomic context. Most economic or
financial applications of neuronal nets are concerned with shorter run forecasting with high
frequency data, though for an exception see Tkacz and Hu (1999) on GDP forecasting.

A further contribution arises in connection with estimation of categorical models in the
presence of hidden data, where we note and exploit a connection between the EM
algorithm, on the one hand, and the literature on fuzzy membership functions (Zadeh
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1965), on the other. Our results suggest that it is much more effective to have three
outcomes, allowing for a middle ground of ‘neither up nor down’, as the old song goes.
Absent precisely zero outcomes (as with most continuous variates), the operational
problem is then how to define the ‘no change’ or ‘stable’ outcome. The boundaries
separating categories can be regarded as fuzzy, and the parameters of the membership
function estimated from the historical data. A probabilistic interpretation can be given in
terms of the regime boundaries as hidden variables. One replaces the unobservable regime
membership functions with their expected value, given the available information, in a
fashion similar to the EM algorithm (Hartley 1958; Dempster, Laird and Rubin 1977).
This establishes an interesting link between the use of fuzzy regimes and likelihood
methodology with incomplete data, potentially useful in other forms of categorical data
analysis.

Finally, the model can be either static or dynamic, though in both cases the probabilities
change over time. In the latter case, directional changes can themselves be correlated over
time, so this is a model of dynamic directional persistence. The important probabilities are
transitional and the resulting model can be interpreted as a variant of the hidden Markov
model (Baum and Petrie 1966; Bickel, Ritov and Ryden 1998; Cappe, Moulines and Ryden
2005).

The scheme of the paper is as follows. Section 2 is concerned with underlying
probability structure. Incompleteness is identified with indicator conflict and ways to
resolve this are described. The model is extended to dynamic persistence via the use of
nonhomogeneous Markov processes. Section 3 moves on to discusss operational matters. In
the case of three outcomes from continuous data, the no-change or stable regime has to be
defined or delineated, and this issue is addressed with the use of ideas from fuzzy logic,
which can be given a probabilistic interpretation in terms of hidden data. Estimation and
testing procedures are established, in the form of quasi-maximum likelihood. Section 4
contains the empirical application. It is shown in Section 4.1 that variables such as house
prices, relative share prices, or the current account balance are collectively superior to the
forward rate in calling directional changes in the NZ dollar v. US dollar exchange rate. The
application to hedging is developed in Section 4.2. A methodology is developed to embody
directional probabilities in hedge ratios. The optimized hedge ratios represents an
improvement on both the unhedged exposure and the simple forward. Section 5 has some
concluding remarks.

2. THEORY
The initial objective in directional forecasting and risk management is to attach

probabilities to categorical outcomes. The outcome space can be either two or three
dimensional. In the former, the categories are simply ‘up’ or ‘down.’ In practice, however,
it is useful to have a middle category which, depending on context, can be described as
‘stable,’ ‘no change,’ or ‘same.’ Given that most economic or financial times series exhibit
noise or normal volatility, one would be reluctant to accept smaller movements as a true up
or down trend. Technical analysis of markets uses a similar idea in the form of a ‘break
out’ zone. Both two and three dimensional outcome spaces are considered in what follows.
The problem of how to define the output zones in practice is considered in the next section.

The forecasting is to be based on a series of economic signals. Attention is usually
focussed on signals that might indicate a significant up or down movement. There are
several reasons for this. One is that busy managers are more likely to focus on ‘heads up’
information, i.e. real news. Another is that economic models, mental or otherwise, tend to
be more convincing in describing significant changes in state. Thus most commentators
would accept that an unexpected announcement of a record current account deficit is likely
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to lead to a down movement in the home exchange rate, or that in a small economy a
bullish housing market is likely to lead to an up movement as capital is hoovered in from
abroad to fund mortgages. In general, the informational content of economic signals is
greatest in describing up or down movements. This suggests that the natural way to
proceed is in terms of a two dimensional signal space and a two or three dimensional
output space. The signals can be taken as sufficient statistics for a larger number of more
elementary economic indicator variables, in a manner to be described. However, the signals
themselves can be observed only with noise, so they are latent variables.

It is helpful to begin by imagining that there are two signals I1 and I2, each observable,
reserving for later discussion the noisy observation aspect. We shall call one the up signal
and the other the down signal. However these are only indicative signals. There is
signalling noise involved, or signal credibility, so that it is quite possible for an up signal to
be followed by a down outcome. Of course for the signals to have validity we should not
expect this to be a normal state of affairs, but we should allow for the possibility, simply
because economic signs can be misleading.

The signals each have two states, namely ‘on’ and ‘off.’ In figure 1 these are marked
with () and (0) signs. Consider first the three outcome model. With two signals there are
four possible combinations. It seems clear enough that if the up signal is on and the down
signal is off, the outcome should be an up state, and vice versa. If both signals are off, then
one would be confident in assigning the ‘no change’ outcome. Suppose however, that both
the up and down signals are on. There is no automatic or obvious way to resolve the
conflict (marked with crossed cavalry swords). In principle, the outcome could be any one
of the three possible outcomes Ri as marked, though this is not to say that the strength of
the linkages need to be the same. In this sense, the model is incomplete. Note that figure 1
is of the nature of a logic diagram. It could be reworked as a neuronal net: the observable
economic variables (Z’s) feed forward to the I-combinations, with ongoing links (some of
zero strength) to the R’s, and thence to the outcomes.

 

I1 

I2 

I2 

C 
3-outcome

2-outcome 

A 

(+)

(+) 

(+)

(0)

(0)

(0)

[Or regimes]

[R1]

[R3]

[R2]

Figure 1: Three and Two Outcome Incomplete Models
Consider next the two outcome model. In this case, one does not observe the no change
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state. For instance, with continuous observations one might argue that ‘no change’
represents an outcome of precisely zero change, and therefore has zero probability.
However, it is useful to keep the three original outcomes but to squash them down to two.
The original three we could now refer to as regimes, and in the absence of direct
observation, they are latent. Denote them as R1 (up), R2 (down) and R3 (no change).
Collectively they form a hidden feedforward layer, in the language of neuronal nets. The
incompleteness arises from the fact that given R3, there is no automatic way to assign the
final up or down outcome.

Figures 2 (a,b) show by way of contrast how complete models would look in each case.
The two-outcome model would be complete only if the two signals were mutually
exclusive, so that an up state in one automatically means a down state in the other.

