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Abstract
This note introduces a simple first-difference-based approach to estimation and

inference for the AR(1) model. The estimates have virtually no finite sample bias, are
not sensitive to initial conditions, and the approach has the unusual advantage that a
Gaussian central limit theory applies and is continuous as the autoregressive coefficient
passes through unity with a uniform

√
n rate of convergence. En route, a useful CLT

for sample covariances of linear processes is given, following Phillips and Solo (1992).
The approach also has useful extensions to dynamic panels.
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1 Main Results

We consider a simple AR(1) model in which yt = α+ut, ut = ρut−1+εt, with ρ ∈ (−1, 1] and
εt ∼ iid(0, σ2). When |ρ| < 1, the process ut may be initialized in the infinite past. When
ρ = 1, we may initialize at t = −1 and u−1 may be any random variable and may even depend
on n, as it does in distant past initializations where, for example, u−1 =

P[nτ ]
j=1 ε−j = Op (

√
n)

where [nτ ] is the integer part of nτ for some τ > 0. In both stationary and nonstationary
cases, observations on yt satisfy

yt = (1− ρ)α+ ρyt−1 + εt, ρ ∈ (−1, 1]. (1)

∗Phillips acknowledges support from a Kelly Fellowship at the Business School, University of Auckland,
and the NSF under Grant SES 04-142254. Han thanks Douglas Steigerwald, Peter Thomson, Jin Seo Cho,
John Owens and John Randal for helpful comments.
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Model (1) is equivalent to the conventional formulation yt = α+ρyt−1+ εt for all |ρ| < 1.
At the boundary value ρ = 1, the intercept produces a time trend in yt for the latter model,
as is well-known. In contrast, under (1), the data are either stationary about a fixed mean
(α) when |ρ| < 1 or form a simple unit root process when ρ = 1.
The present note provides an estimator of the autoregressive coefficient ρ in (1) that has

a Gaussian limit distribution which is continuous as ρ passes through unity. We start by
transforming (1) to the new regression equation

2∆yt +∆yt−1 = ρ∆yt−1 + ηt, ηt = 2∆εt + (1 + ρ)∆yt−1, (2)

where ∆ is the usual difference operator. Least squares on (2) yields the following estimator
of ρ

ρ̂n =

Pn
t=1∆yt−1(2∆yt +∆yt−1)Pn

t=1(∆yt−1)2
, (3)

where it is assumed that {yt : t = −1, 0, ..., n} are observed. The following limit theory
applies.

Theorem 1 For all ρ ∈ (−1, 1], √n(ρ̂n − ρ)⇒ N(0, 2(1 + ρ)) as n→∞.
This result changes when ρ > 1 and the system becomes explosive. In fact, ρ̂n is incon-

sistent and the limit distribution is non-normal and no invariance principle applies, as in the
case of the conventional serial correlation coefficient (c.f. White, 1958). More particularly,
since∆yt−1 = Op (ρ

t) when ρ > 1, it is clear from (2) that in this case ρ̂n →p 1+2ρ. However,
when ρ is in the local vicinity of unity and the system in only mildly explosive, the limiting
distribution is still Gaussian, as we now show.
Let ρ = ρn and an = ρn − 1 depend on the sample size n, so that an measures local

deviations from unity and an → 0 as n→∞. The system is now formally a triangular array,
but it is convenient to omit the additional subscript in the notation. Since ut = ρnut−1+ εt,
we have

ut−2 = ρtnu−2 +
tX

j=1

ρt−jn εj−2, (4)

and because yt = α+ ut,

∆yt−1 = anut−2 + εt−1. (5)

Using (5), we write

nX
t=1

(∆yt−1)2 = a2n

nX
t=1

u2t−2 + 2an
nX
t=1

ut−2εt−1 +
nX
t=1

ε2t−1, (6)

and since ηt = 2(∆εt +∆yt−1) + an∆yt−1 = 2(anut−2 + εt) + an∆yt−1 due to (5), we have

nX
t=1

∆yt−1ηt = 2
nX
t=1

(anut−2 + εt−1)(anut−2 + εt) + an

nX
t=1

(∆yt−1)2. (7)
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So from (6) and (7),

ρ̂n = ρn + (an + δn) + ξn (8)

where

δn =
2a2n

Pn
t=1 u

2
t−2

a2n
Pn

t=1 u
2
t−2 + 2an

Pn
t=1 ut−2εt−1 +

Pn
t=1 ε

2
t−1

, (9)

ξn =
2
Pn

t=1[anut−2(εt−1 + εt) + εtεt−1]
a2n
Pn

t=1 u
2
t−2 + 2an

Pn
t=1 ut−2εt−1 +

Pn
t=1 ε

2
t−1

. (10)

Here, an + δn explains the transition of the bias from zero to ρn + 1 as ρn increases beyond
unity, and the quantity ξn is instrumental in determining the asymptotic distribution.
In the unit root case where an = 0, the bias term an + δn is zero, and

