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Abstract

This paper is an extension of Ahn, Lee and Schmidt (2001) to allparametric
function for time-varying coefficients of the individual effects. It provides a fixed-
effect treatment of models like those proposed by Kumbhakar (1990) and Battese and
Coelli (1992). We present a number of GMM estimators based on different sets of
assumptions. Least squares has unusual properties: its consistency requires white
noise errors, and given white noise errors it is less efficient than a GMM estimator. We
apply this model to the measurement of the cost efficiency of Spanish savings banks.



1 Introduction
In this paper we consider the model:
ylt:Xlltﬁ—i-le’}/—i—)\t(e)Ckl—i—EZt, Zzl,,N,tzl,,T (11)

We treatl” as fixed, so that “asymptotic” means &s— oo. The distinctive feature of the model

is the interaction between the time-varying parametric functigfl) and the individual effecty;.

We consider the case that theare “fixed effects,” as will be discussed in more detail below. In
this case estimation may be non-trivial due to the “incidental parameters problem” that the number
of a’s grows with sample size; see, for exampie, Chamberjain (1980).

Models of this form have been proposed and used in the literature on frontier productions func-
tions (measurement of the efficiency of production). For exampie, Kumbhakar (1990) proposed
the case thak;(0) = [1 + exp(61t + 0-t?)]~!, and[Battese and Coelli (1992) proposed the case
that),(f) = exp (— 6(t — T))). Both of these papers considered random effects models in which
«; Is independent oKX andZ. In fact, both of these papers proposed specific (truncated normal)
distributions for they;, with estimation by maximum likelihood. The aim of the present paper is
to provide a fixed-effects treatment of models of this type.

There is also a literature on the case thatththemselves are treated as parameters. That is,

the model becomes:
vie =X, B+ Zv+ o +ey, i=1,....N, t=1,...,T. (1.2)

This corresponds to using a set of dummy variables for time rather than a parametric function
A:(6), and now\,«; is just the product of fixed time and individual effects. This model has been
considered by Kiefer[(1980), Hoitz-Eakin, Newey and Rbsen (1988), [Lee](1991), Chamberlain
(1992), Lee and Schmidt (1993) and Ahn, Lee and Schrnidt (2001), among others. Lee (1991) and
Lee and Schmidt (1993) have applied this model to the frontier production function problem, in
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order to avoid having to assume a specific parametric funcighy. Another motivation for the
model is that a fixed-effects version allows one to control for unobservables (e.g. macro events)
that are the same for each individual, but to which different individuals may react differently.

Ahn, Lee and Schmidt (2001) establish some interesting results for the estimation of model
(T2). A generalized method of moments (GMM) estimator of the type considelied by Holtz-Eakin,
Newey and Roser (1988) is consistent given exogeneity assumptions on the regkeasors.

Least squares applied to{[1.2), treating theas fixed parameters, is consistent provided that the
regressors are strictly exogenous and that the etfoase white noise. The requirement of white
noise errors for consistency of least squares is unusual, and is a reflection of the incidental param-
eters problem. Furthermore, if the errors are white noise, then a GMM estimator that incorporates
the white noise assumption dominates least squares, in the sense of being asymptotically more ef-
ficient. This is also a somewhat unusual result, since in the usual linear model with normal errors,
the moment conditions implied by the white noise assumption would not add to the efficiency of
estimation.

The results of Ahn, Lee and Schmidt apply only to the case thaktlaee unrestricted, and
therefore do not apply to the modgl{1.1). However, in this paper we show that essentially the same
results do hold for the mod€l{1.1). This enables us to use a parametric fungtiopand to test
the validity of this assumption, while maintaining only weak assumptions on;th€his may be
very useful, especially in the frontier production function setting. Applications using unrestricted
A+ have yielded temporal patterns of efficiency that seem unreasonably variable and in need of
smoothing, which a parametric function can accomplish.

The plan of the paper is as follows. Sectjdn 2 restates the model and lists our assumptions.
Section[B considers GMM estimation under basic exogeneity assumptions, while $gction 4 con-
siders GMM when we add the conditions implied by white noise errors. Sdgtion 5 considers least

squares estimation and the sense in which itis dominated by GMM. In Sgction 6, this methodology



is applied to the measurement of cost efficiency of Spanish banks. Finally, Séction 7 contains some

concluding remarks.

2 The Model and Assumptions

The model is given in equation (1.1) above. We can rewrite it in matrix form, as follows. Let
vi = (Yir, - vir), Xi = (Xa, ..., Xar)', ande; = (€51, ..., €7). Thusy; isT x 1, X;isT x K,
6IisT x1,3is K x 1,visg x 1, anda; is a scalar. (In this paper, all the vectors are column
vectors, and the data matrices are “vertically tall.”) Define a funclior® — R”, whereO is a
compact subset @&?, such that\(6) = (A\(0),..., Ar(0))". Note thatl is fixed.

In matrix form, our model is:

A(#) must be normalized in some way such)d8)’'A\(6) = 1 or A\;(f) = 1, to rule out trivial
failure of identification arising from\(#) = 0 or scalar multiplications oA(#). Here we choose
the normalization\; (0) = 1.

We assume that < 7'— 1. Whenp < T — 1, our parametric specification for0) restricts
the temporal pattern of. However, this model also includes the model of Ahn, Lee and Schmidt
(2001) as the special case correspondingtoT —1 andA,(0) = 0,,t = 2,...,T (with A\, (8) = 1
as above).

Let W, = (X/},..., X/, Z!). We make the following “orthogonality” and “covariance” as-

sumptions.
Assumption 1 (Orthogonality). E(W/, ;) e; = 0.

Assumption 2 (Covariance). E¢;e; = o2 I7.



Assumptiorf]l says tha, is uncorrelated witl;, Z;, and X1, . . ., X;7, and therefore contains
an assumption of strict exogeneity of the regressors. Note that it does not restrict the correlation
betweeny; and[Z;, X;1, ..., X;r|, so that we are in the fixed-effects framework. Assumpfjon 2
asserts that the errors are white noise.

