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Abstract

Strategic modes of portfolio management commonly focus on longer 
period holding returns, with a number of associated recommendations, 
amounting to ‘riding the risk premium’. The ensuing data problems in 
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of returns, which avoids specific distributional assumptions such as log 
normality. Using ordered mean difference techniques, it is shown that the 
holding period should be considered in conjunction with risk preferences. 
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I Introduction
Holding period returns refer to the geometric average return over a specific 

horizon. In portfolio analysis and performance measurement, the typical horizons range 

from 1 to 10 years.  The empirical analysis of longer term holding horizons will always 

be handicapped by the effective reduction in the number of independent observations. For 

instance, with the historical Ibbotson data used in the present study, 76 annual 

observations become reduced to just 7 non overlapped 10 year holding periods. A variety 

of methods are used to overcome this problem, depending upon the context. One is to use 

overlapped returns, which amounts to using a moving ten year frame, but destroys the 

statistical independence of the ten year returns, even given a maintained hypothesis of 

efficient markets. Another is to assume that the geometric average returns constitute a 

sampling statistic and use the formulas for the mean and variance for the associated 

sampling distribution. Drawbacks to this are first, the need to assume or pretest for a 

specific returns distribution such as log normality; and second, the rather limited 

parametric analysis that results, being effectively confined to mean variance analysis, 

with its well known shortcomings. A more complete risk analysis needs more than just 

two summary portfolio statistics, and the ordered mean difference techniques used in the 

present analysis are such an instance.

 An alternative line of attack is simulation based on the available data. In the case 

of one dimensional distributions, one can use straightforward montecarlo techniques to  

generate further independent returns numbers from the computed empirical distribution 

function. But portfolio analysis is always at least two dimensional.  For example, one 

may  be interested in adding another asset class to a given benchmark, and in this case a 

bivariate distribution is involved, with observations on two variates in the same time 

period. . It is suggested that bootstrapping is a more natural way to handle such an 

exigency. For the basic techniques, see e.g. Efron (1982), Efron and Tibshirani (1993), or 

Davison and Hindley (1997). Bootstrapping has been widely applied to analyse sampling 

distributions in statistics and econometrics, and also to a number of substantive contexts 

in the social and economic sciences, such as privacy protection of economic data 

(Bowden 1992). In the present contribution, it is applied to a fresh substantive context, 

namely the problem of extending returns data to cover longer holding periods.  
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Turning to the domain of application, the distinction between longer and shorter 

holding periods is more than just a matter of the financial arithmetic of returns. Strategic 

modes of portfolio management commonly focus on longer period holding returns, with a 

number of associated recommendations. One such amounts to ‘riding the risk premium’. 

A well known finding (starting with Banz 1981), is that certain dimensions such as size 

and book to market value, attract a pricing penalty in the market, leading to higher risk 

premiums; see also Fama and French (1992,1995), Shefrin and Statman (1995), Dennis at 

al (1995), or Kothari et al (1999). The size effect is the  focus of the present paper, and 

the existence of such an effect is built into the recommendations associated with the 

Fama - French model of security returns now widely used by portfolio managers. 

According to this, if clients are interested only in the longer term, then their strategic 

portfolio manager can reap the rewards of patience, accepting the odd small corporate 

collapse, but nevertheless enjoying the long term higher average returns from investing in 

smallcap stocks, as at least a significant asset class in the portfolio. One might call such a 

strategy ‘riding the risk premium’.

On the other hand, it is important to remember that long term investors have risk 

preferences as well. An investor with a 10 year horizon retains a utility function defined 

on the 10 year return, just as much as does an investor with a one period horizon. For 

instance, baby boomers might have a target retirement wealth and feel considerable 

anxiety at the prospect of a shortfall at the end of the proposed 10 year (etc.) holding 

period.  So the empirical risk premium in and of itself cannot be the end of the story. 

Holding period returns must be considered jointly along with investor preferences. 

Taking the case of the historical U.S. small cap premium, the importance of risk profiling 

is addressed. Methodologically, risk profiling can be handled with the use of ordered 

mean difference methods (OMD). Originally conceived within a fund performance 

measurement framework (Bowden 2000), the applicability of OMD methodology has 

since been extended to capital market equilibrium testing (Bowden 2002), stochastic 

dominance and portfolio efficiency (Post 2002, Bowden 2003), and portfolio 

enhancement (Bowden 2002). One insight is that investors can be considered as a made 

up of a set of more elementary investors (‘gnomes’, say), each of whom has a simple 
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sublinear two segment utility function.  In the present paper, OMD methods are adapted 

to handle the issue of holding period returns under different attitudes towards risk. 