I1 

I2 

I  2 

3 -o u tco m e

A  

(+ )    

(+ ) 

(0 ) 

(0 )    

(0 ) 

Figure 2: (a) Complete Three Outcome Model

I1 

I2

I2

2-outcome

(+) 

(+)

(0)

(0) 

Figure 2: (b) Complete Two Outcome Model
Whether it is best to specify a two or three outcome model is a matter of context and

purpose. Economic variables, especially financial ones, are intrinsically noisy or volatile,
so that one might be unwilling to identify smaller movements with up or down changes.
Instead there would be a range such that if the movement exceeded this, it would be
labelled as either an up or a down change. One could think of it in terms of accepting or
rejecting the null hypothesis of no change and the regime boundaries as the critical points.
This would indicate a three regime model, and either using the data to determine the
critical points or else defining the regimes in terms of fuzzy membership functions.
Operational procedures are considered further below.

2.1 Introducing Probabilities
Allocation rules for incomplete models can be devised in terms of probabilities, which
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can be used more comprehensively to describe the strengths of connections in the above
diagrams. In this respect, the basic task is to determine the marginal or conditional
probabilities attached to the three regimes. We will take it that even for the two outcome
model, the hidden layer regime membership variables Ri (i  1,2,3) are sufficient
statistics, so that for any observable exogenous indicator variables Z, and outcomes u or d,
we must have Pu|Ri,Z  Pu |RiPRi|Z, similarly for d. Hence the essential task in
either model is to make probability statements about the regime membership variables Ri.

To assist in this task it is assumed that two sets of observable economic variables are
available, denoted Zu and Zd, sometimes collectively as Z. The two sets are oriented
respectively towards up and down outcomes, e.g. a higher value of a Zd variable would
suggest a higher likelihood of a down movement. They can have elements in common,
provided that model consistency or identification are preserved; for example a given
economic series could appear both as an up indicator variable and with a negative sign, as a
down indicator variable. Where directional movements are concerned, it is common to
focus on variates that are adapted towards significant movement, rather than those that
might specifically indicate a stable or no change outcome. The latter is more naturally
thought of as associated with the absence of indications as to strong upward or downwards
pressures. Hence one problem is to explain how just two sets of observable indicator
variables can explain three outcomes in a natural manner. Note also that the orientation of
any indicator variable is by no means perfect; wrong indicator signals can be given on
occasion. For many purposes is convenient to think in terms of linear combinations u′ Zu
and d′ Zd of these variables as producing a closer link to the respective regimes or
observable outcomes, but again, wrong signals can be given.

There are just two stochastic index functions, denoted I1 and I2 for the indicator
signals. These will depend upon their respective indicator variables Zu and Zd but we will
often suppress these for simplicity. Each has two alternative symbolic values Ii and Ii0; the
 indicating that the signal is switched on, and the 0 indicating that it is switched off. The
first task is to determine the probabilities PRi|Z to be attached to the three regimes.

Probit-style switching models provide a useful illustration. Let u and d be two random
variables with mean zero and unit variance, and further letW1Z and W2Z be
PI1  I1|Z and PI1  I2|Z respectively. If we assumed that u and d were
independently normal, we might specify

W1Z  Pu ≤ u
′ Zu|Z  u

′ Zu;
W2Z  Pd ≤ d

′ Zd|Z  d
′ Zd,

    (1)

where    denotes the standard normal distribution function. Hereafter, we abbreviate
W1Z and W2Z asW1 and W1 for simplicity.

Probabilities such asW1 and W2 will sometimes be denoted the ‘raw scores’ in what
follows. Alternatively we might have chosen the logistic distribution, much used in studies
of modal choice. A user who prefers this option could letW1 be

1
1  exp−u′ Zu

.     (2)

Similarly for W2. Or we could relax the assumption that u and d are uncorrelated. This is
useful in testing whether regime decompositions do in fact apply (see below).

Assuming for expositional purposes the normal model (1), there are four possible
combinations of signals:
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I1, I20 unequivocally indicating up, with probability W11 − W2;
I10, I2 unequivocally indicating down, with probability W21 − W1;
I1, I2 conflict zone both indicating up and down, with probability W1W2;
I10, I20 agree on ‘no change’ outcome, with probability 1 − W11 − W2.

    (3)

More generally, if u and d are correlated,

PI1, I20|Z  
d
′ Zd

 
−

u
′ Zu
nu,dd ud d,

where nu,d denotes the joint density with the required correlation,  say. Similar
expressions hold for the other three combinations.

The four probabilities associated with combinations have to be compressed to the three
regime probabilities PRi|Z, i  1,2,3. It will be apparent from figure 1 that, for instance,
PR1|Z is at least W11 − W2, but it could well be more, as mass from point C still has to
be distributed. Thus we could write

PR1|Z  W11 − W2  f1W1,W2W1W2,

where f1W1,W2 is a value between zero and unity indicating the fraction of the
unresolved probability massW1W2 to be redirected towards regime 1. There are
corresponding statements for pR2|Z and pR3|Z. The redistributive semipositive fractions
fi have to add up to unity and should be symmetric, i.e. f2W1,W2  f1W2,W1.

A conditional probability framework is a useful way of generating redistribution
fractions with the required properties. Suppose the third combination in (3) holds, i.e.
conflict. We could interpret fiW1,W2 as the conditional probability PRi | I1, I2,Z of Ri,
given signal conflict. A convenient specification is

f1W1,W2  PR1 | I1, I2,Z  W1/1  W2;
f2W1,W2  PR2 | I1, I2,Z  W2/1  W1;

f3W1,W2  PR3 | I1, I2,Z  1 − W1
1W2

− W2
1W1

.
    (4)

It is easy to show that 0 ≤ fiW1,W2 ≤ 1 and ∑ i fi  1. If the raw score W1 for the up
indicators is greater than that for the down indicators, it is more likely that any conflict
would be resolved in favor of up. If both W1 and W2 tend to unity, the first two conditional
probabilities (3) tend to 1

2 , indicating that one or other of the strong opinions must be
correct, and it is just a matter of tossing a coin. If W1 and W2 are both 1

2 , then the three
conditional probabilities have value 1/3 each, so the mass in the conflict zone is spread
equally.

Expressions (4) are not the only possible way to divide the conflict mass; for instance,
we could have chosen PR1 | I1, I2,Z 

W1
12W1W2

and still achieved conditional
probabilities all lying between zero and unity. The latter would say that whenW1 and W2
are both equal to unity, then the mass is distributed 1/3 each across the three regimes.