We also assume the following regularity conditions.
Assumption 3 (Regularity).
(i) (W!, a4, €.) is independently and identically distributed over
(ii) €; has finite fourth moment, anflde; = 0;
(iii) (W/, a;)" has finite nonsingular second moment matrix;
(iv) EW;(Z!, o) is of full column rank;
(V) A(#) is twice continuously differentiable th

The first four of these conditions correspond to assumptions (BA.1)—(BA/4) of Ahn, Lee and
Schmidt [2001), who give some explanation. We note that condiiigiréquires that the effect
o; be correlated with some variable ;. This condition is needed for identification under the

Orthogonality Assumption only. Conditign)(is new, and self-explanatory.

3 GMM under the Orthogonality Assumption

Let uy = uu(B,7) = vie — XyB — Zjy, andu; = ui(B,7) = (Ui, ..., wr)'. Sinceuy, =
Ae(0)a; + €, it follows thatu;, — A\ (0)u;; = € — M\i(0)€;1, which does not depend an. This
is a sort of generalized within transformation to remove the individual effects. The Orthogonality

Assumption (Assumptiofj 1) then implies the following moment conditions:

EWiluie(B,7) — M(Q)un (B8,7)] =0, t =2,...,T. (3.1)
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These moment conditions can be written in matrix form, as follows. Défifte = [—\.(0),
Ir—4]', whereX, = (Xq,..., Ar). The generalized within transformation corresponds to multipli-

cation byG(#)’, and the moment conditiong (B.1) can equivalently be written as follows:

Ebii(8,7,0) = E[G(0)wi(8,v) @ W] = 0. (3.2)

(This corresponds to equation (7) [of Ahn, Lee and Schnidt (2001), but looks slightly different
because oul; is a column vector whereas theirs is a row vector.) Thisisag@tef1)(TK + g)
moment conditions.

Some further analysis is nheeded to establish that (3.2) corddin$ the moment conditions
implied by the Orthogonality Assumption. LBy = EW, W/, Xy, = EW;a;, ando? = Ea?.
Given the model[{Z]1), the Orthogonality Assumption holds if and only if the following moment
conditions hold:

Elui(8,7) @ W; = A(0) ® Ewa] = 0. (3.3)

We could use these moment conditions as the basis for GMM estimation. Alternatively, we can
remove the parameteérh,,, by applying a nonsingular linear transformation[tc](3.3) in such a way
that the transformed set of moment conditions is separated into two subsets, where the first subset
does not contairty,,, and the second subset is exactly identifiedXe¥,, given(3,v,6). The

following transformation accomplishes this.

G' ® 1y
E [u; @W; =A@ Zwa] =0 (3.4)
N ® I
whered = T'K + g for notational simplicity; similarly&, A andu; are shortened expressions for

G(0), A(0) andu;(3,~). This is a nonsingular transformation, sing&, \) is nonsingular, and

therefore GMM based on (3.4) is asymptotically equivalent to GMM baseddn (3.3). Now split



(B:3) into its two parts:

E(G'u; @ Wi) =0 (3.5)

E(/\/UZ)VVZ - (/\/A)Ewa =0. (36)

Here (3.6) is exactly identified fat,y, ., givens, v andd, in the sense that the number of moment
conditions in [316) is the same as the dimensioR gf,. Also Xy, does not appear ifi(3.5). It fol-
lows (e.g.]Ahn and Schmijdt (1995), Theorem 1) that the GMM estimat@spandd from (35)
alone are the same as the GMM estimates,of andd if we use both[(3]5) and(3.6), and estimate
the full set of parameters’, v, 0, Yw.). But (3:5) is the same a5 (B.2), which establishes fhat (3.2)
contains all the useful information aba@ity andé implied by the Orthogonality Assumption.
Letby(6,7,0) = N~V bii(3,7,6). Then the optimal GMM estimato#, 4, andd based

on the Orthogonality Assumption solves the problem
min Nbi(8,7,0)' Vi b1(8,7,0) (3.7)

whereV;; = Ebyb), evaluated at the true parameters. As usligl,can be replaced by any

consistent estimate. A standard estimate would be

N
Vir = 5 D bu3,7, 0)bus 5.7, 0 (3.8)
=1

where((3, 7, 0) is an initial consistent estimate 68, ~, #) such as GMM using identity weighting
matrix. Under certain regularity conditions (Harnseén (1982), Assumption 3) the resulting GMM
estimator isy’ N-consistent and asymptotically normal.

To express the asymptotic variance of the GMM estimator analytically, we need a little more
notation. LetSx be theT'(TK + g) x K selection matrix such that; = (I ® W;)'Sx, and let

Sy be theT (T K + g) x g selection matrix such that-Z! = (I ® W;)'S,. Sx andSy have the



following forms:

SX:(IKO OOKXQO]K OOKXg 00 --- IKOKXg)/ (398.)

SZ = (OQXK tt Og><K Ig e EOg><K te OgXK [g)/ = 1T ® (OgXTK7[g), (39b)

whereO’s without dimension subscript stand X . . DefineA, = 0A.(6y)/00’. The variance
of the asymptotic distribution of the GMM estimates&f~ andé equals(B;V;;'B;)~* where

Vi1 = Eby;b),; as above and
By = —[(G @ Zww)'Sx, (G @ Zww) Sz, A @ Bwal- (3.10)

This result can be obtained either by direct calculation, or by applying the chain riledalcu-
lated in[Ahn, Lee and Schmidt (2001, p. 251). This asymptotic variance form is obtained from the
Orthogonality Assumption only and does not need any further assumption.

A consistent estimate db, can be obtained as
N
Bi= =3 Bu Bu=—(G'X,CaZinh) 2 W, (3.11)
1 N - 1iy 13 9 T4y Wqlddx i .

Here By, is the matrix of first derivatives df;; with respect to the parametes, v, 0), evaluated
at the GMM estimates.

