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Abstract

Empirical hedge procedures typically adopt a symmetrical mean square 
error immunization criterion, wherein positive values of the hedging basis or 
net hedged return are penalized equally along with negative. The 
econometric hedge, which proceeds by estimating a presumed underlying 
regression relationship, is naturally adapted to this loss function. In many 
circumstances, however, a symmetrical loss function may be excessively 
limiting or even inappropriate. This paper presents conditions under which a 
given hedge such as the econometric hedge is unaffected by the choice of 
utility function. If an invariant hedge exists, it can be consistently estimated 
by OLS, but the converse is not true:  classical regression conditions do not 
suffice for the hedge to be invariant. Ordered mean difference techniques 
can be used to adjust the econometric hedge up or down according to the 
user’s perception of sensitive zones of net return, as in value at risk. 
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I Introduction
Most corporates hedge their stochastic exposures at some time or other. Yet 

hedging as a subject is controversial on a theoretical level and problematic in its empirics. 

On a theoretical level, doubts have centred upon whether the corporate should do the 

hedging or whether they should leave it to their shareholders to achieve their own desired 

risk exposure. This amounts to the position that the net market value of the hedge (e.g. a 

forward position) is zero, so that the value of the hedged firm should remain just the same 

as the unhedged. Contrary positions invoke explanations such as controlling the exposure 

to bankruptcy costs; the ability that hedging confers to take advantage of unforeseen 

investment opportunities; or the non alignment of risk preferences of managers with those 

of shareholders. The empirical debate inherits some of the theoretical divisions. For 

example, most of the extensive econometric literature takes as given the immunization 

criterion, wherein the loss function is explicitly or implicitly assumed to be the mean 

square error. This penalizes equally departures in either direction, so that a metals 

producer with natural long position in spot prices would  be protected via a short position 

in futures if the spot price fell, but would forego gains if the spot price did in fact rise. 

Immunisation would  appear to be linked most naturally with the bankruptcy argument. 

But if this were so, one could legitimately ask whether this extra degree of risk aversion 

should figure in the design of the hedge, so that perhaps the conventional econometric 

hedge would not provide sufficient protection.

On the other hand, the econometric literature has helped us to focus on the 

potential importance of non classical regression assumptions. Thus assuming that an 

underlying structural model exists, the disturbance terms are often non Gaussian ( e.g. 

Bolleslev, Engle and Woolridge 1988, Baillie and DeGennaro 1990); there may be 

GARCH type dependence ( e.g. Baillie and Myers 1991, Kroner and Sultan 1993, Lin et 

al 1994, Brooks and Chong 2001, Park and Switzer 1995); Gagnon and Lypny 1995); or  

there may be leptokurtosis in any of all of the spot price, the hedge instrument, or the 

residual connecting them ( e.g. Germat and Harris 2002, Harris and Shen 2002). 

However, the underlying decision framework remains the same. The hedge ratio 

is estimated as the structural parameter(s) connecting the spot and the hedge instrument, 

effectively reducing the hedge calculation to an econometric estimation problem. The two 
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mesh quite nicely: the statistical loss functions that underly econometric estimation are 

fundamentally the same as those that are presumed (in default) to underpin the reason for 

hedging to be carried out. The result has therefore been long in econometric virtuosity,

but uneasily short on the economic reasoning as to why the hedge is being carried out and 

how this might affect things. Some parallels exist with the derivatives literature, which 

again is long on the technical specifics, but short on just why and when they should be 

used.

Does it matter? It might be the case that the econometric hedge is robust to a wide 

variety of underlying hedging preference functions. The leading case is where the spot 

and hedge instrument returns are jointly Gaussian. It then turns out (see section II) that no 

matter what the precise preference function, the optimal hedge ratio is just the 

econometric beta (e.g. OLS, where appropriate). In other words, suppose my preference 

function is now asymmetric, so that I dislike negative residual returns but like positive 

returns, as distinct from the immunization preference, which penalizes positive residual 

returns, as does the econometric loss function. Provided those returns are normally 

distributed, the non matching does not matter. I should still use the econometric beta as 

the hedge. In the language of the present paper, we should say that the econometric beta 

is invariant to the choice of utility function , or just ‘invariant’, where the context is clear. 