The conditional probability framework captures the common sense of credibility
judgements: if signals conflict, one or both of them must be wrong and one has to weigh up
which, in the light of all available evidence. However, it does introduce a non Markovian
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element into the logic, for the indicator variables Z can now reach forward to influence
signal credibility as well as signal probabilities.

Combining (4) and (3) we get

PR1|Z  W11  W2W1 − W2/1  W2;
PR2|Z  W21  W1W2 − W1/1  W1;

PR3|Z  1 − PR1|Z − PR2|Z.

    (5)

Squashers like (5) obey the elementary symmetry axiom that if the raw scoresW1 and W2
are equal, then the up and down probabilities are likewise equal. As earlier noted, this is by
no means the only way of generating the multinomial probabilities required. However it is
a simple way to do so, and can readily be adapted for other distributions - thus the logistic
specification could replace the probit specification in the above.

It may be remarked that the role of the economic indicator variables Zu and Zd is to
assist in discriminating between up/down/stable directions. One might think of extending
their informational role into values as well as directions, in a manner parallel to Tobit
models, with a statement like

EY|Z  u
′ ZuPR1|Z  d′ ZdPR2|Z

assigning the value zero to the expected value given R3. There are two problems with this.
First, the coverage of Zu and Zd may not extend as far as forecasting actual values - they
are simply direction indicators. Second, the probability structure is incomplete, so that the
above expectation expression lacks a sound foundation in probability theory. Such
expressions will not be used in what follows.

2.2 Two Outcomes
A further squashing to a two outcome model, if desired, can again use conditional

probabilities. We divide the ‘stable’ outcome half each to the up and down outcomes:
Pu |R3  Pd |R3  1

2 . Also set Pu |R1  1, and Pd |R1  0, similarly for the R2

conditionals. Then

Pu|Z  1
2  1

2 PR1|Z − PR2|Z;

Pd|Z  1
2  1

2 PR2|Z − PR1|Z.
    (6)

For the model based on (3) we have Pu|Z  1
2 1  W1 − W21  W1W2 to a fairly

good approximation.
One could allow for the mapping between regimes and outcomes to be less precise, for

example by writing

Pu |R1  ; Pu |R2  1 − ; Pu |R3  1
2 ;

Pd |R1  1 − ; Pd |R2  ; Pd |R3  1
2 .

The first expression in (6) is replaced by Pu|Z  1
2   − 1

2 PR1|Z − PR2|Z, with
a similar second expression. The effect of   1 is to allow the connections between
regimes and outputs to be noisy. Thus a validity ratio for R1 as a signal of u versus d would
be
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v1 
PR1 |u,Z
PR1 |d,Z .

The validity ratio for R1 is high if a subsequent up outcome is much more strongly
associated with a prior occurrence of R1 than is a subsequent down outcome. Using Bayes’
theorem,

v1 
Pu |R1,Z
Pd |R1,Z 

Pd |Z
Pu |Z ,

with a similar validity ratio v2 for R2 as a signal for d. Now if PR1 |Z  PR2 |Z, then
Pd |Z  Pu |Z and

v1  
1 −   v2.

The validity or signal to noise ratio is highest if   1. One would prefer   1
2 .

Simulations suggest that allowing   1 does diminish the sharpness of model
identification, and we suggest setting   1 unless there are strong reasons to suppose
otherwise.

Some empirics reported below revealed that the three outcome model is much superior
to the two outcome model in the case of foreign exchange forecasting. Condensing from
the three outcomes to the two implies that a lot of market noise has to be allocated in one
way or the other to the influence of the up or down economic indicators, diluting the
credibility of the latter so far as major up or down movements are concerned. More or less
stable and minor fluctuations are in effect put on the same footing as significant movement.
However, there may be other contexts where the economics would always indicate either a
clear up or a clear down outcome, and in this case the two outcome model may be useful.
The empirics reported below cover only the three outcome model.

2.3 Dynamic Persistence Models
Dynamic elements can appear in the above models via lagged values of dependent

variables. Thus if the objective is a directional forecast of exchange rates over the coming
period, last period’s actual value could appear among the explanatory variables Z.

Alternatively the dynamics can be more intrinsic to the model, and govern the way that
the regimes themselves evolve. Recalling that these regimes describe directional changes, it
could be that changes are persistent from one period to the next. Thus if the current
direction is up, it is more likely that next period it will also be up. In such a persistence
model, signal-output conditionals such as Pu |Ri and Pd |Ri remain constant, but the
regimes themselves obey transition probabilities, of the form

PRi,t |Rj,t−1,Zt : PRt  Ri |Rt−1  Rj,Zt,     (7)

where the symbol Rt is used to describe a regime-valued random process. The state
probabilities evolve according to

PRi,t |Zt  ∑
j1

3

PRi,t |Rj,t−1,ZtPRj,t−1|Zt−1     (8)

starting from PRi,0 |Z0 as initial marginal distributions, where i  1,2,3; t  1,2,; and
Zt represent the history of the Z process up to time t. In some applications the transition
probabilities might depend upon ‘surprises’ in the Zt, i.e. the part that could not have been
predicted from Zt−1.
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Expression (7) defines a Markov process, or a hidden Markov process (Baum and
Petrie (1966)) where the regimes are obscured as in section 3. If the economy is now in a
given state R, then it should most likely just stay there unless an economic event occurs.
But if the exchange rate (for example) is currently in a stable ‘no change’ state and a very
bad current account figure is announced, it should change to a down state with a greater
probability. Thus the transition probabilities have to be made functions of the economic
indicators Z, the latter now being reinterpreted as influences that will produce changes in
state. The resulting Markov processes become nonhomogeneous.

At first sight, estimation of system (7) looks a formidable task, as there are now 9
transitional probability densities to specify and estimate. Note, however, that there are only
6 independent probabilities, as the columns of the transition matrix must sum to one.
Further, the key entries are ‘turning points’ (PR1,t |R2,t−1,Zt, PR2,t |R1,t−1,Zt) and
perhaps also ‘breakout points’ (PR1,t|R3,t−1,Zt, PR2,t |R3,t−1,Zt). This suggests that we
might be able to get away with just 2-4 non homogeneous probability densities leaving the
others constant, just as they are for standard homogeneous Markov models.

Alternatively, the regimes in the above could be reinterpreted as referring to levels
rather than rates of change. Thus suppose the object to be forecasted was known to stay
within a stable band over time. One could distinguish three levels: high, middle, low. A
transition probability such as PRi,t |Rj,t−1,Zt (i ≠ j), would now be interpreted as the
probability of a transition from level j to level i.