A practical problem with this GMM procedure is that it is based on a rather large set of mo-
ment conditions. For example, in our empirical analysiswill reflect 846 moment conditions.
One might want to reduce this number by considering only a subset of the moment conditions.
One possibility is to replace the instrumemts in (3:2) by P;, whereP, is a subset ofV;. This
possibility is discussed in Appendix A.

Alternatively, we can reduce the number of moment conditions considerably without sacrificing
efficiency of estimation if we make the following assumption of no conditional heteroskedasticity
(NCH) of ¢;:

E(eie;|W;) = Bee. (NCH)

8



Under the NCH assumption,
Vin = E[G(0h)' eie;G (0h) @ WiW]] = G(00)' LG (00) @ Sww - (3.12)

Using this result, the set of moment conditions](3.2) can be converted intaaatly identified
set of moment conditions that yield an asymptotically equivalent GMM estimate. Specifically, we
can replace the moment conditiofi$,; = 0 by the moment conditiong B;V;;'b;; = 0. Routine

calculation using the forms d8;, V;; andb,; yields the explicit expression:

EX!G(G'S..G) 'Gu; = 0 (3.13a)
EZ1LG(G'Y.G) Gy = 0 (3.13b)
EXy S Wi - AL(G'2G) P Glu; = 0. (3.13c)

These three sets of moment conditions respectively correspond to (21a), (21b), and (21c) of Ahn,
Lee and Schmid{ (2001, p. 229). The point of this simplification is that we have drastically reduced
the set of moment conditions: there &/e— 1)(7' K + g) moment conditions if;; (equation [312))

but only K + g + p moment conditions in{3:13).

We note that this is a stronger result than the corresponding result (Proposition 1, p. 229) of
Ahn, Lee and Schmidi(2001). In order to reach essentially the same conclusion on the reduction of
the number of moment conditions, they impose the assumption;ttsindependent of IV, «;),

a much stronger assumption than our NCH assumption.

In order to make this procedure operational, we need to replace the nuisance parameters
Ywe andXyy by consistent estimates, based on some initial consistent GMM estimates of
andd. Sy can be consistently estimated By, = N~ Zf;l W;W!. Also, for any sequence

(BN, vn) that converges in probability @, 7o), we have

1 N

N Z ui(Bn, YN )wi (B, ) = Bee + a2 A(00) (o). (3.14)
i=1



SinceG(0)'\(A) = 0, for any initial consistent estimatg, 7, 6),

(N Zuzﬁ uzﬁi)> G(6) (3.15)

will consistently estimaté/(0,)'>..G(6y). Thus it is easy to construct a consistent estimate pf
as given in[[3:12).
In order to consistently estimate the asymptotic variance under NCH, we need to estimate
Sww, Lwa, andG'E. G, Estimation ofXyyw andG'E .G was discussed above. We can obtain
an estimate oEy,, from the GMM problem[(314). A direct algebraic calculation gives us that
e = — i —“ - ii WiNE.G(GE.G) G’ﬁi} /(XX (3.16)
YA N4

WOL_N

whered; = u;(3,4), A = M), G = G(6), and VLG is a consistent estimate &f%,.G, one
possibility of which isN =" > NG

It is important to observe that the moment conditions {3.13) are linear combinations of the
moment condition$; in (3:2), and therefore they are valid moment conditions under the Orthog-
onality Assumption only. That is, these moment conditions hold and can be used as a valid basis
of GMM estimation so long as the Orthogonality Assumption holds, whether or not the NCH as-
sumption holds. The set of moment conditiong’in|(3.2) may be very large, and so the simplification
involved in using the exactly identified (minimal size) set of moment conditipns](3.13) may be
useful in practice. The only point of the NCH assumption is that, if it holds, the condifions (3.13)
are theoptimal exactly identified set of moment conditions, so that GMM using {3.13) is just as
efficient as GMM using the full set of moment conditions given[in](3.2). If the NCH condition
does not hold, we can still base GMM dn{3.13), but there is a loss of efficiency relative to using
the full set [3R).

We have already discussed how to estimate the variance matrix of the GMM estimator under

the NCH assumption. However, because the moment condifion$ (3.13) are still valid without the
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NCH assumption, it is useful to have an estimate of the variance of the GMM estimate that is
consistent whether or not the NCH condition holds. Standard methods starting with the moment

conditions [3-13) should yield such an estimate. Some details are given in Appendix B.

4 GMM under the Orthogonality and Covariance Assumptions

In this section we continue to maintain the Orthogonality Assumption (Assuniption 1), but now we
add the Covariance Assumption (Assumpfibn 2), which assert&thét= o21;.

Clearly the Covariance Assumption holds if and only if
E(uiu}) = a2 N + o21r. 4.1)

Condition (4-11) containg'(T" + 1) /2 distinct moment conditions. It also contains the two nuisance
parameters? ando?, and so it should impl{’(7"+1) /2 — 2 moment conditions for the estimation
of 3, v andf. These are in addition to the moment conditidns] (3.2) implied by the Orthogonality
Assumption.

To write these moment conditions explicitly, we need to define some notation.HLet
diag(Hs, Hs, ..., Hr), with H; equal to thel’ x (7" — t) matrix of the lastl’ — ¢ columns (the
(t + 1)th through7'th columns) ofl; for t < T', and with Hy equal to &’ x (7" — 2) matrix of
the second througfl” — 1)-th columns ofl; f] Then we can write the distinct moment conditions

implied by the Orthogonality and Covariance Assumptions as follows:

Ny,
Eby; = E[G'u;© 5] =0, (4.2¢)

'For any matrixB with T rows, H; B selects the last’ — ¢ rows of B for t < T, andH. B selects the
second througliI” — 1)-th rows of B. For any matrixB with 7" columns,B H, selects the lasf’ — ¢ columns
of B fort < T, andBHy selects the second througli — 1)-th columns ofB.
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(In these expressions&; is short forG (), A is short forA\(#), andu; is short foru;(3,v).)