Although a bit surprising at first sight, this sort of result should be quite familiar from 

portfolio theory. There, no matter what the preferences, whether quadratic or not, if 

returns are Gaussian, mean variance applies (with minor extensions to elliptical 

distributions). The connection is not accidental, for the hedging problem is essentially a 

portfolio problem. It differs only in that adding hedges such as forwards or futures 

theoretically does not entail extra capital, so this is zero capital ‘enhancement’ or 

‘overlay’ in the usage of the trade literature.

As earlier remarked, however, returns are not typically Gaussian. Hence we need 

to examine the robustness of the hedge ratio to different assumptions about the nature of 

preferences, or agent utility. For example if the agent’s utility function encompasses a 

value at risk boundary for low values of the net outcome, then it may be optimal to over-

hedge relative to the econometric hedge. Or the agent’s preference might be state 

dependent, so that the degree of risk aversion would rise in bad times but fall in good 
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times. Examples might include portfolio insurance, which varies according to the stock 

market cycle, or an impending danger of liquidity problems for financial institutions. 

The present paper attacks the invariance problem from a variety of directions. 

Section II develops a general criterion for the existence of invariance, based on the joint 

densities of the spot and hedge instruments or their relationships. A linear hedge will be 

invariant if the conditional expectation of the hedge instrument returns is independent of 

the basis, i.e. the residual, or ‘expectationally invariant with respect to the residual’. The 

condition does not correspond to the classical regression specification, which says that 

the conditional expectation of the residual (here, the basis) must be independent of the 

hedge instrument. Thus underlying regression relationships do not imply that the 

estimated hedge ratio is best or invariant, contrary to popular supposition. On the other 

hand, the invariance condition is indeed linked to regression consistency, as it implies 

that regressor and disturbance are uncorrelated, though the converse is not true. Thus if 

an invariant hedge does exist, it can always be consistently (perhaps not efficiently) 

estimated by least squares. 

 In general, symmetry of one kind or another tends to favour the existence of an 

invariant hedge. Even where this is not the case, it turns out that the econometric hedge is  

‘special’, in that it can entail dead zones, such that the optimal hedge does not depart 

much from it as risk aversion varies. Mathematically, there is a point of inflexion 

involved, though this can depend upon the precise nature of the underlying structural 

model connecting the spot and hedge instrument returns. We develop a framework to 

represent such effects, drawing for this purpose upon the representations of ordered mean 

difference (OMD) technology (Bowden 2000, 2002, 2003). 

Empirically, one can use OMD technology to diagnose whether linear invariance 

holds, based on the given historical data, and to suggest appropriate adjustments where it 

does not. In local invariance, one sets up the econometric hedge as the provisional 

position, and the OMD schedules then tell us whether we should over or under hedge 

relative to the beta hedge. Using the OMD utility generators in conjunction with sensitive 

return zones enables a closer approach to finding globally optimal linear hedges.

 A crucial feature of an effective hedge is that it should be effective at dislocative 

or even disastrous times; it is much less important that it work well when times are good. 
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Econometric tests of goodness of fit or estimator methodology often adopt an averaging 

over all areas of the return axis that obscures this desired empirical asymmetry. If the 

overall fit is acceptable, but it is bad when spot returns are low, the hedge has failed in an 

essential function. By virtue of the orderings in its construction, the empirical OMD 

methodology pays closer attention to hedging basis departures than does the traditional 

econometric hedge. 

The scheme of the paper is as follows. Section II develops the invariance theory. 

After briefly demonstrating invariance for the special case of Gaussian returns, we 

develop a window into the general invariance issue which derives from OMD theory, 

This comes in both local and global versions, and is then used to derive the principal 

theoretical result on the existence of linear invariant hedges.  Section III discusses these 

conditions in terms of some standard models of volatility, such as ARCH and stochastic 

volatility, showing the importance of symmetry in return distributions, and how this 

relates to issues of sensitive zones of loss. Section IV has an empirical illustration based 

on hedging the FTSE 100 index with SPI futures. Section VI has some concluding 

remarks.

II Invariance
Let s be the return to be hedged (for example, the logarithmic change in a spot 

price), and let the hedging return be denote by f (e.g. the corresponding futures return). 

The return to the hedged position will be s - hf, where h is the hedge ratio. This can  be 

regarded either as a portfolio return (for which we use R) or as a basis spread or residual 

(for which we shall sometimes use the symbol u); the symbols R or u (lower case) will 

thus be used interchangeably for the same magnitude, depending upon context. 