3. OPERATIONAL MATTERS
In this section we look at some issues of regime delineation, model identification, and

estimation procedures. In what follows, the forecasting objective concerns the change Y in
an economic state variable of interest. Past values of Y can be observed but not precisely
modelled. Instead the task is to estimate a categorical model governing the categorical
regimes of change Ri into which the values of Y fall.

3.1 Regime Delineation
As earlier indicated, there is often value to adopting three outcomes, not just two, with

a middle zone reserved for the absence of any significant up or down tendencies. However,
for continuous variables this creates an operational problem of deciding boundaries
between the up, stable or down outcomes. The boundaries may be treated as either known
or unknown, and we shall consider the data densities that arise in each case.

(a) Known boundaries
This approach assumes that the investigator has established preassigned boundaries

based on such considerations as a normal level of volatility, or what would consitute a
break-out zone. With no real loss of generality, we could imagine that for a known number
, the regimes are manifested by

Regime 1 : Y  ;
Regime 2 : Y  −;
Regime 3 : −   Y  .

The index functions associated with these sets will be denoted as riY,. For example,
r1Y,  1 if and only if Y  ;  0,otherwise. In the above, the observable Y plays the
role of an observable signalling variable, just as it does in probit analysis.

The likelihood element associated with an observation Y is a straightforward
generalisation to three regimes of the standard probit model. It can be expressed in compact
form as:
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lRY,Z; ,  ∑
i1

3

riY,PRi|Z,.     (9)

Although it contains Y as an observable argument, the likelihood element (9) refers to
regime-valued events, emphasised by means of the subscript R. The effect is to single out
the regime Ri that is actually observed. Thus if regime i  1 is observed then r1Y,  1,
while r2Y,  r3Y,  0. We end up with pR1|Z, as the data density element that
applies for this particular period. The classic probit likelihood function is precisely of this
form. It has just two regimes with probabilities pR1|Z, and pR2|Z,  1 − pR1|Z,
and the likelihood function over t  1,2, ...T is divided into those periods where regime 1
and regime 2 apply. In both models, expression (9) could be described as a likelihood
element generator function.

(b) Unknown boundaries
A more interesting approach is to model the regime boundaries and membership

functions as fuzzy in nature. The original idea (Zadeh (1965); Zadeh and Bellman (1970))
was that the investigator might have some idea of where the boundaries might be, but less
so as any more precise placement. One can assign values between zero and unity to the
degree of membership of each regime, so that a given observation Y is not allocated
absolutely to just one or the other.

An alternative interpretation in the present context can be constructed from more
classical probability ideas. Here the boundary markers in any given period are sharp, but
they can vary across different time periods, simply because some periods are naturally
more volatile than others. We cannot observe the boundaries for any single period, but we
can hope to model and estimate their probability distribution. The latter then effectively
define the fuzzy membership functions. Put this way, it becomes clear that the regime
boundaries are in the nature of hidden variables, or incomplete data, and the EM method
potentially applies to the subsequent maximum likelihood solution for the model as a
whole. What follows describes this approach.

To link with the known boundary case, suppose that we replace the firm boundary
marker parameter  with a random variable , and let us assume that ~N,2. It is also
assumed that  is statistically independent of Y and Z.; the boundary markers are simply
noise parameters. The regime index functions now become of the form riY,, where the
parameters , are suppressed for brevity. For instance, r1Y,  1 if and only if Y  ,
so R  R1 in this case and regime 1 applies. Also, for any given value of Y,

Er1Y,  
−

Y
n;,2d  Y;,2,     (10)

where n;,2 denotes the normal density function and Y;,2 is the corresponding
distribution function. Note that Y;,2 has no reference to any statement about the data
generating process of Y itself; the underlying probability distribution is that of , which is
independent of Y.

Similarly, take expectations of the other two index functions Er2Y, and
Er3Y,, and let  iY;, denote the respective results. We end up with

1Y;,  Y;,2;
2Y;,  1 − Y;−,2;

3Y;,  1 − 1Y;, − 2Y;,.

    (11)
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Figure 3 plots these functions, which we can call the fuzzy membership functions. They are
mutually symmetric, centered at zero, though other forms could be devised that are not
necessarily symmetric, e.g. because the upper and lower boundary markers are not
symmetric about zero. Note that for all Y,  iY ≥ 0, and ∑ i1

3  i  1.There is a width or
location parameter () and a sharpness parameter (), which could potentially be estimated
along with the substantive model parameters .
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Figure 3: Fuzzy Membership Functions, Normal Analogues
The boundary markers (-, cannot be observed, so that observations Y cannot be

allocated with certainty into one or other of the regimes R. However, we can obtain a fuzzy
likelihood element by replacing the exact membership function riY, in expression (9) by
the membership functions  iY;, to obtain:

l̄RY,Z;,,  ∑
i1

3

 iY;,PRi|Z,     (12)

Comparing with expression (9) for the known boundary case, it is easy to demonstrate
that l̄RY,Z;,,  ElRY,Z,;, motivating the notation. The effect of expression
(12) is to give probability mass to all the regimes rather than just the one, to a degree
depending on the strength of membership of observation Y in the respective regimes. It can
be viewed as the marginal probability of regime-observation combinations, once the
unobservable boundary uncertainty  has been integrated out. Operationally, the device of
replacing the unobservable index variables riY, by their expected values  iY;,
corresponds to the EM methodology, wherein hidden or incomplete data are replaced by
their expectations, conditional upon what data is available.

The quasi likelihood element (12) will apply whether or not the boundary parameters
, have been specified in advance. If either or both , are unknown, they become
parameters to be estimated along with the substantive model parameters .

3.2 Regime Differentiation
It may be of interest to test whether the regimes are differentiated in terms of their

connections, causal or otherwise, with the different economic indicators. Suppose, for
instance, that there was really no need to differentiate between the regimes, e.g. because a
simple linear model was operative between the Z variables and the output variable to be
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forecasted. Within the framework of model (1) above, this would correspond to a nesting
where d  −u and a correlation between u and d of −1. The model becomes
automatically complete and there are only two regimes possible, up or down. Alternatively,
setting d  −u but continuing to assume u and d uncorrelated would drive an
uncertainty wedge between two basically identical regimes, allowing for a stable or
no-change band in between, a ‘threshold for change’ type of effect. At a minimum, we
suggest testing for parameter commonality by first consolidating the Z’s to a common set
and then testing d  −u, or equivalently setting Zd  −Zd and testing d  u.
Likelihood ratio tests can be used on all or some of the parameter pairs.