√
nξn =

2n−1/2
Pn

t=1 εtεt−1/n
−1Pn

t=1 ε
2
t−1 ⇒ N(0, 4), giving the result of Theorem 1. If ρn = ρ > 1,

i.e., if ut is explosive, then
Pn

t=1 u
2
t−2 dominates the other terms related with εt, so δn →p 2,

and ξn converges to zero at an exponential rate, as can be shown using analytical tools
similar to those in recent work by Phillips and Magdalinos (2005).
When ρn ↓ 1 at a rate such that neither a2n

Pn
t=1 u

2
t−2 nor

Pn
t=1 ε

2
t−1 dominates each other,

the asymptotics will be located somewhere in between those two extreme cases. The exact
border-line rate of ρn is determined by the condition that

cn = ρnn/
√
n→ c ∈ [0,∞) as n→∞, ρn ≥ 1. (11)

One example that satisfies (11) with c > 0 is ρn = (c
√
n)1/n in which case cn ≡ c. This ρn

converges to unity at a rate slower than n−1 and faster than n−β for any β < 1 when n is
large.
Now suppose that the ut series is initialized at t = −2 and the effect of the initial status

is negligible in the sense that

ũ−2 = a1/2n σ−1u−2 →p 0. (12)

Let c∗ = limn→∞ ρ−nn ∈ [0, 1] and c∗∗ = limnanρ
−n
n . If c > 0, then c∗ = c∗∗ = 0, and if

an = o(n−1), then c∗ = 1 because log ρ−nn = −n log ρn = −n log(1+an) = −n[an+o(an)]→ 0,
and c∗∗ = 0. Note that c∗∗ is not always zero. One example is ρn = 1 + c/n, in which case
nan = c and ρnn → ec, therefore c∗∗ = c/ec. Using (8), (9), (10) and Lemma 7, we have the
following result.

Theorem 2 When ρn ≥ 1, under (11) and (12),
ρ̂n = ρn + (ρn − 1) + δn + ξn,

where

(i) δn ⇒ 1
2
c2X2/(1

4
c2X2 + 1),

(ii)
√
nξn ⇒ (cXY + 2Z)/(1

4
c2X2 + 1),
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with X
Y
Z

 ∼ N

0,
1− c2∗ c∗∗ 0

c∗∗ 1− c2∗ 0
0 0 1

 . (13)

Note that the covariance c∗∗ of X and Y is irrelevant for the limit distribution of
√
n(ρ̂n−ρn)

because if c = 0 then the XY term disappears from
√
nξn and if c > 0 then c∗∗ = 0.

If c =∞, then δn →p 2 and thus ρ̂n = 2ρn + 1 + op(1), implying thatPn
t=1∆yt−1∆εtPn
t=1(∆yt−1)2

= ρn + op(1).

Furthermore, in this case the limit distribution of
√
nξn is degenerate and when appropriately

(i.e., exponentially) scaled, it can be shown that the limit distribution is Cauchy-like. We
do not pursue this case in the present paper.
On the other hand, if c = 0 and ρn ↓ 1 sufficiently fast, we still have a Gaussian limit

distribution, as follows.

Theorem 3 If ρ2nn /
√
n→ 0, then under (12),

√
n(ρ̂n − ρn − an)⇒ N(0, 4).

An obvious example satisfying the condition for Theorem 3 is the conventional local to unity
case, where ρn = 1 + c/n, ρnn → ec and hence n−1/2ρnn → 0. In this case

√
nan → 0 and so

the bias does not affect the limit distribution, giving
√
n(ρ̂n− ρn)⇒ N(0, 4), as in Theorem

1 when ρ = 1. Thus, Theorem 1 holds with the same
√
n rate as ρ passes through unity to

locally explosive values.
The novelty in this result is that the limit distribution is clearly continuous as ρ passes

through unity. So the Gaussian limit theory may be used to construct confidence intervals for
ρ that are valid across stationary, nonstationary and even locally explosive cases. However,
such confidence intervals are wide compared with those that are based on the usual serial
correlation coefficient and clearly the N(0, 4) limit theory is insensitive to local departures
from unity.
Differencing in the regression equation (2) reduces the signaling information carried by

the regressor ∆yt−1 in comparison to the usual levels-based approach. The effects are most
obvious when ρn → 1 in which case the conventional serial correlation coefficient has a higher
rate of convergence (c.f. Phillips and Magdalinos, 2005), so ρ̂n is infinitely deficient over this
band of ρn values. On the other hand, the limit theory is not sensitive to initial conditions
at all when ρ = 1, as is the limit theory for the conventional serial correlation.
Simulation results are provided in Table 1. The limit theory is apparently quite accurate

even for small n. Noticeably, there is virtually no bias in the estimator, unlike conventional
serial correlations, and the t-ratio is well approximated by the standard normal.

2 Models with Trend

Next consider the corresponding model with a linear trend. Define yt = α+ γt + ut, where
ut = ρut−1 + εt, εt ∼ iid(0, σ2), and ρ ∈ (−1, 1], with the initial conditions at t = −2 and
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Table 1: Simulation evidence from 50,000 replications. The t-ratios are computed using√
n(ρ̂n − ρ)/

p
2(1 + ρ̂n). The simulated variances of the t-ratios are given in the ‘v(t)’

columns.