In the immunization approach to hedging, the objective is to minimize some 

distance measure of R from zero. The commonly used least squares metric is E [R2], 

which results in the optimal hedge h = E[s|f], conventionally estimated by least squares or 

econometric adaptations to allow for specific distributional assumptions. Characteristic of 

such ‘statistical’ approaches is their directional indifference: positive values of R are 

penalized equally with negative values. However,  agent preferences are often more 

naturally asymmetric. For example, a metals producer (long in return s) would like a 
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positive value of R but would dislike a negative value. Because he is sufficiently risk 

averse, so the immunization story goes, he is willing to forgo the prospect of positive 

departures in order to enjoy the benefit of protection on the downside.

A compound return of the form R = s –hf may be regarded as the return on a 

portfolio long in s and short in f. In a pure hedging context, the element f is a portfolio 

enhancement, requiring no additional capital (as in say a forward or a future). In any case 

we could imagine an increasing, concave (risk averse) Von Neumann-Morgenstern utility 

function U(R) such that h is to be chosen to maximize E[U(R)] , where the expectation is 

conditional upon current information, and taken over the joint distribution of s and f. The 

least squares criterion (essentially U(R) = -R2 ) does not qualify in these terms, as it is not 

monotonically increasing in R; this is a formalisation of the critique mentioned above. In 

other words, if SU indicates the allowable set of Von Neumann-Morgenstern utility 

functions, then the least squares criterion does not belong to this set. The latter is  a much 

more suitable preference class for any discussion of risk management and will form the 

basis for the invariance theory of the present paper. A given hedge will be invariant if it is 

the same and optimal  for all members of SU .

If a hedge ratio h exists that is linear and invariant to any choice of the utility 

function U∈SU , we shall describe it as an invariant linear hedge. This would be a very 

convenient state of affairs. The first result that follows shows that if the returns s,f are 

jointly Gaussian, and have zero means, then the optimal hedge ratio is indeed invariant, 

and moreover coincides with the least squares hedge. This sort of result is well known 

from mean variance analysis, hence the treatment will be brief. 

The Gaussian case

Setting up the optimand as maxh E[U(s-hf)], the first order condition for h is given 

by

.0)]('[)1( =− hfsfUE

Applying Price’s Lemma2, we obtain the optimal hedge ratio as 

2 If x,y are Gaussian, then 
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For more detail see Bowden (1997), or for special cases, Stein (1973) and Amemiya (1982).



6

),
]''[
]'[2(1)2( 2 sff

f
UE
UEh σµ

σ
+=

where the utility derivatives are evaluated at R = (s - hf); µf  and σf are the mean and 

standard deviation of f, and σsf is the covariance between f and s. The first order 

condition (1) will be a unique maximum for h if U is strictly concave.

  If  µf = 0, as we shall henceforth assume, then the optimal hedge will evidently 

be independent of U, and will be identical to the regression coefficient of s upon f. This 

amounts to setting up a formal regression model

,)3( ufs += β

where the residual u  has zero mean and  is statistically independent of the ‘regressor’ f. 

Given the assumption that s,f are jointly Normal, then a linear regression relationship 

automatically applies. The optimal hedge is ./h 2
fsf σσβ ==

The non Gaussian case

In practice, returns distributions are not usually Gaussian, even conditionally 

given the current information. This may be a matter of fat tails in the marginal 

distributions of f and s. Or it may be that the distribution of the disturbance term in (3) 

has special properties: at times of financial stress, the return on the edge instrument may 

depart from the usual pricing basis, e.g. from liquidity squeeze or panic motives (see 

section IV for an example from 1987). The latter case we shall sometimes refer to as a 

basis dislocation of f and s. 

Where the optimal hedge ratio is not invariant, the choice of utility function will 

matter.   In practice, the hedger may not even know the exact nature of the utility 

function, or it may not be temporally stable, depending upon the firm’s particular 

circumstances at the time.  Hence the optimal choice is more likely to be governed by an 

appreciation of range behaviour: certain outcome zones may be viewed as particularly 

sensitive. Or we may simply be interested in the way that the hedge ratio depends upon 

increasing or decreasing risk aversion. 