3.3 Estimation Procedures
Estimation procedures described in this section are based on maximum likelihood

(ML). As previously noted, if the boundary markers are not precisely known, it has more of
the character of the EM variant of ML. In addition, it may be necessary to use overlapping
data, especially for macroeconomic work. We encompass such extensions as quasi
maximum likelihood (QML) and comment below on implications.

For the static model, the quasi likelihood function is simply the product of the
one-period elements as given by expression (12):

LRY,ZT;,,  
t1

T

l̄RYt,Zt;,,     (13)

where Y,ZT denotes the history of observations from t  1,2, ...T. Expression (13) refers
to the more general case where neither of the boundary parameters , are known;
otherwise these parameters can be suppressed.

The more general QML for the dynamic persistence model (8) can be established as
follows. Assume that the boundary markers  t are serially independent, so that all
intertemporal information is passed via the regimes Rit. Define a diagonal matrix of the
membership functions:

t, :
1Yt;, 0 0

0 2Yt;, 0
0 0 3Yt;,

.

This can be combined with a transition matrix defined as

 t :
PR1t|R1t−1,Zt; PR2t|R1t−1,Zt; PR3t|R1t−1,Zt;
PR1t|R2t−1,Zt; PR2t|R2t−1,Zt; PR3t|R2t−1,Zt;
PR1t|R3t−1,Zt; PR2t|R3t−1,Zt; PR3t|R3t−1,Zt;

The intended QML can then be given as

LRY,ZT;,,  1 ′ 
t1

T

 tt, 3,     (14)

where 1 is a stationary distribution derived from 1, and 3 is a 3  1 vector of
ones. The quasi-likelihood function (14) is similar to the likelihood function of a standard
hidden Markov model. The only difference is that the transition matrix is a function of
other explanatory variables, Z. If each row is the same, then the QML function for each
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period is identical to (13), so that the quasi-likelihood function of all observations can be
written as a product of one-period quasi-likelihood functions. We adopt the static form (13)
for the empirical data analysis reported below. In this work, the regime ‘smearing’
parameter  will be preset as a known number, say ̄ while the position parameter  will be
estimated along with the  parameters.The probability elements PRit|Zt; will be
specified by the normal distribution function as in (1) and (5). The parameter estimates are
collectively given by:

̂T : arg max,T−1∑
t1

T

ln l̄RYt,Zt;,, ̄,     (15)

where ̂T stands for ̂T
′ , ̂T ′. For brevity in what follows, we write

T−1∑ t1
T l̄RYt,Zt;,, ̄  L̄T; ̄.

As earlier mentioned, the quasi-likelihood function is not necessarily the likelihood
function corresponding to the true underlying data generation process. First, the conditional
regime likelihood function, given Zt , can be different from l̄RYt,Zt;,, ̄. If so, the
information matrix inequality does not hold. Secondly, the given QML function ignores
any dynamic persistence, and possibly leads to inefficient QMLE and an incorrect
information matrix or efficiency bounds. On the other hand, it can be valid in this respect if
all serial correlation can be captured among the predetermined explanatory variables, Zt.
Thirdly, the fuzziness in regime boundaries implies an EM type formulation.

Nevertheless, the given likelihood function is flexible in the sense that it is specified by
focusing on available economic information, and some of the technical difficulties arsing
from model incompleteness can be resolved. Under suitable conditions, we can claim that
̂T as given by (15) has the almost sure limit ∗  arg maxEL̄T; ̄ (see Assumption I,
Appendix A). In such a formulation, the quasi-likelihood function and convergence limit
∗ do not necessarily conform with exactly how the data are generated. The limit ∗ can be
defined as the parameter explaining how closely the data would be generated according to
the hypothesized model in terms of likelihood.

Specifying a quasi-likelihood function gives rise to a different asymptotic distribution
from standard maximum likelihood estimators. We can still claim that the QMLE obeys
asymptotic normality. Under Assumptions I and II in the Appendix A, it follows that

T ̂T − ∗
A N0, −A∗−1B∗−A∗−1,     (16)

where A∗ : E∇
2L̄T∗; ̄, B∗ :avar T L̄T∗; ̄, and ‘avar’ stands for the

asymptotic variance of the given argument. Note that −A∗ is not necessarily the same as
B∗, which should hold if the likelihood function is correctly specified. We estimate A∗ by
applying the strong uniform law of large numbers to T−1L̄T̂T; ̄ and the convergence in
probability of ̂T to ∗. To estimate B∗ we rely on Newey and West’s (1987) method.

Experience thus far is that identification or maximisation difficulties can arise in the
case where regime boundaries have to be estimated. For instance if the smearing parameter
 becomes large, the regimes become indistinguishable, the more so if the  parameters are
poorly identified. This is why a pre-set   ̄ has been used in the empirical work reported
below. Likewise, the parameter  must be restricted to be positive and if allowed to become
too large, all the data will be attributed to just the one regime, namely the stable zone.
Operationally, one looks to the existence of an interior maximum within an interval that
will attribute mass from all three regimes to the sample observations.
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4. EMPIRICAL APPLICATION
The selected application is to hedging the corporate terms of trade of NZ dairy

exporters, a profitability index taken as the ratio of product prices to input prices, both top
and bottom denominated in terms of the NZ dollar (NZD). Although domestic inflation and
commodity prices play a role, the most important single determinant is the USD versus
NZD exchange rate, as most dairy exports contracts are denominated in the USD. The
exchange rate fluctuates in a wide band over time, even if the band itself has not shifted
very much up or down. A decision not to hedge the currency exposure leads to episodes
where the industry is squeezed between a high NZD and low commodity prices. Welfare
can usually, but not always, be improved by selling the USD receipts forward, for there is a
chronic forward discount of the NZD associated with higher NZ interest rates. A fuller
account of the context may be found in Bowden and Zhu (2006). The latter paper
establishes forwards-based hedge rules of the passive or smoothing type, where the
proportion of forwards used is invariant over time. In the present application we explore
the effectiveness of a more active hedging policy, based on using current economic data to
forecast the exchange rate for the coming period. The hedge ratio will therefore continually
change over time, a conditional rather then unconditional hedge.