ρ = 0 ρ = 0.3 ρ = 0.5
n E(ρ̂) nv(ρ̂) v(t) E(ρ̂) nv(ρ̂) v(t) E(ρ̂) nv(ρ̂) v(t)
40 0.023 2.009 1.025 0.317 2.548 1.020 0.512 2.896 1.019
80 0.012 2.001 1.007 0.310 2.554 1.001 0.506 2.937 1.006
160 0.007 2.031 1.017 0.304 2.560 0.995 0.503 2.958 0.999
320 0.003 2.012 1.007 0.303 2.569 0.993 0.502 2.973 0.997

ρ = 0.9 ρ = 0.95 ρ = 1
n E(ρ̂) nv(ρ̂) v(t) E(ρ̂) nv(ρ̂) v(t) E(ρ̂) nv(ρ̂) v(t)
40 0.903 3.651 1.026 0.951 3.706 1.018 1.001 3.848 1.028
80 0.902 3.672 0.997 0.951 3.782 0.999 1.001 3.910 1.009
160 0.901 3.759 1.004 0.950 3.833 1.000 0.999 3.964 1.010
320 0.901 3.729 0.989 0.950 3.847 0.995 1.000 3.977 1.003

the same specifications as before. The implied model is

yt = (1− ρ)α+ ργ + (1− ρ)γt+ ρyt−1 + εt. (14)

For this model, we use double differencing to eliminate the intercept and the trend, leading
to

∆2yt = ρ∆2yt−1 +∆2εt. (15)

By recursion, we have

∆2yt−1 =
∞X
j=0

ρj∆2εt−j−1 = εt−1 − (2− ρ)εt−2 + (1− ρ)2
∞X
j=2

ρj−2εt−j−1, (16)

and then

E(∆2yt−1)2 = 1 + (2− ρ)2 +
(1− ρ)4

1− ρ2
=
2(3− ρ)σ2

1 + ρ
. (17)

Further, since ∆2εt = εt − 2εt−1 + εt−2, we have

E∆2yt−1∆2εt = [−2− (2− ρ)]σ2 = −(4− ρ)σ2. (18)

It follows from (17) and (18) that

E∆2yt−1η̃t = 0, where η̃t = 2∆
2εt + φ∆2yt−1, φ =

(4− ρ)(1 + ρ)

3− ρ
. (19)
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The orthogonality condition (19) leads to the regression model

η̃t = 2(∆
2yt − ρ∆2yt−1) + φ∆2yt−1 = (2∆2yt +∆2yt−1)− θ∆2yt−1, (20)

where

θ = 1 + 2ρ− φ = −(1− ρ)2

3− ρ
. (21)

Least squares regression on (20) produces the estimator

θ̂n =

Pn
t=1∆

2yt−1(2∆2yt +∆2yt−1)Pn
t=1(∆

2yt−1)2
, (22)

where it is assumed that {yt : t = −2,−1, 0, ..., n} are observed. The estimate θ̂n is consistent
for θ and because ∆2yt is stationary for all ρ ∈ (−1, 1], it is asymptotically normal, as shown
in the following theorem.

Theorem 4 For all ρ ∈ (−1, 1], √n(θ̂n − θ)⇒ N(0, Vρ) with

Vρ =

µ
1 + ρ

3− ρ

¶2 ∞X
1

b2k,

b1 = 2(3− ρ) + (1− ρ)2 − {(2− ρ) + 2(1− ρ)2/(1 + ρ)}φ,
b2 = −(2− ρ)[1 + (1− ρ)2] + (1− ρ)3φ/(1 + ρ)

bk = ρk−3(1− ρ)3 [(1− ρ) + ρφ/(1 + ρ)] , k ≥ 3,
where φ and θ are defined in (19) and (21) respectively.

Some simulations are reported in Table 2, where the data for yt are generated by (14) with
α = γ = 1 and εt ∼ N(0, 1). For small sample sizes, θ̂n seems to be slightly biased upwards.
Note that θ̂n needs to be transformed back to ρ̂ in order to estimate Vρ and compute the
t-ratio. The recovery of ρ̂ is conducted according to ρ = 1

2
[2 + θ −pθ(θ − 8)] if θ < 0 and

ρ = 1 if θ ≥ 0. This right censoring seems to cause slightly large variations in the t-ratio for
ρ ' 1 with small sample sizes.
Note that

P∞
k=3 b

2
k = (1 − ρ)6[(1 − ρ) + ρφ/(1 + ρ)]2/(1 + ρ), which is continuous in ρ.

Thus Vρ is continuous in ρ and the asymptotic distribution is again continuous as ρ passes
through unity. When ρ = 1, we have θ = 0, b1 = 1, b2 = −1, and bk = 0 for all k ≥ 3, and
the next result follows directly.

Corollary 5 If ρ = 1, then
√
n θ̂n ⇒ N(0, 2).