Because these methods do not make limiting assumptions about investor preferences (e.g. 

mean variance), or require specific distributional assumptions or pre testing, the data set 

will need to be extended for longer holding periods. This is where the bootstrapping is 

useful.

The scheme of the paper is as follows. Section II is methodological. It commences 

with a review of the elements of OMD theory and practice, as they apply to the present 

context, including  the idea of investor surplus.  Bootstrapping methods are then briefly 

exposited as a solution to the data exigency.  Section II uses these methods to analyse the 

contribution of smallcap to large cap stocks, taking the latter as a benchmark. Section IV 

summarises the conclusions.

II Ordered mean difference and risk profiling
2.1 Portfolio efficiency via the OMD

Ordered mean difference techniques are in the first instance a diagnostic for 

portfolio efficiency. Suppose we have a proposed portfolio of return R (for brevity, 

henceforth just ‘portfolio R’), and an asset of return r (or just ‘security r’) to be 

considered in conjunction with that portfolio, perhaps as a potential addition, or to see 

whether its existing allocation is correct. Imagine also, for the moment, that one knew 

exactly the manager’s utility function for returns; denote this by U(R). Thus expected 

utility would be E[U(R)] and expected marginal utility is E[U'(R)]. The objective would 

be to choose a portfolio to maximize the expected utility. More extended justifications of 

the formulas used can be found in Bowden (2000,2002a).

Comparing the given security r with the benchmark R, consider the magnitude 

defined by

.
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Evidently this consists in a weighting of the return differences by a weight function π(R), 

which gives extra weight to states of the world in which marginal utility of the 

benchmark - the value of an extra dollar from the base portfolio – is higher. It is a risk 
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adjusted excess return, called the equivalent margin, or the investor surplus attached to r

relative to benchmark R. A value of 2%, for example, indicates that the investor would be 

willing to suffer a 2% penalty on the return of security r before it is offlisted from the 

benchmark portfolio. Asset r will be in equilibrium relative to portfolio R if τu = 0. If τu > 

0, this will be a signal to increase one’s holding of r and if τu< 0, this should tell the 

investor to diminish holdings of r, or to go short if it is not already in the portfolio. 

The usual problem is that one does not know the utility function U. Indeed only in 

very special cases would this ever be true. OMD analysis provides a way of overcoming 

such a difficulty.  It breaks the problem down into the analysis of a special utility 

function portrayed in figure 1 below. This has just two linear segments, and depends on a 

single parameter P, which has the same dimensions as the portfolio return. We could 

write this utility function as

.)0,min()( PRRUP −=

In spite of its odd appearance, the function UP(R) is a genuine risk averse utility function 

in its own right, associated with achieving a target return at R = P. The point P is called 

the node or focus. Increasing P (as in the diagram) indicates that the associated utility 

function UP(R) has diminishing risk aversion, for a fixed portfolio return distribution. The 

functions UP(R) are collectively called the utility generators, so named because for 

purposes of expected utility maximization, one can show that any utility function U(R) 

can always be taken to be a weighted sum of the utility generators with the weight 

assigned to the generator at P being proportional to the curvature (-U''(P)) of the given 

utility function U. This is called the ‘spanning property’. 
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Figure 1:  Utility generators 

Although the generators are not strictly differentiable at R = P, an equivalent 

margin (or investor surplus) measure can be worked out for them as well, by replacing 

the U'(R) in formula (1) by UP'(R), with a suitable interpretation of the latter derived from 

generalized distribution theory . The sample estimate for this is given by
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This is interpreted and computed as follows. First reorder the observations by ascending 

value of the benchmark return R. Then compute the running mean of the differences r-R 

for the reordered observations, up to and including R values that are less than or equal to 

the given number  P. 

Table 1 is an illustration of how this can be done with an Excel spreadsheet. 

Columns 1 and 2 are the natural returns data. Columns 3 and 4 are the data re-ordered 

according to ascending values of the benchmark (in Excel, use tools/sort). Column 5 is 

the difference r-R . Column 6 takes the running mean over increasing values of P. The 
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r values R values reordered by R r-R running mean difference
r R OMD

0.022 0.011 -0.018 -0.045 0.027 0.027
0.048 0.047 -0.021 -0.030 0.009 0.018
0.032 0.018 0.004 -0.005 0.009 0.015
0.004 -0.005 0.017 0.001 0.016 0.015
0.027 0.008 0.027 0.008 0.019 0.016
-0.021 -0.030 0.022 0.011 0.011 0.015
-0.018 -0.045 0.032 0.018 0.014 0.015
0.017 0.001 0.048 0.047 0.001 0.013   P

schedule that plots the running means against P is called the ordered mean difference

schedule. 