4.1 Forecasting
The efficient capital markets hypothesis would say that the only informative forecast,

based on publicly available data, is the forward rate. However there is a large and variable
forward rate discount on the NZD, and the forward rate can over some intervals be
negatively correlated with the end of period spot rate. Indeed, the poor forecasting
performance of the forward rate is well known in the foreign exchange literature (e.g.
Hodrick 1987 for a review). On the other hand, Bowden (2004) has noted a close
connection between the NZD exchange rate and the housing market, in the first instance
created by the inflow of offshore funding for mortgages (the ‘hoovering effect’), with a
further influence on the balance of payments capital account being provided by the relative
fortunes of the NZ and US stock markets and business cycle. Adjustments in the exchange
rate tend to follow major movements in these variables. They also often occur at times
when the exchange rate is already at historic highs or lows, suggesting error correction
elements in the level of the exchange rate relative to a historical equlibrium level, taken as
constant. Sharp corrections are also seen as more likely when the balance of payments is
seen as weak, e.g. as the build up of large current account imbalances. Unlike the US
dollar, the NZ dollar is not seen as a major reserve currency! Taken together, the above
suggests that exchange rate forecasting can be episodically successful, based on unusual
movements or exposures, and provided one limits ambitions in the first instance to picking
the direction of the movement, rather than necessarily the new equilibrium value. Table 1
summarizes the variables used in what follows and their timing conventions.

Table 1a: Economic Variables Used for Yearly Forecasting
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Variables Definition and Timeing Conventions
Exchange rate lnNZD/USD t4 − lnNZD/USD t
Current account balance as % GDP CAB/GDP t−8

House price annual change index HPIt − HPIt−4/HPIt−4

Exchange rate as smoothed level 1
8 ∑k0

7 lnNZD/USD t−k
Relative share price index NZ/US lnSPINZ/SPIUS t − lnSPINZ/SPIUS t−4

Relative GDP ratio index NZ/US lnGDPNZ/GDPUS t − lnGDPNZ/GDPUS t−4

Table 1b: Economic Variables Used for Quarterly Forecasting
Variables Definition and Timeing Conventions
Exchange rate lnNZD/USD t1 − lnNZD/USD t
Commodity price index lnCMP t − lnCMP t−1

House price quarterly change index HPIt−3 − HPIt−4/HPIt−4

Relative share price index NZ/US lnSPINZ/SPIUS t − lnSPINZ/SPIUS t−1

Relative GDP ratio index NZ/US lnGDPNZ/GDPUS t − lnGDPNZ/GDPUS t−1

The endogenous variable is the NZD/USD exchange rate, measured with the NZD as
the commodity currency (e.g. 1NZD  0.7123USD). The regime model is taken as static,
meaning that changes in the exchange rate are assumed not to have persistence, apart from
that derived from the Z variables. To obtain regime probabilities, the normal version of the
model was employed. Three fuzzy outcomes were employed, corresponding to up, down
and stable. Allowing both the position  and spread  as free fuzzy parameters led to
indications that the spread parameter was poorly identified relative to the beta parameters.
Based on a priori assessments as to regions of doubt for the boundaries, the fuzzy spread
parameter  was pre-set as 0.001, leaving the mean boundary delimiter  to be estimated as
the empirical regime marker of primary interest. The estimation method was
quasi-maximum likelihood based on expression (15) using the computational routine
‘SQPSOLVE’ from Gauss version 5.02. The data is quarterly, with 62 observations from
Q3 1989 to Q4, 2004. Sources are listed in the Appendix B. Official GDP and house price
data is available only quarterly. This meant that in order to focus on annual changes, use of
overlapping data became necessary, though not in the one-quarter based forecasting.
Potential inefficiencies or biases due to the use of overlapping data have not been explored.
Year on year changes are often used in the exogenous variables to improve the signal to
noise ratio.

Criteria for inclusion or exclusion of indicator variables were based primarily on
asymptotic t ratios and likelihood ratio tests from the QML estimation phase, and
secondarily on contributions to the consequential hedging performance. Table 2 gives the
estimated beta values and their asymptotic t ratios for the up and down indicators as listed
and defined in table 1. We retained three significant up indicators, namely house prices,
relative share prices and GDP ratios. Two down indicators were retained. The smoothed
level has a primary impact when high, indicating the riskiness of exposure to the NZD at
higher levels. The current account balance is important for similar reasons.

Table 2: Directional Indicators and Parameter Estimates - Annual Forecasting
Horizon
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Variables Role Estimates t ratios
House price annual change index up 11.522 2.940
Relative share price index NZ/US up 9.049 2.815
Relative GDP ratio index NZ/US up 45.278 3.186
Exchange rate as smoothed level down 1.873 2.233
Current account balance as % GDP down -28.749 -2.609
Fuzzy boundary ( 0.043 21.364
NOTE: BIC90.282, and LR statistic testing all zero coefficients 59.473.

In addition we applied a likelihood ratio (LR) test as to whether all the indicator
coefficients () are zero, so that they provide no predictive information. Under the null, it
follows from expressions (1) and (5) that PR1t|Zt;  PR2t|Zt;  PR3t|Zt;  1/3,
so that estimating the null model is trivial. The resulting LR statistic decisively rejects the
null hypothesis that they are zero.

Finally, the regimes are indeed quite different. Consolidating the Z’s as suggested in
Section 3.2, followed by d  −u, was rejected at 5% significance level, with all beta
coefficients significantly different. This excludes alternative models such as simple
linearity.

Choice of the indicator variables can depend on the length of the forecasting horizon.
Table 3 is based on shorter term forecasting just one quarter ahead. Evidently, short run
noise is obscuring the effect of the economic variables to a greater extent than with the
longer forecasting horizon. Computed t ratios are not so significant as in the annual data
case.

Table 3: Directional Indicators and Parameter Estimates - Quarterly Forecasting
Horizon

Variables Role Estimates t ratios
House price quarterly change index up 25.268 2.087
Commodity price index up 4.677 0.770
Relative share price index NZ/US down -4.416 -1.769
Relative GDP ratio index NZ/US down -35.134 -2.143
Fuzzy boundary ( 0.005 34.972

NOTE: BIC134, and LR statistic testing all zero coefficients 19.17.

4.2 Use in Hedging
At any time t, we can imagine a corporate treasury manager estimating the regime

probabilities over the forecast horizon, as outlined above. These are to be used as an input
into the hedge ratios that will protect the firm against an adverse outcome, in this case of
the exchange rate, over the coming horizon. Hedging is to be done (we shall imagine) by
buying or selling the foreign currency forward. Let ht be the hedge ratio as a decision
variable, meaning the proportion of the spot exposure that is to be protected. It is assumed
that treasury policy requires 0 ≤ ht ≤ 1. The case ht  1 would correspond to complete
forward cover. As earlier mentioned, this is good steady state policy in the chosen context,
because it takes advantage of the usual forward discount on the Kiwi or premium on the
USD. However, on occasion it has been quite the wrong thing to do, with unprotected spot
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as much the better choice (see below). The issue is whether we can design a better hedge
policy by allowing ht to be variable, constituting an active rather than passive hedge rule.