3 Extensions and Applications

The difference-based approach to estimation that is explored above can be particularly useful
in dynamic panel data models with fixed effects. For dynamic panels, the transformation (2)
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Table 2: Simulation evidence relating to Theorem 4 with 50,000 replications.

ρ = 0 ρ = 0.3 ρ = 0.5
(θ = −0.333, Vρ = 1.210) (θ = −0.181, Vρ = 1.547) (θ = −0.1, Vρ = 1.751)

n E(θ̂) nv(θ̂) v(t) E(θ̂) nv(θ̂) v(t) E(θ̂) nv(θ̂) v(t)
40 −0.308 1.267 1.026 −0.159 1.594 1.119 −0.078 1.756 1.166
80 −0.321 1.240 0.993 −0.170 1.569 1.052 −0.089 1.746 1.092
160 −0.326 1.240 0.998 −0.176 1.554 1.015 −0.094 1.780 1.074
320 −0.330 1.224 1.000 −0.179 1.573 1.019 −0.097 1.764 1.034

ρ = 0.9 ρ = 0.95 ρ = 1
(θ = −0.005, Vρ = 1.990) (θ = −0.001, Vρ = 1.997) (θ = 0, Vρ = 2)

n E(θ̂) nv(θ̂) v(t) E(θ̂) nv(θ̂) v(t) E(θ̂) nv(θ̂) v(t)
40 0.019 1.973 1.228 0.023 2.013 1.253 0.024 2.002 1.244
80 0.007 2.001 1.175 0.010 2.005 1.177 0.013 1.994 1.170
160 0.001 1.985 1.114 0.005 1.988 1.115 0.005 1.997 1.120
320 −0.002 1.977 1.075 0.003 2.010 1.090 0.004 2.000 1.083

effectively eliminates fixed effects and because information about the autoregressive coeffi-
cient accumulates as the number of both individual and time series observations increases,
the cost of first differencing disappears rather quickly. Moreover, as the simulations indicate,
there is virtually no time series autoregressive bias in this approach, so that the dynamic
panel bias is correspondingly small. Furthermore, there is no weak instrument problem as
ρ → 1 in this new approach, as there is with conventional GMM approaches. Moreover,
the Gaussian limit theory with estimable variances also holds with the time span T fixed
and large N , not just for large T . Also, in view of Theorem 4, incidental linear trends can
be eliminated, while still retaining standard Gaussian asymptotics with estimable variances.
This last fact allows for the construction of valid panel unit root tests in the presence of
incidental trends. These issues are being explored by the authors in other work.

4 Proofs

Let Xt = C(L)εt =
P∞

0 cjεt−j and Yt = D(L)εt =
P∞

0 djεt−j where εt ∼ iid(0, σ2). LetP∞
0 cjdj = 0 so that Xt and Yt are uncorrelated. Define ψk =

P∞
0 (cjdk+j+ck+jdj). We first

establish a useful CLT for n−1/2
Pn

t=1XtYt, in a manner similar to Phillips and Solo (1992).

Theorem 6
P∞

1 ψ2k <∞ and n−1/2
Pn

t=1XtYt ⇒ N(0, σ4
P∞

1 ψ2k) if

∞X
1

s(c2s + d2s) <∞. (23)
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Proof. Let aj = |cj|+ |dj|. Then |cjdk + ckdj| ≤ |cjdk| + |ckdj| ≤ ajak for all j and k, and
(23) implies that

∞X
0

a2s <∞,
∞X
1

sa2s <∞. (24)

because a2j ≤ 2(c2j + d2j). Thus

∞X
1

ψ2k =
∞X
k=1

" ∞X
j=0

(cjdk+j + ck+jdj)

#2
≤

∞X
k=1

Ã ∞X
j=0

ajak+j

!2

≤
∞X
k=1

Ã ∞X
j=0

a2j

!Ã ∞X
j=0

a2k+j

!
=

Ã ∞X
0

a2j

!Ã ∞X
1

sa2s

!
<∞

by (24), so
P∞

1 ψ2k <∞ is proved.
For the CLT, write XtYt =

P∞
0 cjdjε

2
t−j +

P∞
j=0

P∞
k=j+1(cjdk+ ckdj)εt−jεt−k = Zat+Zbt.

We will show that

n−1/2
nX
t=1

Zat →p 0, (25)

n−1/2
nX
t=1

Zbt ⇒ N

Ã
0, σ4

∞X
1

ψ2k

!
. (26)

For (25), let fj = cjdj and F (L) = fjL
j. Then Zat = F (L)ε2t . Apply the Phillips-Solo device

to F (L) to get F (L) = F (1) + F̃ (L)(L− 1) = F̃ (L)(L− 1), where F̃ (L) =P∞
0 f̃jL

j, which
simplifies because F (1) =

P∞
0 cjdj = 0 by supposition. Thus, we have

n−1/2
nX
t=1

Zat = n−1/2(Z̃a0 − Z̃an), Z̃at =
∞X
0

f̃jε
2
t−j. (27)