Table 1:  Calculation of the OMD schedule

Risk profiling and the OMD

The OMD schedule has a number of uses and linkages. Among other things it 

offers an easy way of testing for stochastic dominance. However the interpretations of 

particular interest in the present context concern risk profiling. This arises from the 

spanning property of the utility generators. In making optimal portfolio choices, every 

investor acts as though he or she has operated off just one member of the generator

family. In other words, there must exist some focal number P* such that the portfolio I 

choose by using UP*(R) is just the same as the one I would use from my true underlying 

utility function U(R).  

From this it would follow that if my investor surplus is positive for every value of 

P - so that the OMD schedule lies wholly above the horizontal axis - then extra units of r 

should be invested, no matter who I am. More typically, one finds that the OMD schedule 

is monotonic either upwards or downwards, and intersects the horizontal axis. Suppose 

we have a situation such as figure 2 below, where the positive slope means that security r 

is aggressive relative to R. Individual 1 is more risk averse than individual 2, so that the 

representative generator focus P*1 < P*2 as indicated. It will pay individual 2 to go 

long(er) in security r as against the given benchmark R; but the opposite is true for 

individual 2, who should shed security r. Only for an investor whose representative P* is 
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Aggressive 
security

Benchmark returns , P

OMD

A P*2

P*1

increasing risk  aversion

precisely equal to the crossing point A will security r be in personal portfolio equilibrium 

with the benchmark R.

Figure 2:  Risk profiling with the OMD schedule

For complete judgments about risk profiling one would like to locate the 

representative utility generator focus P* for a given investor. 

(a) Suppose we are prepared to assume the existence of a market equilibrium. In this 

case even though investors may differ in their risk preferences, the market itself acts as 

though it was an investor, and has its own representative utility generator with node P*m
say. Given a risk free rate this can be readily calculated. First we compute the running 

mean  schedule of R itself. Analogous to formula (2) above this is given by:
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Note that µ(P)→ µR  as P→∞ , where µR is the mean of R.  Next, we locate the number P 

such that µ(P) = ρ where ρ is the given risk free rate. This is the required market P*m . 

Figure 3 illustrates. An equivalent procedure is to plot the running mean of the excess 

returns R-ρ  and locate the point where this crosses the horizontal axis. Figure 6 of 
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µR

µ(P)

PP*m

ρ

section III does this. The latter procedure is better where the risk free rate can itself 

change over time, as of course does happen.

This approach is valuable because it enables us to separate out investors according 

to whether they would be classified as either more or less risk averse, than the market as a 

whole. If more risk averse, their representative generator focus P* will lie to the left of 

P*m  and to the right if  less risk averse. 

Figure 3:  Locating the market representative generator focus.

(b) If there is no underlying market equilibrium, revelation experiments can in principle 

be designed that would enable the investor to decide just where he or she is located along 

the P axis. Short of such experiments, there is no way that the outsider can locate likely 

average values of P. All one can say in the case of figure 2 is that if the investor was very 

risk averse, security r should be divested relative to the benchmark portfolio. If the 

investor is strikingly non risk averse, e.g. approaching risk neutrality (infinite P), then he 

or she should add more units of security r .
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2.2 Holding period returns and bootstrapping

For a holding horizon of T years, the holding period return is conventionally 

defined as the geometric average of the annual returns: 

. )1()1( 1 t
T
t

T
g rr +Π=+ =

Longer holding periods are characteristic of the strategic portfolio approach. Portfolio 

planning based on annual returns is more characteristic of a fully dynamic approach, in 

which the current wealth state of the portfolio, as well as a more active informational 

approach, help to condition the portfolio to be chosen afresh in every period. If the 

returns are independently distributed, as in an efficient market, then the holding period 

return will be less than the arithmetic average of the annual returns, and this tendency 

increases with the length of the holding horizon T. The effect arises from the concavity of 

the geometric mean.

As earlier remarked, data availability become problematical with longer holding 

horizons. However, the original data set can be extended by bootstrapping the available 

observations. The simplest and most commonly used version (simple bootstrapping) 

draws further observations from the same empirical distribution as the original data. 

Technically, this is resampling without replacement from the original  sample.   In other 

words, given a sample r1, r2 ….r76 as in the annual Ibbotson data , assign each data point 

the probability 1/76, and draw a random number from the range 1-76. In this way one can 

arbitrarily extend the number of apparent observations; we used 10,000 in the work 

reported below. At first sight, this looks like getting something for nothing, and to be 

sure, the numerical values remain those of the original data set.  However, sample 

statistics derived from the bootstrapped data will retain validity. For OMD schedules, all 

that will happen is that the same integer number t between  1-76, and   hence the 

corresponding data pair (rt,Rt),  may be drawn repeatedly, giving rise to locally flat zones 

of the OMD schedule (see  figure 5 below). The overall shape will nonetheless mirror 

that from a genuine larger sample. 
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III Application: Investor horizons and smallcap stocks 
The object in the comparisons that follow is to see whether small caps add value 

to a base or benchmark portfolio of large cap stocks; how this might depend upon risk 

profiling; and whether the latter is dependent upon the holding period. The original data 

is the Ibbotson - Sinquefield (IS) annual return series, 1926-1971, sourced from the 