Even in such cases it is often convenient to begin by postulating a linear 

econometric model of the form (3). One then estimates β as efficiently as possible, under 

various assumptions about the residual process (ε) or the distributions of s and f . The 
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resulting estimate is used as the hedge ratio: .ˆh β=  We shall refer to this as the 

econometric hedge or the beta hedge. It is often a good starting point in the determination 

of hedge ratio invariance.

Invariance and ordered mean difference technology

A first approach to the invariance issue is incremental in nature. One starts with a 

given ‘provisional’ or ‘base’ hedge ratio h, such as the regression hedge, and asks 

whether it is possible to improve on this in one direction or the other. Ordered mean 

difference techniques (Bowden 2001,2002, 2003) are a convenient way to accomplish 

this. OMD methods were originally developed within a framework of conventional 

portfolio theory, in which portfolio proportions add to unity. In the present application we 

are likewise proposing to add a new portfolio asset, but it requires zero capital, as for 

example with a futures or forward contract. This is often referred to in the informal 

professional literature as a portfolio ‘enhancement’, or ‘overlay’. Sometimes this has a 

connotation that the risk management or enhancement process is to be undertaken by a 

third party, as is commonly the case in foreign exchange hedging.

The zero capital aspect notwithstanding, the reasoning is closely similar. 

Directional methods indicate the sign of any departure, i.e. whether we should 

contemplate increasing or decreasing the hedge ratio relative to the beta hedge. Given an 

existing or proposed hedge ratio h, we ask what an extra unit of the hedge instrument 

would be worth in return terms, measuring the latter as the implied tax or penalty (τ) we 

would be willing to pay before reverting to the provisional or base position. If the answer 

is zero, then h is indeed the optimal hedge. If τ>0, this is a signal that we would have to 

be paid to give up the extra unit of the hedge, so that the given amount h is suboptimal; 

we need to increase it; conversely if τ<0. One could think in terms of accepting or 

rejecting a working hypothesis that the econometric beta (for instance) is the optimal 

hedge. A suggestion may have arisen that the hedge should be decreased relative to the 

beta hedge, but if directional indicator (τ) points to ‘increase’, then one should be 

inclined to reject the suggestion.

Thus let h be the proposed hedge ratio, so the base hedge position is R = s-hf. 

Now add an additional amount δ of hedge in the same direction, but we shall penalize its 

return with a notional tax τ, so that the increment has net return f-τ. Thus the total 
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portfolio return R = s – h f – δ (f-τ). We now ask what the ‘tax’ τ has to be in order to 

drive the desired incremental holding δ down to zero. Technically, τ will solve the 

optimizing problem: 

Arg [maxδ Es,f [U(s-hf-δ(f-τ))]] = 0.

The solution is 

.
)]('[
)]('[)4(

hfsUE
hfsfUE

u −
−

=τ

If the optimal hedge  exceeds the given hedge h, then τ will be positive; if it is less than h, 

then τ will be negative.

If the directional indicator  τ is zero regardless of the particular utility function U, 

then we could say that the proposed hedge ratio h is best locally invariant among all 

linear hedges. As it stands, formula (4) is specific to the particular utility function U, so 

to check for local invariance, one would have to check for all possible utility functions. 

Obviously this cannot be done directly, but it can be done indirectly, by using the device 

of OMD utility generators. 

The OMD generator utility functions constitute a family of the form

,)0,min()()5( PRRU P −=

indexed by  parameter P which has the dimension of the return R. Figure 1 illustrates. 

The point P is the ‘node’ or focus, and as P increases from P to P', the utility function 

UP(R) becomes less risk averse as a function of R. Intuitively, the utility function 

becomes more and more linear relative to a fixed return distribution for R.
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Figure 1: Generator utility functions

Applying formula (4) to  U(R) = UP(R), we obtain3

.
]('[
)]('[

)()6(
hfsUE
hfsfUEP

P

P
−
−

=τ

Expression (6) is of the nature of a truncated or censored mean, where the censoring is 

applied according to values of R = s-hf less than or equal to the given return number P. 

Writing Ri = si - hfi, the sample counterpart  can be taken as:

,
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where N(Ri ≤ P) means the count of Ri that  are less than or equal to P. The generator 

equivalent margin τ(P) can be recovered by first arranging the observations in ascending 

order of Ri, then taking the mean of the fi over those observations for which the 

associated Ri are less than or equal to the given number P. The operation can be 

performed on an Excel spreadsheet using the tools/sort menu facility. We shall refer to 

3 The derivative in (A1) is defined in the generalized distributional sense ( e.g. Lighthill 1959, Antosil at al 
1973). Standard  differentiation rules continue to apply.
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the function τ(P) as the OMD hedge schedule, and section IV gives some empirical 

examples.