Now (25) follows if suptE|Z̃at| <∞. But

E|Z̃at| ≤ E
∞X
0

|f̃j|ε2t−j = σ2
∞X
0

|f̃j| ≤ σ2
∞X
j=0

∞X
k=j+1

|fj| = σ2
∞X
1

s|fs|,

and furthermore
∞X
1

s|fs| =
∞X
1

s|csds| ≤
Ã ∞X

0

sc2s

!1/2Ã ∞X
0

sd2s

!1/2
<∞

by (24). So (25) is proved. For (26), let gk,j = cjdk+j + ck+jdj. Then

Zbt =
∞X
j=0

∞X
k=j+1

(cjdk + ckdj)εt−jεt−k =
∞X
j=0

∞X
r=1

(cjdr+j + cr+jdj)εt−jεt−r−j

=
∞X
r=1

∞X
0

gr,jεt−jεt−r−j =
∞X
r=1

Gr(L)εtεt−r, Gr(L) =
∞X
0

gr,jL
j.
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Use the Phillips-Solo device again to each Gr(L) to get Gr(L) = Gr(1)+ G̃r(L)(L−1). Thus

n−1/2
nX
t=1

Zbt = n−1/2
nX
t=1

∞X
r=1

Gr(1)εtεt−r + n−1/2
∞X
r=1

(ṽr0 − ṽrn), (28)

where ṽrt = G̃r(L)εtεt−r =
P∞

0 g̃r,jεt−jεt−r−j with g̃r,j =
P∞

s=j+1 gr,s. But

∞X
r=1

ṽrt =
∞X
r=1

∞X
j=0

g̃r,jεt−jεt−r−j =
∞X
j=0

εt−j

Ã ∞X
r=1

g̃r,jεt−r−j

!
,

Thus, we have

E

Ã ∞X
r=1

ṽrt

!2
= σ4

∞X
j=0

∞X
r=1

g̃2r,j = σ4
∞X
j=0

∞X
r=1

Ã ∞X
k=j+1

gr,k

!2
, (29)

and again because |gk,j| ≤ ajak+j,

∞X
j=0

∞X
r=1

Ã ∞X
k=j+1

gr,k

!2
≤

∞X
j=0

∞X
r=1

Ã ∞X
k=j+1

akar+k

!2

≤
∞X
j=0

∞X
r=1

Ã ∞X
k=j+1

a2k

!Ã ∞X
k=j+1

a2r+k

!
=

∞X
j=0

Ã ∞X
k=j+1

a2k

!Ã ∞X
r=1

∞X
k=j+1

a2r+k

!

=
∞X
j=0

Ã ∞X
k=j+1

a2k

!Ã ∞X
s=j+1

(s− j)a2s+1

!
≤

∞X
j=0

Ã ∞X
k=j+1

a2k

!Ã ∞X
s=1

sa2s

!

=

Ã ∞X
1

sa2s

!2
<∞, by (24).

Thus (29) is finite uniformly in t, so the second term of (28) converges in probability to zero.
The first term of (28) is n−1/2

P
t εtε

g
t−1 where ε

g
t−1 =

P∞
r=1Gr(1)εt−r with Gr(1) = ψr =P∞

0 (cjdr+j + cr+jdj). This term will be shown to follow the martingale CLT, which holds if
(i) a version of Lindeberg condition holds, and if (ii) n−1

Pn
t=1(εtε

g
t−1)

2 →p σ
4
P∞

1 ψ2k. The
Lindeberg condition follows directly from stationarity and integrability. The convergence in
probability (ii) holds if n−1

Pn
1(ε

g
t−1)

2 →p σ2
P∞

1 ψ2k, which is satisfied by Lemma 5.11 of
Phillips and Solo. (See 5.10 of Phillips and Solo for details.) Now the stated CLT follows by
(25) and (26) because XtYt = Zat + Zbt.

It is of some independent interest from a technical point of view that only a finite second
moment is assumed for εt in the above derivation.
Theorem 1 is now proved using Phillips and Solo (1992, theorem 3.7) for the denominator

and our Theorem 6 for the numerator. Below, the regularity conditions are automatically
satisfied because of the exponentially decaying coefficients in the lag polynomials.
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Proof of Theorem 1. First note that

√
n(ρ̂n − ρ) =

n−1/2
Pn

t=1∆yt−1ηt
n−1

Pn
t=1(∆yt−1)2

. (30)

When ρ = 1, we have ∆yt = εt and ηt = 2∆εt + 2∆yt−1 = 2εt, so

√
n(ρ̂t − ρ) =

2n−1/2
P

t εt−1εt
n−1

P
t ε
2
t−1

⇒ 2N(0, σ4)

σ2
=d N(0, 4),

as stated. For |ρ| < 1, since

∆yt−1 = ρ∆yt−2 +∆εt−1 =
∞X
0

ρj∆εt−j−1 = εt−1 − (1− ρ)
∞X
1

ρj−1εt−j−1, (31)

we find E(∆yt−1)2 = σ2
£
1 + (1− ρ)2

P∞
1 ρ2(j−1)