Ibbotson Associates Yearbook (2002).  The data are generated by 10,000 random 

drawings from the sample set of integers, in effect generating a bootstrapped sample of 

10,000 from the original 76 one period returns. Following this, 2,5, and 10 year holding 

period returns are computed. So one now has 10,000 one year returns, together with 

5000, two year, 2000 five year and 1000 ten year. Computations were executed with 

Visual Fortran 6, on an ASUS laptop, and proved undemanding in terms of execution 

time. The same computations could alternatively have been done with a basic Excel 

spreadsheet - and a lot of scrolling. 

Figure 4 summarises the respective one period descriptive statistics for each of the 

two series in isolation, i.e. the marginal data densities. The smallcap returns are 

noticeably leptokurtotic relative to the large cap, with both a higher mean and a higher 

variance. The latter underpin the usual strategic recommendation to ‘ride the risk 

premium’ over the longer term by overweighting in smallcap stocks, relative to a broad 

value weighted market index.  It is assumed in doing so that one can overcome the 

survival problem, wherein smallcap stocks carry a higher risk premium simply because of 

the higher risk of bankruptcy. However, there are other indications that might give the 

manager pause, such as the differential kurtosis, and how all such descriptive statistics 

might be affected by a nominated holding period. 
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Figure 4: Descriptive statistics, marginal distributions

Figure 5 depicts on the same diagram the OMD schedules, smallcap against large 

cap, for all holding periods. As one would expect from the concavity properties of 
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holding period returns, the plots for longer holding periods lie asymptotically below those 

for the one period returns. A risk neutral investor would therefore unequivocally prefer 

the one period returns. However there is a point at which the longer term holding periods 

cross over the shorter.  Mildly risk averse investors might therefore derive greater 

investor surplus from a ten year holding period. On the other hand, very risk averse 

investors should not consider adding smallcap stocks at all; for any holding period, the 

OMD turns negative. 

Figure 5:  OMD schedules, small cap against large cap.

As mentioned in section II, we can calibrate the risk dimension by imagining a 

market equilibrium from the same set of data, and locating the value of P=P*m at which 
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the OMD of excess market returns crosses the horizontal axis. For this purpose we used 

the annual equity premium returns from the Ibbotson yearbook. Figure 6 illustrates. 

Figure 6:  Locating the market P*m

The indicative market P*m is just over 20%, and this is located as the arrowhead 

in the previous figure 5. At this point the OMD schedules for all holding periods are 

roughly the same. An implication would be that if the investor is no more or no less risk 

averse than the market as a whole, then the holding period is not of concern. All yield  the 

same result, namely that smallcap add significant1 value to a base portfolio of largecap. 

On the other hand, if the investor is just a little more risk averse than the market, then the 

surplus from longer holding periods is greater. If the investor is markedly more risk 

averse, then he or she should not hold smallcap stocks at all. Indeed, such an investor 

might well be better off with a portfolio of T bills or high grade commercial bills.

1 Formal  significance bands  for OMD schedules can be found in Bowden (2000), but  have not been 
inserted here. For 10,000 observations at P=20, the bands would be extremely narrow. 
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IV Concluding remarks
The conclusions may be summarised as follows:

(a) Methodological. Ordered mean difference techniques deal with pairwise 

relationships, and are based on underlying portfolio considerations.  As such, they 

are naturally adapted to issues of value added in an investment context. They can 

be demanding in terms of data requirements where extended holding periods are 

to be evaluated. However, this problem can be partly solved by bootstrapping on 

the original one period observation set. This can be expected to work whenever 

there are enough observations to make a one period OMD analysis sensible, say ≥

50, on a monthly or annual basis. A broad enough range will then exist such that 

bootstrapping will little distort the true underlying joint distribution function. 

(b) Target holding periods do matter. They affect the joint distribution of measured 

returns, extending therefore to their risk~return tradeoffs. Longer holding periods 

should not necessarily be regarded as an analgesic against risk. An investor who 

proposes to hold for ten years has a risk averse utility function defined over the 

ten year holding period, just as does an investor with a one year rebalancing 

period. Our results indicate that mildly risk averse investors, relative to the market 

as a whole, can indeed do better with longer term horizons, but this disappears 

when the degree of risk aversion rises, to the extent that smallcap stocks should be 

avoided. Smallcap stocks are at their very best with less risk averse investors, and 

in this case the horizon should be short.
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