Suppose that an otherwise arbitrary utility function U  is increasing in R, twice 

differentiable and has marginal utility U'(R)→0 as R→∞ . It can be shown (Bowden 

2000) that the associated equivalent margin τu is a positive weighted combination of the 

OMD generator values τ(P) :

.)(
)]('[
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∞

∞−
ττ

In formula (8) the range of R = s - hf has been taken as infinite, and F refers to the 

distribution function of R .

Expression (8) gives us a way of testing for local invariance, relative to a given 

provisional h such as the beta hedge. Suppose we compute the OMD hedge schedules and 

find that τ(P) = 0, all P. It follows immediately that the equivalent margin τu must be zero 

regardless of the particular utility function U. 

Global invariance

The equivalent margin refers to local variations about the presumed hedge h. 

However a more global approach can also be devised.  The spanning property of the 

OMD utility generators extends to the utility functions themselves, as well as the 

equivalent margins. If U(R) is ‘smooth’, meaning that is has derivatives of all orders, 

then for purposes of expected utility maximization we can effectively write

,)())(''()()9( 10 ∫
∞

∞−
−+= dPRUPURU Pαα

where α0 and α1 (>0) are arbitrary constants. The spanning result (9) is implicit in the 

classic Rothschild~Stiglitz (1970) result that all risk averters will prefer a distribution 

second order stochastic dominant over another; see Bowden (2003) for a more formal 

proof in a portfolio context. Given expression (9), one can show4 that if h* is the optimal 

4 Use expression (9), followed by the second mean value theorem of integral calculus, to write the first 
order condition for h as 

,)(''(]('[)('[))(''()]('[ * ∫∫
∞

∞−

∞
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−−=−−∝− dPPUhfsfUEdPhfsfUEPUhfsfUE PP

for some number P* . For this to equal  zero, the first order condition applicable to UP* must hold.
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hedge solution for U, then there must exist some P* such that h* is optimal for the 

generator UP*(R). In other words, suppose we solve the hedge ratio decision problem for 

the generator utility function UP(R) and let the result be h(P), collectively amounting to a 

schedule of generator hedge ratios over different values of P. Then the hedge ratio for any 

otherwise arbitrary smooth utility function must plot somewhere along this hedge ratio  

schedule. 

Thus if the schedule h(P) turns out to be flat, i.e. not varying with P, it will follow 

that the optimal hedge ratios will be the same for any smooth utility function. Evidently 

this is a sufficient condition for global invariance.

Theoretical conditions for invariance

It is not necessary to have Gaussian distributions, or even an underlying 

regression model, to ensure hedge invariance. The following result gives necessary and 

sufficient conditions for local invariance.

Theorem 1: Suppose that returns s and f  have zero means. Then  the optimal linear 

hedge ratio h is locally independent of the choice of utility function if and only if there 

exists a decomposition

,)10( uhfs +=

such that the following equivalent statements hold:

(i) E[f | u] = 0 almost everywhere in u ;

(ii) E[f δ(u-u0)] = 0 for all numbers u0 , where δ(·) is the Dirac delta function.

Proof Sufficiency follows more or less immediately from the iterated expectation 

applied to the first order condition for an arbitrary utility function U. Write this as 

.0]][)('[)]('[)]('[0 ===−= ufEuUEufUEhfsfUE fu

A generator based argument allows necessity as well as sufficiency. Invariance will hold 

if and only if for every number P, τ(P)=0. From the first order condition (4), and its non 

zero denominator,  this will be true if and only if 

.0]('[)11( =− hfsfUE P

Indeed we can write UP(R) = (R-P)SF(P-R), where SF(x) is the unit step function, equal 

to 0 if x<0, and 1 thereafter. The generalized derivatives obey the following:
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where in each case δ(·) is the Dirac delta function. Differentiating both sides of (11), we 

obtain
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The numerator will be zero if and only if 

...,0)]([)13( PinsaPhfsfE =−−δ

Setting u = s-hf and u0 = P  yields condition (10ii). Condition (10i) follows from basic 

probability theory. Thus if p(f,u) denotes the joint density of f,u, then

.)()(),()]([ 0000 ∫ ∫
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Thus if (10ii) is true and )( 0upu ≠0, then (10i) follows.