¤
= 2σ2/(1 + ρ) and hence

1

n

nX
t=1

(∆yt−1)2 →a.s.
2σ2

1 + ρ
(32)

by Theorem 3.7 of Phillips and Solo (1992). We also have

ηt = 2∆εt + (1 + ρ)∆yt−1 = 2εt − (1− ρ)εt−1 − (1− ρ2)
∞X
1

ρj−1εt−j−1. (33)

Let ∆yt−1 =
P∞

0 cjεt−j and ηt =
P∞

0 djεt−j, where

c0 = 0, d0 = 2,

c1 = 1, d1 = −(1− ρ),

ck = −ρk−2(1− ρ), dk = −ρk−2(1− ρ2), k ≥ 2,
due to (31) and (33). Clearly E∆yt−1ηt = −(1− ρ) + (1− ρ)(1− ρ2)(1 + ρ2 + · · · ) = 0, and
by Theorem 6, we have

n−1/2
nX
t=1

∆yt−1ηt ⇒ N

Ã
0, σ4

∞X
1

ψ2k

!
, ψk =

∞X
j=0

(cjdk+j + ck+jdj), (34)

so it only remains to calculate the ψk’s. After some algebra, we get

∞X
j=0

cjdk+j = −ρk−1(1− ρ), k ≥ 1,

and
∞X
j=0

c1+jdj = 3− ρ,
∞X
j=0

ck+jdj = −ρk−2(1− ρ)(2− ρ), k ≥ 2,

10



implying that

ψ1 = 2, ψk = −2ρk−2(1− ρ), r ≥ 2.

So the variance in (34) is σ4[4+4(1−ρ)2
P∞

2 ρ2(k−2)] = 8σ4/(1+ρ). Finally, from (30), (32)
and (34) with the calculated variance, we have

√
n(ρ̂n − ρ)⇒

µ
1 + ρ

2σ2

¶
N

µ
0,
8σ4

1 + ρ

¶
=d N(0, 2(1 + ρ)),

as stated.

Theorem 4 will be proved next because it involves similar algebra. Recall that φ =
(4− ρ)(1 + ρ)/(3− ρ) and θ = −(1− ρ)2/(3− ρ).

Proof of Theorem 4. Write

√
n(θ̂n − θ) =

n−1/2
P

t∆
2yt−1η̃t

n−1/2
P

t(∆
2yt−1)2

. (35)

The denominator of (35) converges almost surely to 2(3−ρ)σ2/(1+ρ) by (17) and Theorem
3.7 of Phillips and Solo (1992). As for the numerator of (35), because of the exponential decay
in the coefficients of the lag polynomials we may invoke Theorem 6. Let ∆2yt−1 =

P∞
0 cjεt−j

with

c0 = 0, c1 = 1, c2 = −(2− ρ), ck = ρk−3(1− ρ)2, k ≥ 3, (36)

due to (16). Because η̃t = 2∆
2εt+φ∆2yt−1 = 2εt−4εt−1+2εt−2+φ

P∞
0 cjεt−j, we also have

η̃t =
P∞

0 djεt−j with

d0 = 2 + φc0, d1 = −4 + φc1, d2 = 2 + φc2, dk = φck, k ≥ 3. (37)

Note that
P∞

0 cjdj = 0. We can show that
P∞

j=2 cjck+j = ρk−1µ where µ = −2(1−ρ)2/(1+ρ)
for k ≥ 1. (First show the result for k = 1, and then use the recursion cj+1 = ρcj, j ≥ 3.)
Using this fact and (36) and (37), we can show that

∞X
j=0

cjdk+j = 2c1{k = 1}+ (ck+1 + ρk−1µ)φ,

∞X
j=0

ck+jdj = 2(ck − 2ck+1 + ck+2) + (ck+1 + ρk−1µ)φ,

for k ≥ 1. Adding term by term, we get

ψk = 2bk = 2
£
c1{k = 1}+ (ck − 2ck+1 + ck+2) + (ck+1 + ρk−1µ)φ

¤
,

and by Theorem 6, n−1/2
Pn

t=1∆
2yt−1η̃t ⇒ N(0, 4σ4

P∞
1 b2k). The result then follows by

combining the limits for the numerator and denominator.
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Next we prove the theorem for the mildly explosive case (11). Define

Xn,k =

µ
2an
σ2

¶1/2 nX
t=1

ρ−tn εt−k, Yn,k =

µ
2an
σ2

¶1/2 nX
t=1

ρ−(n−t)n εt−k, (38)

Wn = n−1
Pn

t=1 ε
2
t−1/σ

2, and Zn = n−1/2
Pn

t=1 εtεt−1/σ
2. We will deal with the individual

terms of (6) and (7) one by one. Note that εt ∼ iid(0, σ2).