The moment conditions;; in (A.Z&) are exactly the same as those[in] (3.2) of the previous
section, and follow from the Orthogonality Assumption.

The moment conditions,; in (A.2b) correspond to those in equation (12) of Ahn, Lee and
Schmidt (2001). Note that it is not the case thq(G'u; ® u;) = 0. Rather, looking at a typical
element of this product, we have(u;; — \;u; )u;s, which equals zero fos # ¢t ands # 1. The
selection matrixH’ picks out the logically distinct products of expectation zero, the number of
which equalsl'(T" — 1)/2 — 1. The selection matri¥/ plays the same role as the definition of the
matricedU;, plays inf[Ahn, Lee and Schmidt (2001). We note that the moment conditjofadlow
from the non-autocorrelation of thg; homoskedasticity would not be needed.

The (T — 1) moment conditions ifhs; in (B-2¢) correspond to those in equation (13) of Ahn,
Lee and Schmid{ (2001). They assert that,tfer 2, ..., T, E(uy; — Mua ) (3., Astss) = 0, and
their validity depends on both the non-autocorrelation and the homoskedasticityegf the

Some further analysis may be useful to establish fhaf](4.2b)and (4.2c) represent all of the useful
implications of the Covariance Assumption. We begin with the implicafion (4.1) of the Covariance

Assumption, which we rewrite as
E(u; @ u;) = 02(A® ) + ovecly. (4.3)

Now, letS be theT? x T(T + 1)/2 selection matrix such that, for&a x 1 vectoru, vech(uu’) =

S’ (v ® u), where “vech” is the vector of distinct elements. Then
ES' (u®u) = S'[c2(A® \) + o?vecly] (4.4)

contains the distinct moment conditions.
Now we transform the moment conditions (4.4) by multiplying them by a nonsingular matrix,

in such a way that§ the first7'(T" + 1) /2 — 2 transformed moment conditions are those given in
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(B2Zb) and [(4.2¢); and4) the last two moment conditions are exactly identified for the nuisance
parameterso? and o?), given the other parameters. This will imply that the last two moment

conditions are redundant for the estimationsofy and#, and thus thati{4.2b) an@{4l.2c) contain

all of the useful information implied by the Covariance Assumption for estimatigh efandé.
To exhibit the transformation, |&t, be the(t — 1)th column ofG; let e} equal the/th column

of Ir_, ander equal the last column df-; and define
(H") = [=ArHy, €ler, ..., ep_sep, Or_axr]. (4.5)
(Hr was defined above.) Then
Gy ® Hy, ..., Gp_1 @ Hy_y, HY'S - S (u; @ w;) = H(G' @ Ir)(u; @ uy), (4.6)

which is the same as ity; in (B2). Also, let); = Ir — AN andJ;/, t = 2,...,T, is equal to
diag{Oyxs, MeI7_1} plus @T x T matrix with zero elements except for the row which is\'.
Then
HiJS, o JRS - S (u @ u) = (N @ G (w @ wy), (4.7)

which is equal tds; in (E2¢).

The point of the above argument is that the transformations precéding® ;) in (8-6) and
(B1), stacked vertically, construc{&(T + 1)/2 — 2] x T'(T + 1)/2 matrix of full row rank, and
yield the moment conditions; andbs;. The remaining two moment conditions that determine the

nuisance parameters are

u? o2 + o2
E = (4.8)
Ui2Uq1 AoO Z

and must be linearly independent of the others (since they invgvando? while the others do
not).
The set of moment condition§ {#.2) may be large, since the number of moment conditions

in (B:Z&4) may be large. As in the previous section, we can reduce this number by using only a
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subsetP,; of the instruments$V;. This is discussed in Appendix A. Alternatively, we can simplify
things with the following “conditional independence of the moments up to fourth order” (CIM4)

assumption:

Conditional on(W;, «;), €;; is independent over= 1,2, ..., 7, with mean
zero, and with second, third and fourth moments that do not depend on (CIM4)
(W, a;) or ont.

This is a strong assumption; it implies the Orthogonality Assumption, the Covariance Assumption,
the NCH assumption, and more. In Appendix C, we calculate the asymptotic variance matrix of the
GMM estimate based ol {4.2) under the assumpfion (CIM4). More fundamentally, if assumption
(C1M3) is true, we can reduce the number of moment conditions without reducing efficiency of

estimation. Specifically, lek = 0A(6,)/00 and note that\, = G'A. Given assumptior{ {CTM4),

the moment conditiong(3113), which are asymptotically equivalentiql (4.2a), can be simplified as

follows:
EX[Pou; =0 (4.9a)
EZPeu; =0 (4.9b)
EXyoSwwWi - N Pou; = 0. (4.9¢)

That is, in place of the large set of moment conditigns {4.2a),1(4.2b)[@nd (4.2c), we can use the
reduced set of moment conditions consisting of| (4[9), (4.2b) (4.2¢c).

We can note that, when,. = 21, the moment condition$(3]13) are the samdas (4.9). This is
not surprising since, if the CIM4 assumption is true, so is the NCH assumption.

A final simplification arises if, conditional ofiV;, «;), €;; is i.i.d. normal. In this case[{412b)
can be shown to be redundant given (#.2a) andi(4.2c). (See Proposition 4 of Ahn, Lee and Schmidt
(2001, p. 231).) Hence, in that case, the GMM estimator using the moment conditidns (4.9) and
(B2¢) is efficient.

We note that the simplifications that arise here, given the CIM4 assumption or the i.i.d. normal

assumption, are similar in spirit to those that arose in Se¢tion 3 under the NCH assumption. For

14



example, the set of moment conditions consisting of (4[9),1(4.2b)[@nd (4.2c) is much smaller than
the full set [4:R), and this simplified set of moment conditions may be useful in practice, whether
or not the CIM4 assumption holds. The point of the CIM4 assumption is simply that it identifies
the circumstances under which we can use the reduced set of moment conditions without a loss
of efficiency. If the CIM4 assumption does not hold, the GMM estimator using the reduced set of
moment conditions is still consistent (so long as the Orthogonality and Covariance Assumptions
hold), but it would be less efficient than the GMM estimator using the full set of moment conditions
(#2). Similar comments apply to the simplification that arises from dropping (4.2b): we can always
do this, but it causes a loss of efficiency if the i.i.d. normal assumption does not hold.