Remarks 

(a) Condition (10) may be referred to as the expectational invariance of f with 

respect to u. 

(b) The condition implies that E[fu]=0, so that the regressor and residual are 

uncorrelated. It will follow from this that the hedge ratio h is consistently 

estimable by means of OLS applied to the quasi regression (6). Thus if an 

optimal linear invariant hedge does exist, it will always be consistently 

estimable by applying OLS, though this may not necessarily be efficient as an 

estimator. 

(c)  Condition (10) does not imply E[u | f] = 0, i.e. conditioning in the other  

direction. Hence we cannot say that E[s | f] = hf, so that the condition does not 

amount to a statement about the conditional expectation. Nor is the condition 

equivalent to saying that regressor and residual have to be uncorrelated. One 
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can have E[fu]=0 without condition (10) being satisfied, as some of the 

examples below will make clear.

(d)  Expression (11) corresponds to the first order optimizing condition for UP(R). 

It follows from the spanning decomposition (9) that conditions (10i,ii) will 

also be sufficient for global invariance.

III Dependent  volatility
It might be expected that linear hedges would be most efficacious when there 

exists an underlying linear structural model connecting s and f, though it should be 

remarked that condition (10) does not logically presuppose any such model. However, if 

we do suppose such a model, then we should look to the nature of its disturbance term  

for invariance of the linear hedge. 

It is not necessary that model disturbances should be of the classical i.i.d form in 

order for invariance to hold. Consider, for example, the ARCH type specification, 

,)( 1 tttt sfs εωβ −+=

where εt is specified as  a zero mean random variable normalized to have unit variance, 

and independent of both ft and st-1 .It is also assumed that ft and st-1 are independent ( e.g. 

the efficient market hypothesis). In this framework, we can ask whether the beta hedge 

will be invariant. Thus we can set ut = ω(st-1)εt , effectively  setting  h = β. Given that εt

and ft are specified as independent,
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where pf (·) and pε (·) indicate the respective marginal densities. Thus ARCH type effects 

do not invalidate the linear invariance of the econometric hedge. 

Stochastic volatility

Things can change when the volatility depends upon contemporaneous variables, as 

in some stochastic volatility models. Contemporaneous volatility is a source of practical 

concern, for it means that the basis spread can change when the environment to be 

hedged becomes more stressful.
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 Condition (10) can be illustrated by assuming a structural relationship of the form

,)()14( εωβ ffs +=

where ε is specified as  a zero mean random variable normalized to have unit variance, 

and is independent of f. However, the volatility term ω(f) depends upon the current value 

of  f ( as everything is now contemporaneous,  we shall simply drop time subscripts). Let 

pε(·) denote the density of ε and pf(·) be the marginal density of f.. Also let h be a 

proposed linear hedge, so that u = s - hf  = (β-h) f +ω(f)ε. Condition (10) can be 

expressed as
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It follows that for the additive model (10), the hedge h = β will be invariant if and only if
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ufpE f ε almost everywhere in u.

A sufficient condition for (15) to hold is that the densities of f and ε are symmetric and 

that the volatility function ω(f) is also symmetric in f, i.e. ω(f) = ω(-f) . Thus symmetry 

favours invariance.

Asymmetric stochastic volatility

To see what can happen when condition  (10) is violated, suppose that the 

volatility function in the additive model (14) is asymmetric. For instance, it could be that 

basis departures are more marked when returns s and/or f are substantial and negative, so 

that ω(f) is a diminishing function of f . One can readily see that this would be a source of 

concern. We can examine its effect by using the utility generator framework, and tracing 

the optimal hedge ratio h(P), as the generator node P varies along the real line.

If model (14) holds, the utility generator first order condition (11) can be written 

by using the iterated expectation, as 
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Suppose that P=0 and the density of ε is symmetric about its mean of zero. Setting h=β

will satisfy (16). Thus for model (14) the optimal hedge at P=0 is just h = β, which is 

effectively the econometric hedge. This gives us one point of reference in plotting the 

optimal hedge against values of P: we must have h(0) = β .