Lemma 7 The following is true:

a2n
nσ2

nX
t=1

u2t−2 =
c2nX

2
n,2

2(ρn + 1)
+

ρ2n(c
2
n − n−1)ũ2−2
ρn + 1

+

√
2cnũ−2
ρn + 1

(ρ2ncnXn,2 − n−1/2Yn,2)− ν1n;

2an
n1/2σ2

nX
t=1

ut−2εt−k = cnXn,2Yn,k +
√
2cnYn,kũ−2 − ν2n,k, k = 0, 1,

where

ν1n =
an

n(ρn + 1)

nX
t=1

ε2t−2 +
2an

n(ρn + 1)

nX
j=1

nX
k=j+1

ρk−jn εj−2εk−2

= Op(an) +Op(n
−1/2cn),

ν2n,k =
an√
n

nX
t=1

nX
j=t+1

ρt−jn εj−2εt−k = Op(a
1/2
n ), k = 0, 1.

Proof of Lemma 7. The expressions are worked out using the identities
Pn

t=1

Pt
j=1 xtj =Pn

j=1

Pn
t=j xtj,

Pn
t=2

Pt−1
j=1 xtj =

Pn−1
j=1

Pn
t=j+1 xtj, and

Pn
t=j+1

Pn
k=j+1 xtk =

Pn
k=j+1

Pn
t=k xtk.

The next lemma provides a useful simplification.

Lemma 8 Xn,2 = Xn,0 + op(1) and Yn,1 = Yn,0 + op(1).

Proof. Let k1n = (2an/σ2)1/2 (only for notational simplicity). Then

Xn,2 = k1n

nX
t=1

ρ−tn εt−2 = k1n

n−2X
t=−1

ρ−(t+2)n εt

= k1n

Ã
ρ−2n

nX
t=1

ρ−tn εt + ρ−1n ε−1 + ρ−2n ε0 − ρ−(n−1)n εn−1 − ρ−nn εn

!
= ρ−2n Xn,0 + k1n(ρ

−1
n ε−1 + ρ−2n ε0 − ρ−(n−1)n εn−1 − ρ−nn εn)

= ρ−2n Xn,0 +Op(kn) = Xn,0 +Op(a
1/2
n ),

12



under (11), because Xn,k = Op(1) and ρ−2n = 1− an(ρn + 1)/ρ
2
n = 1−O(an). Similarly,

Yn,1 = k2n

nX
t=1

ρt−nn εt−1 = k2n

n−1X
t=0

ρt+1−nn εt, k2n = (2an/σ
2)1/2

= k2n

Ã
ρn

nX
t=1

ρt−nn εt + ρ1−nn ε0 − ρnεn

!
= ρnYn,0 + k2n(ρ

1−n
n ε0 − ρnεn) = Yn,0 +Op(a

1/2
n )

under (11).

Now let Xn = Xn,0 = (2an/σ
2)1/2

Pn
t=1 ρ

−t
n εt and Yn = Yn,0 = (2an/σ

2)1/2
Pn

t=1 ρ
t−n
n εt for

notational simplicity. We obtain the limit distribution of (Xn, Yn, Zn). The following lemma
will be useful in proving the CLT in Lemma 10.

Lemma 9 Under (11),

(i) max1≤t≤n a
1/2
n ρ−tn |εt|→p 0;

(ii) max1≤t≤n a
1/2
n ρt−nn |εt|→p 0;

(iii) max1≤t≤n n−1/2|εtεt−1|→p 0.

Proof. We prove (i) and (ii) and (iii) follow similarly. Let bnt = anρ
−2t
n . Then (i) states

that max1≤t≤n b
1/2
nt |εt|→p 0 or equivalently that max1≤t≤n bntε2t →p 0. So we shall show that

P

½
max
1≤t≤n

bntε
2
t > δ

¾
→ 0 for all δ > 0.

Fix δ > 0. Because

P
n
max
1≤t≤n

bntε
2
t > δ

o
= 1−

nY
t=1

¡
1− P

©
bntε

2
t > δ

ª¢
,

this probability converges to zero if and only if
Pn

t=1 P {bntε2t > δ}→ 0. But
nX
t=1

P
©
bntε

2
t > δ

ª
=

nX
t=1

(bnt/δ) · (δ/bnt)P
©
ε2t > δ/bnt

ª
≤

nX
t=1

(bnt/δ)Eε
2
t1{ε2t > δ/bnt}

≤
nX
t=1

(bnt/δ) max
1≤j≤n

Eε2j1{ε2j > δ/bnt}

≤ δ−1
Ã

nX
t=1

bnt

!
Eε211{ε21 > δ/an}→ 0,

because bnt ≤ an, an → 0, Eε21 <∞, and
Pn

t=1 bnt ≤ an/(ρ
2
n − 1) = 1/(ρn + 1) = O(1). This

proves (i).
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Lemma 10 Under (11), (Xn, Yn, Zn)⇒ (X,Y, Z) with limit distribution (13).

Proof. The limit variance matrix is straightforwardly obtained by calculation. For the joint
Gauss limit, we use the Cramér-Wold device and show that for any constants λ∗1, λ

∗
2 and λ

∗
3,

Un = λ∗1Xn + λ∗2Yn + λ∗3Zn,

converges to a normal distribution. Let λ1 =
√
2σ−1λ∗1, λ2 =

√
2σ−1λ∗2, and λ3 = σ−2λ∗3.