In Appendix B we show how to calculate an estimate of the variance of these GMM estimates

that is consistent whether or not the CIM4 or i.i.d. normal assumptions hold.

5 Least Squares

In this section we consider the concentrated least squares (CLS) estimation of the model. We treat
the o; as parameters to be estimated, so this is a true “fixed effects” treatment. We can consider

the following least squares problem:

N
5 emin NN i — XiB = 10 Zly — MO) ] [yi — XiB — 1o Ziy — M0) ). (5.1)
v,0,01,..., QN i—1
Solving foraq, . .., ay first, we get
ai(B,7,0) = MO AO) T A0) wi(B,7) i=1,...,N. (5.2)

whereu;(5,v) = y; — X — 1rZ!~ as before. Then the estima@gs, LS andéLS minimizing

(51) are equal to the minimizers of teeam of the squared concentrated residuals

N

N
C(B,7,0) = N> Ci(8,7,0) = N7 ui(B,7) Myoyui(53,7) (5.3)
=1

i=1
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which is obtained by replacing; in (5:1) with (5.2). From the name di(5.3), we calls, s and
6,5 theconcentrated least squares estimator
SinceG’'\ = 0, we haveM,G = G and therefore\ly, = Py = G(G'G)~'G". So the first order

conditions of the CLS estimation become

oC /0B X! Pqu;
N
_ 2
i=1
aC /06 N Pousul A\(N )1

Interpreting [54) as sample moment conditions, we can construct the corresponding (exactly iden-

tified) implicit population moment conditions:

EX|Pgu; =0 (5.5a)
EN Poual (V)™ = 0. (5.5¢)

That is, the CLS estimator is asymptotically equivalent to the GMM estimator bas¢dion (5.5).

The moment conditiong{5J5a) and (3.5b) are satisfied under the Orthogonality Assumption.
However, this is not true of (5.b¢). The moment conditigns(5.5¢) require the Covariance Assump-
tion to be valid (unless we make very specific and unusual assumptions about the foemaits
relationship to the error variance matrix). Thus, the consistency of the CLS estimator réxptivres
the Orthogonality Assumptioand the Covariance Assumption. This is a rather striking result,
since the consistency of least squares does not usually require restrictions on the second moments
of the errors, and is a reflection of the incidental parameters problem.

We would generally believe that least squares should be efficient when the errors are i.i.d.
normal. However, similarly to the result in”/Ahn, Lee and Schmidt (2001), this is not true in the
present case. The efficient GMM estimator under the Orthogonality and Covariance Assumptions

uses the moment conditioris{4.2), while the CLS estimator uses only a subset of these. This can be
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seen most explicitly in the case that, conditional(&i, «;), thee;, are i.i.d. normal. Ther{{4.2b)
is redundant and_(42a) can be replaced[by (4.9), so that the efficient GMM estimator is based on

(#394d), [49b),[(4.9c) an@{4]2c). The CLS estimator is basedon (5.5a), which is the same as (4.9a);

(6.5b), which is the same ag (4.9b); and (b.5c), which is a subsgt of {4 Re)the inefficiency
of CLS lies in its failure to use the moment conditions{4.9c) and from its failure to use all of the
moment conditions iN{4.2c). The latter failure did not arise inthe Ahn, Lee and Schmidi (2001)
analysis (see footnote 2).

In Appendix D, we calculate the asymptotic variance matrix of the CLS estimator, under the
“conditional independence of the moments up to fourth order” (CIM4) assumption of Sgction 4.
Alternatively, along the lines of Appendix B, we could calculate our estimate of the asymptotic

variance matrix that does not depend on the validity of the CIM4 assumption.

6 Empirical Application

This section includes an application of the estimators suggested in previous sections to the mea-
surement of cost efficiency. The application uses panel data from Spanish savings banks covering
the period 1992-1998. In order to allow for changes in cost efficiency over time, the individual
effects are modeled in a parametric form as the “inverse” of the exponential time-varying function

proposed by Battese and Caelii (1992) in a MLE framework.

2The moment conditiong(5J5¢) are equivalenftd’ G(G'G) ~1bs; = 0. When the number of parameters
in @ is less tharT" — 1, the transformation’ G(G'G) ! loses information. This will be so in most parametric
models forA\(#), though it is not true in the model 6f Ahn, Lee and Schmidt (2001).
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6.1 The Cost Frontier Model

The technology of banks is modeled using the following translog cost function:

In Cyy = In C*(gir, wir, 7y, B) + avir + €it

m 1 m
= (7 + DBy it 5 Y Byye, (W05ie)* + Y By 10 e I G
7j=1 7=1 i<k
n L (6.1)
+ Z ﬁwj Inwj; + 5 Z 5ijj (In wjit)Q + Z @ujwk In wj In wy
Jj=1 Jj=1

j<k

+ Z Z Ba;w, In qji In wkit) + exp (9(t — 1))0@ + €

j=1 k=1

whereC;; is observed total cost;; is the jth output,wy;, is thekth input price,3 is a vector of
parameters to be estimatedis a scalar to be estimated, angis the error term. The individual
effects are modeled as the product of an exponential time-varying fungtion= exp (6(¢t — 1))
and a time-invariant firm effect.