At current time t suppose that the estimated regime probabilities for the coming forecast
period (e.g. t  1 or t  4) are

p̂jt1  PRjt1|Zt, ̂     (17)

j  1,2,3. Similarly with t  4 for one year ahead forecasting. The basic problem is how
to map these forecast regime probabilities into the desired hedge ratio ht . There are a
number of ways of doing this.

One method is to fix as parameters qu and qd say, the size of the up and down jumps or
ticks, and use these together with the regime probabilities to mimic a trinomial process,
setting the R3 tick as zero. The tick values qu, qd can be estimated by a historical least
squares fit of the generated series with the actual. Using the tick values and the estimated
up and down probabilities, one can estimate the expected value of the coming spot rate and
adjust the hedge ratio according to the difference between the expected future spot rate and
the currently quoted forward rate. One would expect this sort of technique to work better
for very short horizon hedging, where the trinomial tick process provides a better
approximation.

Better results, however, can be obtained by making fuller optimizing use of the three
possible outcome regimes, in conjunction with other information such as whether the
exchange rate is currently high or low relative to history. Thus a more effective rule - for
this particular context - is based on the observation that historical values of the NZD/USD
exchange rate have fluctuated within a broad band, but one without any discernible trend.
Suppose we divide the historical series into three zones: high, middle and low. The
consequences for NZ exporters of the NZD/USD exchange rate moving up are worse if the
exchange rate itself is already high. On the other hand, if the NZD/USD is at a historical
low, exporters would be less troubled by the prospect of a further up movement, or even if
the rate stayed the same. Modifying this is the chronic forward rate discount of the NZD
which would lead to a bias in favor of using the forward rate. One could imagine a 3  3
matrix of loading weights   ij proportional to the marginal utilities of movement
up, down or stable j, given that the current NZD/USD rate is at a historical high, medium
or low level i. For instance, 13 would be the loading if the current state was in the high
historical zone and the movement was stable.

The hedge rule would then be of the form

ht  hit  ∑
j1

3

ijp̂jt1.     (18)

If at time t one observes that the current exchange rate is in historical zone i, then one
weights the estimated direction probabilities with the loadings appropriate for zone i. The
hedge ratio is the expected value of the loadings. The weights, collectively , can be
determined by maximizing a chosen welfare function, assuming that rule (18) had been
applied historically.

In the present application the hedge weights  are chosen to maximize a conditional
value at risk type utility function. The conditional value at risk (CVaR) utility function
(Bowden and Zhu 2006) is equivalent to assuming that an otherwise risk neutral manager
has been compelled to write put options in the sensitive zone (see Appendix C) . The
dependent variable is the farmer terms of trade, constructed as the NZD earnings to farmers
from export sales in USD, divided by an input price index. Taking the log of this is a proxy
for the net farm profit margin, a standard accounting metric for profitability. Thus if the
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farmer terms of trade weakens beyond a certain point, the losses become especially severe.
In order to economize slightly on the number of loading parameters to be estimated, it is
assumed that the elements of the last row of  are all equal. The last row refers to the good
state for NZ exporters (low NZD), so one can assume a natural tendency to simply use the
forward rate no matter what the outcome is. The loadings to be estimated are constrained to
the range 0 ≤ ij ≤ 1, which will similarly constrain the hedge ratio.

Table 4 shows that the optimized loadings are mostly either unity or zero. The
differences are most marked in the high zone, where the unhedged exporter is suffering
from the high NZ dollar. If the direction call is up, then the exporter would definitely want
complete protection; but if down, then the exporter would want to be fully exposed to the
spot rate and forego the forward altogether.

Table 4: Optimised Hedge Loadings - Elements of 
Current state ∖Movement up down stable
High band spot rate 1 0 99.96%
Middle band spot rate 1 44.17% 1
Lower band spot rate 1 1 1

Once the hedge ratios are ascertained, we can compute the effective conversion
exchange rate for the exports, made up of the spot rate and the forward rate in proportions
indicated by the hedge ratio for each time period. In turn, this can be used to calculate the
farmer’s hedged terms of trade, on a historical basis. This can be compared with the
historical terms of trade without hedging, and also with that derived from using just the
forward rate to make the conversion. Table 5 compares the outcomes using a number of
common metrics. The value at risk (VaR) is the lower 10% critical point for the marginal
distribution of the terms of trade, as though they all came from a common underlying
distribution, while the CVaR is the conditional expected value given that the terms of trade
is censored to be less than the VaR critical point - it is a measure of the mass in the left
hand tail. The optimized hedge is superior on all measures to either remaining unhedged or
fully hedging with the forward.

Table 5: Effective Conversion Exchange Rate - Some Statistics
Unhedged One year Unconditional Conditional

case forward hedge optimum optimum
Mean -1.685 -1.637 -1.660 -1.648

Variance 0.023 0.015 0.015 0.013
10% VaR -1.858 -1.803 -1.805 -1.797

10% CVaR -1.884 -1.828 -1.827 -1.817
EU 0.091 0.190 0.197 0.198

Figure 4 compares the history of the farmer terms of trade under the three alternatives.
The optimized outcome generally tracks closely the simple forward as the 100% hedge
rule. However there is useful divergence over the interval 1997-99, which saw the NZD
crumble in the aftermath of the Asian crisis. It was a bad idea to follow a simple forward
strategy at this time, which locked in at the high NZD exchange rate prior to the crash. The
optimized strategy uses the economic information current at the time and elects to remain
with the unhedged spot rate. Note that both the pure forward and optimized strategies
managed to avoid the adverse effects of the high NZD from 2002 onwards.
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Figure 4: Historical Comparison, One-Year Hedging Horizon

5. CONCLUDING REMARKS
Information management and use in real world forecasting and risk management can be

active or passive, or somewhere in between. At one extreme, the manager knows enough
about the economy and the markets to be able to formulate a complete and informative
economic model, one capable of accurate value forecasts. In econometric terms, one would
think of this as a full information approach, and the estimation would be based on a
likelihood function derived from a well specified model of the underlying data generation
process. At the other extreme, a manager would use only implicit market forecasts or
certainty equivalents, arguing that given market efficiency, he or she should not even try to
do better. This is a passive view of informational gathering and use. But it is worth
remembering that it depends itself on the kind of models, mental or otherwise, used by
market practitioners. Unfortunately, there is empirical evidence that market outcomes do
not always square up to the precepts of economic theory and informational efficiency. In
the chosen context of the present paper, namely exchange rate forecasting, the theoretical
result from martingale pricing in complete markets is that the forward rate is an optimal
predictor, with or without risk aversion. But only the most passive and rule-driven manager
would rely on the predictive content of the forward rate, especially for a small open
economy. It is natural to try and do a little better by using what information and economic
insight might be available, while perhaps recognizing the potentially transitory nature of
the advantage to be gained until the market at large catches on. A framework of incomplete
directional forecasting is adapted for this sort of exigency. It outperforms passive
forecasting in the particular context of the paper, founded on historical observation and
performance. This is not to say that the forecasting expressions that result will continue to
do well into the future. But this does not limit the usefulness of the techniques themselves
as a methodological window into the problem of forecasting with limited-information.