Then by the definition of Xn, Yn and Zn, we have

Un =
nX
t=1

ζnt, ζnt = a1/2n

¡
λ1ρ

−t
n + λ2ρ

t−n
n

¢
εt + λ3n

−1/2εtεt−1.

Let Fnt be the σ-field generated by εj, j ≤ t. Then ζnt is a martingale difference array with
respect to Fnt. We invoke the martingale difference CLT (e.g., Theorem CLT of Phillips and
Solo, 1992), which requires that

(i)
Pn

t=1 ζ
2
nt →p

1
2

£
(λ21 + λ22)(1− c2∗) + 2λ1λ2c∗∗

¤
σ2 + λ23σ

4;

(ii) max1≤t≤n |ζnt|→p 0.

But (ii) is already proved by Lemma 9 because

max
1≤t≤n

|ζnt| ≤ λ1 max
1≤t≤n

a1/2n ρ−tn |εt|+ λ2 max
1≤t≤n

a1/2n ρt−nn |εt|+ λ3 max
1≤t≤n

n−1/2|εtεt−1|,

so it remains to prove (i). Write

nX
t=1

ζ2nt =
nX
t=1

an(λ1ρ
−t
n + λ2ρ

t−n
n )2ε2t + λ23

nX
t=1

n−1ε2tε
2
t−1

+ 2λ3

nX
t=1

a1/2n n−1/2(λ1ρ−tn + λ2ρ
t−n
n )ε2t εt−1

= Q1n + λ23Q2n + 2λ3Q3n, say.

We show that Q1n →p
1
2

£
(λ21 + λ22)(1− c2∗) + 2λ1λ2c∗∗

¤
σ2, Q2n →p σ4, and Q3n →p 0 by

invoking Theorem 11 at the end. (Readers are recommended to refer to that theorem before
proceeding.)
For Q1n, let bnt = an(λ1ρ

−t
n + λ2ρ

t−n
n )2 and vnt = bnt(ε

2
t − σ2). Clearly, this vnt is

a row-wise martingale difference with respect to the natural σ-field, and condition (a) of
Theorem 11 is obviously satisfied because εt are iid. It is just a matter of calculation
that

Pn
t=1 bnt → 1

2

£
(λ21 + λ22)(1− c2∗) + 2λ1λ2c∗∗

¤
and

Pn
t=1 b

2
nt → 0, so by the theorem,Pn

t=1 vnt →p 0. Now because Q1n =
Pn

t=1 vnt+σ2
Pn

t=1 bnt, we have the desired convergence
for Q1n.
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ForQ2n, let vnt = n−1(ε2t−σ2)(ε2t−1−σ2) and bnt = n−1. Then vnt constitutes a martingale
difference array, and by Theorem 11,

Pn
t=1 vnt →p 0. Now

1

n

nX
t=1

ε2t ε
2
t−1 =

nX
t=1

vnt +
σ2

n

nX
t=1

(ε2t − σ2) +
σ2

n

nX
t=1

(ε2t−1 − σ2) + σ4 →p σ
4.

Next, for Q3n, let bnt = (an/n)
1/2(λ1ρ

−t
n + λ2ρ

t−n
n ) and vnt = bnt(ε

2
t − σ2)εt−1. Then

condition (a) of Theorem 11 is obvious, and condition (c) is also straightforwardly verified.
Condition (b) also holds: If limnan > 0, then

Pn
t=1 bnt ≤ (nan)−1/2(λ1+ρnλ2), which is finite

in the limit, and if nan → 0, then
Pn

t=1 bnt ≤ (an/n)1/2n(λ1 + λ2) = (nan)
1/2(λ1 + λ2)→ 0.

And as a result
Pn

t=1 vnt →p 0. Now

Q3n =
nX
t=1

vnt + σ2
nX
t=1

bntεt−1 →p 0,

because the second term converges to zero in L2. Thus, the conditions for the martingale
CLT are all satisfied and we have the stated result.

Proof of Theorem 2. Combine (8), (9), (10), Lemma 7, Lemma 8, and Lemma 10.

Proof of Theorem 3. If ρ2n/
√
n =
√
nc2n → 0, then (a2n/

√
n)
Pn

t=1 u
2
t−2 →p 0 by Lemma

7, and therefore
√
nδn →p 0. Also, because c = 0 in this case,

√
nξn ⇒ 2Z ∼ N(0, 4). So

√
n(ρ̂n − ρn − an) =

√
nδn +

√
nξn ⇒ N(0, 4),

as stated.

The following result is adapted from Davidson’s (1994) Theorem 19.7, and is used in the
proof of Lemma 10. For a more general and detailed treatment, see Davidson (1994).

Theorem 11 Let {vnt} be a row-wise martingale difference array, and {bnt} an array of
positive constants. If

(a) {vnt/bnt} is uniformly integrable,
(b) lim supn→∞

Pn
t=1 bnt <∞,

(c) limn→∞
Pn

t=1 b
2
nt = 0,

then
Pn

t=1 vnt →L1 0 and thus
Pn

t=1 vnt →p 0.
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