Our GMM estimators effectively treat tlg as fixed. We can define the time-varying individual
effects (intercepts) as;; = a;\(0). We wish to decompose the time-varying intercepts into a

frontier intercept which varies over time,) and a non-negative inefficiency termy,§. That is:
iy = M(0)ay; = o + vy, vy > 0. (6.2)
Following [Cornwell, Schmidt and Sickies (1990) the frontier intercept can be estimated as:
Gy = min(Gie) = A (0) - min(é;) (6.3)
and the inefficiency term as:

Bie = Me(0)[6; — min(6)] = \e(0)0; (6.4)

Since the dependent variable is expressed in natural logs, cost efficiency indexes can be calculated

from (6-4) as:
CEy = exp (= M(6)[d; — min(d)]) (6.5)

1
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It is easy to see from expressions[6.4) dnd (6.5) that cost efficiency compares the performance
(individual effect) of a particular firm with a firm located on the frontier (i.e. with the minimum
effect). Since cost efficiency is a relative concept, the average efficiency index is related to the

varianceo?: the higher the variance of the individual effects, the smaller the average efficiency.

6.2 Data

The application uses yearly data from Spanish savings banks. The number of banks has decreased
over the last ten or fifteen years due to mergers and acquisitions. These mergers took place mainly
in the early 1990s. In order to work with a balanced panel, we use data from 50 savings banks over
the period 1992-98. Thus = 50 andT = 7.

In Spain there are private banks as well as savings banks. We did not include private banks in
our sample because private banks and savings banks are rather different. Savings banks concentrate
on retail banking, providing checking, savings accounts and loan service to individuals (especially
mortgage loans), whereas private banks are more involved in commercial and industrial loans.
Another difference is that savings banks are more specialized than private banks in long-term loans,
which do not require continuous monitoring. Since the two groups are likely to have different cost
structures and have been regulated in different ways, we did not want to pool them. We tried
to analyze private banks separately, but we were not very successful, and we do not report those
results here.

The variables used in the analysis are defined as follows. We follow the majority of the liter-
ature and use the intermediation approach (proposed by Sealey and|Lindley, 1977) which treats
deposits as inputs and loans as outputs. We include three types of outputs and three types of
inputs. The outputs are: Loans to banks, and other profitable aggetso@ans to firms and house-
holds (,); and noninterest incomes). Using noninterest income goes beyond the intermediation

approach as commonly modeled. We include it in an attempt to capture off-balance-sheet activi-
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ties such as securitization, brokerage services, and management of financial assets for individual
customers and mutual funds. This method of measuring nontraditional banking activities is not
fully satisfactory. For example, we cannot distinguish between variation due to changes in volume
and variation due to changes in price, and noninterest income is partly generated from traditional
activities such as service charges on deposits or credits rather than from nontraditional activities.

The inputs are: Borrowed money, including demand, time and saving deposits, deposits from
non-banks, securities sold under agreements to repurchase, and other borrowedw)phakdr,
measured by total number of employeeg){ and Physical Capital, measured by the value of fixed
assets in the balance sheet)( All of the input prices,w; (i = 1,2,3) were calculated in a
straightforward way by dividing nominal expenses by input quantities. Accordingly, total cost
includes both interest and operating expenses.

We normalize our variables by dividing by the sample geometric mean, so that the first order
coefficients can be interpreted as the elasticities evaluated at that point. Furthermore, the standard
homogeneity of degree one in input prices is imposed by normalizing cost and input prices using
the price of physical capital as a numeraire. Thus in the end we have a translog function of five
variables—three outputs and two normalized input prices. We also have an overall intercept, and
our function)\,(#) hasf as a scalar. So, in terms of our previous notation, we have 50, 7' = 7,

K =20,9 = 1andp = 1. We have a total of 22 parameters (205inl in~, 1 in #), in addition to
the individual effectsy; (: =1, ..., 50).

We note that the intrument vectd¥; defined in Sectiofi] 2 is of dimensidhiK + ¢ = 141,
which is rather large. For some of our methods of estimation we will instead make use of a
reduced instrument sét, of dimension 6, which contains (for baikan intercept, plus the mean

(over time) values of the three outputs and the two normalized input prices.
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6.3 Methods of Estimation

The cost equation is estimated using the GMM estimators of the previous sections. We will use the
following notation to refer to our estimators.

GMM1(W) is the GMM estimator based on the moment conditigns (3.2). This estimator uses
the Orthogonality assumption only. TN in the parentheses indicates that it uses the full instru-
ment sefiV;. There are 846 moment conditions. Singe= 50 < 846, Vi, as given in equation
(B28) is singular—it is of rank 50 but dimension 846. In this case, and in other similar cases below,
we used the Moore-Penrose pseudo-invéﬁeas our weighting matrix. For a justification of this
procedure, see Doran and Schmjdt (2002).

GMM1(P) is the GMM estimator that exploits the same Orthogonality assumption, but uses
only the reduced instrument sgf, that is, the moment conditions (A.1). There are 36 moment
conditions so the estimated weighting matrix is non-singular (which is the point of &#sing

GMM2 refers to the estimator based on the moment conditions| (3.13), which were motivated
by the NCH assumption. However, we evaluate the asymptotic variances without assuming NCH—
see AppendixB. This is an exactly identified problem (number of moment conditions = number of
parameters = 22) so the weighting matrix is irrelevant. We need estimates of the nuisance param-
eters in [3.13c), howeveGMM2(W) will refer to the case that the nuisance parameter estimates
are based on the GMM1(W) results, wheré&ddM2(P) means that the GMM1(P) results were
used.

GMM3(W) is the GMM estimator that is based on the moment conditions (4.2). This estimator
relies on the Orthogonality and Covariance assumptions. The number of moment conditions is
846 + 20 + 6 = 872. Once again we need a generalized inverse.

GMM3(P) uses the reduced instrument gktn (B.2&), and also omits the conditions(4.2b), in

order to avoid having more instruments than banks. The number of moment condiiéAsts=
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42.

GMM4 is the estimator based on the moment conditions (4:9),1(4.2b)[and (4.2c). This set of
moment conditions was motivated by the CIM4 assumption. The number of moment conditions is
22 4+ 20 + 6 = 48. (We evaluate nuisance parameterdin (4.9) using the GMM3(W) results so we
could call our estimato6GMM4(W) .) We evaluate the asymptotic variance without imposing the
CIM4 assumption, as in Appendix B.