Indeed, one can say a bit more than this. From expression (12) above, 
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 We observe that if the hedge ratio h is set equal to β and P=0, then the derivative of the 

OMD hedge function h(P) must be zero at P = 0. Thus the optimal hedge function must 

pass through the least squares hedge value at P = 0, and at that point must have a 

stationary value. Carrying out a further differentiation with respect to P, we find that the 

second derivative must be zero if the density p is symmetric. Hence the stationary point 

must be a point of inflexion. 

Figure 2 plots the hedge function h(P) against P for the case where f is N(0,σf 
2) 

and ε is N(0,1), with σ = 1.25% and β=1. It assumed that the volatility function is 

monotonically declining in f of the form %.4.0)0(;2)0()( / == − wwf ff σω  The hedge  

ratio is no longer invariant, but  declines with P. However, the inflexion point at P =0 is 

also apparent. We can regard this as a flat area or ‘dead zone’ about the econometric 

hedge, and its implications are explored below.
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Hedge function against P
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Figure 2  Point of inflexion to the hedge function

Hedge zone sensitivity

In general, the linear hedge will not be invariant. However, with OMD methods 

one can examine responsiveness to different areas along the return axis. For instance, the 

utility function depicted in figure 3 has a ‘pain threshold’ zone in the shaded area. The 

firm may be prepared to accept a return of zero with a degree of equanimity. But a loss 

of, say, 10% would be viewed as much more than proportionately significant. This might 

be characteristic of ‘value at risk’ decision environments (e.g. Wilson 1999), where the 

lower limit of capital availability is threatened. Above this zone, the curvature term (-

U''(P)) in formulas (8) or (9) is small or negligible, and the same is true below the zone, 

by which time the damage is done. Hence most utility weighting will apply to the shaded 

zone. This means that the generator hedge solutions h(P) for P∈Z will be those most 

relevant to the hedge decision.
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Figure 3  Local curvature and ‘pain’ thresholds

How could one advise a hedger on the basis of point of inflexion or ‘dead zone’ in 

the earlier figure 2? To do that one might call on the zones of distress argument implicit 

in the earlier figure 3. If the primary zone of distress is at or around zero return, then the 

advice would be to use the unadjusted econometric hedge, h = β. Even if the zone is a 

little beneath zero, the inflexion or ‘dead zone’ property of the econometric hedge means 

that little if any welfare would be lost. On the other hand if the zone of distress was 

heavily concentrated on low return values, say around P=-2%, then the recommendation 

would be to over hedge, adjusting h to above the value of the econometric hedge. The 

reason is that if basis volatility increases as f declines, low realisations of f are more 

likely to accompany even lower values of the natural position s. 

IV Empirically based judgements
Although practical hedging decisions are theoretically concerned with conditional 

distributions, they have also to be grounded in empirical regularities. Thus in what 

0
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follows, we suppose that the hedger has available a data window which he or she is 

reasonably confident will be stable, in the sense that the hedging relationship observed in 

the past will continue over the coming period. The preceding section suggests that the 

econometric beta hedge constitutes a reasonable starting point. Thus the task is to infer 

from the available data whether it is likely to be invariant and if not, whether it can 

feasibly be improved upon. The main difficulty in doing so is that one does not 

typically know the utility function, or at least have an exact enough specification for it for 

such a purpose. Thus is what follows we explore methodologies that are indicative in 

nature, perhaps involving some guided introspection as to preferences and their effects. 

Directional methods

The OMD hedge schedule can be used as a directional indicator for the hedge 

ratio, relative to the econometric hedge. If τ(P) lies wholly above the horizontal axis, the 

interpretation is that increasing the hedge ratio would bring value to every risk averse 

agent. If the OMD schedule is positive only for low values of P, this would tell us that 

increasing the hedge ratio would have value for more risk averse agents, or for those in a 

pain zone that falls within the indicated P region.

Figures 4a-d illustrate. The data are daily return observations on the FTSE 100  

index and associated LIFFE futures. It is divided into four equal sub periods as indicated , 

each of length 1135 trading days. One sigma confidence bands are attached as in Bowden 

(2000). The later periods all show evidence of positive OMD values around zero or less, 

indicating that sensitivity to negative outcomes (pain zones concentrated below zero) 

should raise the hedge ratio relative to the beta hedge. The first block exhibits contrary 

behaviour. The more risk averse agents should now moderate the hedge relative to the 

econometric beta hedge (in this case OLS). There is certainly no case for increasing it. At 

first sight this is a surprising conclusion as this block contains the Oct 19 crash of 1987. 