Limited information, especially as to the nature of the underlying data generation
process, does place some special demands on the econometrics and on the use to be made
of it. Neuronal net modelling has been designed just for such situations. However, fresh
informational problems arise in circumstances where data limitations preclude using the
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full power of artificial learning algorithms or procedures, as is commonly the case where
macroeconomic data is involved. It becomes necessary to introduce additional a priori
econometric structure into the problem, supplemented by whatever economic theory seems
realistic and feasible. A further problem is that the true underlying data generation process
may not coincide precisely with the estimation model. In effect, one is replacing maximum
likelihood by quasi-maximum likelihood, and convergence to an equivalent set of
parameters under the specified model may not always be assured. Likewise an explicit
methodology is necessary to relate hedge parameters to the resulting directional
probabilities. But our finding here is that even very simple frameworks, involving only
directional rather than complete value assessments, can produce a better result than
informational passivity; or on the other hand investing large sums of time and money in
large scale modelling efforts, with little prospect of any lasting success.

APPENDIX A: SUFFICIENT CONDITIONS FOR QUASI MAXIMUM
LIKEHOOD ESTIMATION

Even if the true data generating porcess is unknown, limited information may
nevertheless prove consistent with the data, in the sense that their parameter estimates (or
quasi estimates) converge. The following are some general assumptions that will suffice,
together with comments relating to the context of the present paper.

Assumptions I
(i) Yt,Zt

′ ′ : t  1,2, is a set of strictly stationary and ergodic processes;
(ii) the space Θ for  is compact in Rp (p ∈ N);
(iii) for a stationary, ergodic, and integrable Dt, sup∈Θ | lnl̄R,t; ̄| ≤ Dt;
(iv) there is a unique maximizer ∗ of EL̄T; ̄ in the interior part of Θ.
Comments:
(a) Assumption I(i) describes the conditions for the data generating process of the data.

The stationarity and ergodicity condition is crucial in applying the asymptotic theory.
(b) Assumptions I(iii, iv) specify the conditions for the consistence of the QMLE, ̂n.

By Assumption I(iii), the strong uniform law of large numbers holds for
n−1∑ lnl̄R,t  ; ̄, so that ̂n converges a.s. to ∗ given that EL̄T  ; ̄ is identified.

Assumptions II
(i) ∇ lnl̄R,t∗; ̄,ℑt is an adapted mixingale of size −1 (McLeish, 1974), where

ℑt is a smallest -algebra generated by y 1,z 1 , ...,yt,zt;
(ii) E∇ lnl̄R,t∗; ̄ ′∇ lnl̄R,t∗; ̄  ;
(iii) B∗ is positive definite, where avar   is the asymptotic variance of given

argument;
(iv) sup∈Θ ∇

2 lnl̄R,t; ̄

 Dt, where ‖  ‖ is the uniform metric;

(v) A∗ : E∇
2L̄T∗; ̄ is negative definite.

Comments:
(a) The central limit theorem (CLT) can be applied to n−1/2∑∇ lnl̄R,t∗; ̄ )by

Assumptions II(i to iii). Scott (1973) provides sufficient conditions for the central limit
theorem, and White (1999, p. 125) proves the CLT given Assumptions II(i to iii).

(b) Assumptions II(iv and v) are used to approximate L̄T  ; ̄ by a quadratic
function. The standard second-order Taylor expansion can be applied to L̄T  ; ̄.

(c) By Assumption II(iv), we can apply the strong uniform law of large numbers to the
Hessian matrix. The negative definite Hessian matrix is necessary for a non-degenerate
asymptotic distribution of the QMLE.
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APPENDIX B: DATA DEFINITIONS AND SOURCES
Table 6 gives sources for the economic variables used in the paper.

Table 6: Data Definitions and Sources
Variables Meanings Sources
NZD New Zealand dollar Global Trade Information Services
USD US dollar Global Trade Information Services
HPI House price index Reserve Bank of New Zealand
SPINZ NZ share price index Morgan Stanley Capital International Inc.
SPIUS US share price index Morgan Stanley Capital International Inc.
CMP NZ commodity price index (dairy, in USD) ANZ Bank
GDPNZ NZ gross domestic product (current dollars) Statistics NZ
GDPUS US gross domestic product (current dollars) International Monetary Fund
CAB NZ current account balance as % GDP Statistics NZ

APPENDIX C: THE CONDITIONAL VALUE AT RISK UTILITY
FUNCTION

The utility function used for hedging has the basic form

UR;P  R − P  minR − P, 0

where the random variable R represents the variable to be hedged (in the present study the
farmer log terms of trade, taken as the net profit margin). Taking the expected value over
the min∙ function introduces the conditional value at risk element. Figure 5 illustrates the
effect, which is though an otherwise risk neutral manager with a linear utility function AA
has written  put options on the value R with strike price P, so that the overall effect is
CPA. An analogy is with corporate finance, where the threat of bankruptcy costs creates a
third party claimant to corporate value (liquidators, lawyers etc) to be exercised in the
event of collapse. The point P is chosen as a point of special sensitivity, often a desired
value at risk point.
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Figure 5: Conditional Value at Risk Utility Function

In the application of this paper, the sensitive point is set at P  1.8576, the idea being
that if the terms of trade fall below figure, farmers will be in financial trouble with cash
flows. If value at risk type critical points are used (say 10%), the parameter  has to be set
high enough to produce significant risk aversion, given the probability of R falling below
P; we used   20. To improve numerical convergence properties with optimization, the
strict stepwise function is replaced by a slightly smoothed version in the neighborhood of
the point P. The smoothed version is itself derived from options theory as the Black
Scholes price of the implied third party options mentioned above. For further details of the
option-equivalent approach, see Bowden and Zhu (2006).
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