GMMS5 is the estimator based on the moment conditi¢pns (4.9) (4.2c). That is, compared
to GMM4 we just drop thé,; condition (4.2Zb). The number of moment conditions is 28. We will
call this estimatoGMM5(W) when the nuisance parameters are evaluated using the GMM3(W)
results, andlsMM5(P) when the nuisance parameters are evaluated using the GMMS3(P) results.

CLS is the concentrated least squares estimator of Segtion 5. Its asymptotic variance is evalu-
ated as in Appendix]D.

In addition, we also consider the following estimators from the existing literature.

WITHIN is the standard within (fixed-effects) estimator that assumes time-invariant efficiency.
See Schmidt and Sickles (1984).

MLE1 is a Battese-Coelli (1992)-type estimator. The model is $fill (6.1) but now we assume
thate,, is i.i.d. N(0,0?) whereasy; is i.i.d. as the truncation oW (0, 02). See Battese and Coglli
(1992) for details of estimation of the inefficiencies.

MLEZ2 is an extension of MLE1, as follows. The model for MLEL1 is not really comparable to
our model for GMM, because the model for MLE1 has a time-invariant frontier. For MLE2 we
assert thaty, = o+ u;, whereu, is truncated normal, but # 0. Now the error is;; + u; exp(6(t —

1)), so that we have a model of Battese-Coelli type, but the regression function (frontier) contains
aexp(f(t — 1)) which is time varying. An empirically relevant obseration is thand~ are only
separately identified wheh= 0.

Comparing estimators, WITHIN can be viewed as a special case of GMM1. GMM1 relies
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on less assumptions than GMM3. The MLE2 results rely on stronger assumptions. In particular
MLE2 makes the “random effects” assumption thats independent of the regressors. Moreover,
the individual effectsy; in the MLE model are also restricted to be i.i.d. half-normal (i.e., to be
positive) andk;; to be i.i.d. normal. The other GMM estimators (GMM2, GMM4, GMM5, CLS)
represent attempts at simplication of GMM1 or GMM3. As noted, MLEL1 is really non-comparable

to the other estimators.

6.4 Empirical Results

The parameter estimates for the cost frontiers are presented in Table 1. All of the output coefficients
are positive, except for one coefficient for GMM1(P), indicating that the estimated cost frontiers
are, at the sample geometric mean, increasing in outputs. The input price elasticities are also
positive at the geometric mean. These results confirm the positive monotonicity of the cost frontiers
with respect to input prices and assure positive input cost-shares. Borrowed Money represents
about 65 percent of banks’ total cost, while Labor represents about 30 percent, and Physical Capital
less than 5 percent.

Returns to scale can be estimated as one minus the scale elasticity; that is, as one minus the sum
of the output cost elasticities. At the sample mean, the scale elasticity and returns to scale are only
a function of the first-order output parameters. The results indicate moderately increasing returns
to scale. However, this differs somewhat over methods of estimation. We can distinguish three
groups of estimators in terms of their estimated returns to scale. For GMM2(P or W), GMM4,
GMM5(P or W), CLS and MLE(1 or 2), this value is positive but less thalt), indicating the
existence of moderate scale economies, as found in many past analyses of Spanish banks. These
scale economies, however, are larger for WITHIN, GMM1(W) and GMM3(W), and they are un-
reasonably large for GMM1(P) and GMM3(P).

Next we consider the levels of cost efficiency implied by these estimates. The cost efficiency
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indexes are obtained using equatipn](6.5), except for the MLE estimators, where we follow Battese
and Coelli [1992), with minor modifications to accomodate the case of a cost frontier instead of a
production frontier.

Table 2 reports the yearly average of the estimated efficiency levels. For GMM4, GMM5(P or
W), CLS and MLE(1 or 2) we obtain a mean efficiency index of approximately 85 or 90 percent.

In these cases the average efficiency levels are similar to those found in other studies using the
same data set (see, for instance, Cuesta and Orea, 2002). However, the scores are slightly lower
for GMM1(W), GMM2(P or W) and GMM3(W), even lower for WITHIN, and ridiculously low

for GMM1(P) and GMMS3(P).

Except for the WITHIN estimator (where time-invariance of efficiency is imposed), the cost
efficiency indexes increase or decrease over time on the basis of the gignfahis parameter
is positive (negative), efficiency decreases (increases) and the differences among firms increase
(decrease) due to the exponential functional form,0). The estimated value is positive in all
cases, and it is statistically different from zero except for GMM2(P or W), GMM1(P), GMM3(P)
and MLE1. For GMM2(P or W), the estimat@ds not small, but its standard error is very large.
Conversely, GMM1(W) and GMM3(W) give relatively small valuesgdbut they are still signifi-
cant because their standard errors are small. Except for MLE1, the estimators that have the smallest
values off) (namely WITHIN, GMM1(P or W) and GMM3(P or W)) are also the ones that have
the lowest efficiency scores.

In Table 3 we show the Spearman rank correlation coefficients between the efficiency levels
estimated using the alternative models. Here the “observations” are the efficiency rankings of the
various banks at a given time periag. (The efficiency levels vary overbut the ranks do not, so
these rank correlations are the sametfer1,2,...,T. The rank correlation coefficients are often
high (in general, oved.8), indicating that choosing a specific estimator is not necessarily a crucial

issue when ranking firms in terms of their efficiency levels. However, WITHIN, GMM1(P) and
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GMM3(P) are outliers, in the sense that their efficiencies do not correlate well with the efficiencies
from the other methods, though they correlate strongly with each other. Recall that these three
methods gave the lowest average efficiencies and also those that varied least over time, so they are
outliers in many senses.