One might expect an increased demand for hedging to be revealed in the historical data. 

However figure 5 shows that the supposition would be premature. The vertical distance 

between the point and the line can be taken as a measure of the reward to hedging. This 

was certainly positive and substantial on Oct 19, but it was followed by a number of days 

(marked with arrows) on which the net rewards would have been  large and negative. A 

flatter hedge line would have helped. This is as striking example of hedge dislocation ; 



19

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

-0.15 -0.1 -0.05 0 0.05 0.1

MA of f against u
OLS h= 1.002579
Block 1: 8 May 83-31 Oct 88

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

MA of f against u
OLS h= 1.137951
Block 2: 1 Nov 88-28 April 93

the hedger becomes exposed to adverse movements in the hedge basis (u), occurring in 

exceptional circumstances, which are just those times in which the hedge should have 

special value. 

Figure 4a  OMD plot, block 1

Figure 4b  OMD plot, block2
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Figure 4c  OMD plot block 3

Figure 4d  OMD plot, block 4
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Spot against futures, 20 day window around Oct 20, 1987
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Figure 5  Returns around the 1987 crash

Plotting generator hedge ratios

An alternative is to plot the generator hedge ratios h(P) as a function of P. The 

optimand will be the sample expected value, namely ∑
=

−
T

i
iiP hfsU

T 1
)(1 , and h is chosen

to maximize this. The computation can be executed by means of a simple one 

dimensional search on the optimizing parameter h. 

Operationally there are two difficulties to this procedure. First, if the optimand is 

rather flat, as it is under hedge invariance, then the routine will be uncertain just where to 

put h. Second, for low values of P there will not be too many observations generating non 

zero values for the optimand. The sample size factor  [1/T] then ensures that their 

collective contribution will be extremely small and the effect of varying h will likewise 

turn out to be small. Hence this may not be a well conditioned estimation problem. 
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Figure 6 shows the optimizing values for the FSTE hedge data. For values of P at 

or close to zero there is a dead zone. Again we observe that block 1 differs from the 

others in that diminishing risk aversion perversely calls for a higher hedge ratio.

hedge ratio optima against P
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Figure 6  Hedge ratios plotted against P

Our general conclusion for the FTSE data is the optimal hedge ratio is not invariant. The 

linear econometric hedge offers insufficient protection to the manager who is sensitive to 

very low values of the spot return. However this has to be qualified by the nature of the 

underlying basis relationship. Given the last 3 periods, one would think that raising the 

econometric beta would raise welfare in the low return end of the axis but not overmuch 

diminish welfare at the upper end. However in the earlier period, which encompassed the 

exceptional 1987 crash, this would not have been a good policy. This is an instance 

where the regression relationship which forms the presumed starting point is not itself 

stable, and a proposed hedging rule has to have regard to the possibility that such 

episodes might arise, or loosely speaking, of ‘model uncertainty’.
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IV Concluding remarks
Our substantive conclusions are the following:

(a) A condition is given for invariance, relating the hedge instrument return f to 

the basis residual u. Local invariance holds if and only if the hedge return is 

expectationally invariant with respect to the residual; this condition is 

sufficient also for global invariance. If this is the case then one can proceed to 

utilise the econometric beta, confident that it is the best for the purpose 

regardless of the precise nature of the hedging loss function.

(b) On the other hand, one cannot proceed on the basis that if classical regression 

assumptions hold then the econometric beta will necessarily be the best linear 

hedge. In other words, the converse to (a) is not necessarily true, and one can 

find important cases where regressor and error are uncorrelated but the hedge 

will not be invariant. 

(c) The econometric beta is a good starting point, with the possible advantage of a 

zone of inflexion, wherein the optimal hedge is not much different.

(d)  Ordered mean difference methods can be used to examine directional 

departures from the econometric beta.  This can done in conjunction with 

judgement calls about sensitive zones of portfolio return. The OMD schedules 

of the hedge instrument against the provisional hedging basis can reveal 

whether the provisional hedge ratio should be raised or lowered.

(e) Judgment calls based on the above are usefully informed by an examination of 

the historical data  for possible hedge dislocation, or basis risk.                                                     
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