The estimated efficiency scores for the first period are graphed according to bank size in Fig-
ure 1. This figure seems to show a negative correlation between efficiency and size. We can see
that again WITHIN, GMM1(P) and GMMS3(P) are outliers, in that the efficiency levels are lower
and they decrease more markedly with bank size. This is true to a lesser extent for GMM1(W) and
GMM3(W). Even for the other methods, however, the efficiency levels are low for the very largest
banks. This is especially apparent for the five biggest savings banks, which are the result of large
mergers that took place in the early 1990's. Hence, these results support the argument that merged
banks are less efficient than non-merged banks, as found aiso by Cuesta arid Orea (2002).

Having discussed the economic results implied by our estimates, we now turn to a more econo-
metrically oriented discussion. The basic issue is how to choose among these different estimators.
We want to ask whether any of the models appear to be adequate and which seem to be best, in
some sense. These are important and difficult questions in many efficiency estimation exercises,
of course.

We will begin with the estimators that rely on the Orthogonality Assumption only, namely,
GMM1 and GMM2. We can test the validity of the Orthogonality Assumption (and also the cor-
rectness of the regression specification) using the usual GMM overidentification test. A little no-
tation will be useful here. Le¥ (= 50) be the number of observations(= 22) be the number of
parameters, andbe the number of moment conditions (e.g., for GMM1(W3; 846). A standard
GMM result is that the minimized value of the GMM criterion function is asymptotically (for large
N) distributed as chi-squared, with degrees of freedom equal to the degree of overidentificaion.

This degree of overidentification is usually quoted ass, but this may not be appropriate when
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is larger thanV. We will usemin(r, N) — s as our degrees of freedom, sinaén(r, V) is the rank

of the estimated variance matrix of the moment conditions, whose inverse (or generalized inverse)
is used in calculating the criterion function. This distinction matters only wkien r, as is true

for GMM1(W) and GMM3(W). Rejection of the joint hypothesis of correct specification and valid
moment conditions is indicated by a significantly large chi-squared value.

For GMMZ2, the estimation problem is exactly identified so there is no overidentification test.
For GMM1(W), we obtain a criterion function &8.5, which is unremarkable in a chi-squared
distribution with50 — 22 = 28 degrees of freedom. For GMM1(P), the statistieli$7, which
is certainly not significantly large in a chi-squared distribution with— 22 = 14 degrees of
freedom. In fact, the opposite is true: such a small value should arise with a probability of less
than0.01. This does not argue against the validity of the moment conditions but it indicates some
problem, perhaps a failure of asymptotics to be reliable. We conclude that there is no strong
evidence against the validity of the Orthogonality Assumption. However, having said that, we are
not satisfied with the results that come from any of these estimators. The GMM1(P) results are
simply not believable, as discussed above. For GMM1(W), the results are somewhat strange also,
and we do not trust the accuracy of the asymptotic results, given the very large number of moment
conditions. For GMM2(P or W), many of the results seem plausible, but the level of precision is
too low to be acceptable. For example, the standard error for the estimais ofier ten times
larger for GMM2 than for any other method. This may argue against the validity of the NCH
assumption. However, it is also reasonable to wonder whether we might just have the “random
effects” case that the effects are uncorrelated with all of the explanatory variables. In thidsase
not identified under the Orthogonality Assumption only.

Now consider estimators that use the Covariance Assumption in addition to the Orthogonality
Assumption. We can test the hypothesis of the validity of the Covariance Assumption (as well as

the model specification and the Orthogonality Assumption) using the GMM overidentification test
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for any of the GMM estimators that use these assumptions. GMM3(W) has a chi-squared statistic
of 27.7, which is unremarkable in a chi-squared distribution Wildegrees of freedom. GMM3(P)

has a statistic 0f0.2, which is suspiciously small, not large, wi2d degrees of freedom. GMM4

has a statistic 089.4, which is significant at about th@05 level. GMM5(W) has a statistic of

7.98, which is not significant at usual levels. GMM5(P) has a statisti2df, which is significant

at about the).10 level. Thus there is some evidence, but not overwhelmingly strong evidence,
against the Covariance Assumption.

We can also test thiy; moment conditions[{4.2b) separately from themoment conditions
(&2¢). Here we use the general GMM result that, if we move fsamoment conditions tq > s
conditions (and where the smaller set is a subset of the larger set), the difference in the GMM
criterion functions is asymptotically chi-squared with- s degrees of freedom. To test theg
conditions, we compare GMM3(P) to GMM1(P), giving a statistid @22 — 4.47 = 5.75, which
is not significant in a chi-squared witt2 — 36 = 6 degrees of freedom. We can test the
conditions by comparing GMM4 to GMM5(W), in which case the statistigdisg — 8.0 = 31.4,
which is significant at about tHe05 level in the chi-squared distribution wiflg — 8 = 20 degrees
of freedom. Again there is some evidence but not extremely strong evidence against the validity of
the moment conditions implied by the Covariance Assumption.

Among these estimators, we would discard GMM3(P) on the basis of its too-small overidenti-
fication test statistic and its economically unbelievable results, and we would discard GMM3(W)
because we do not trust the validity of the asymptotic results with so many moment conditions.
Among the other estimators (GMM4, GMM5(P or W), and also CLS) there is less basis for choice,
but fortunately it is also the case that the economically interesting results do not depend very much
on which of these estimators one would choose. It is probably fair to say that GMM4 looks better
than GMM5(P or W), since the estimates are quite similar but the level of precision is much better

for GMM4. This argues against the assumption of normality of the ereg)ssince under the
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normality assumption GMM5 should be just as efficient as GMMA4.

Finally, we turn to the MLE estimators. These depend on the Orthogonality and Covariance
assumptions, but also on the “random effects” assumption and on distributional assumptions for
thee¢;; and thea;. We can decisively reject the MLE1 model in favor of the MLE2 model, since
the parameter (see the discussion of MLE2 in Section 6.3) is very significantly different from
zero. The MLEZ2 results are economically not terribly different from those from GMM4 (or CLS
or GMMS5, for that matter), a reassuring result in the sense that those models that we have trouble

choosing between do not give strikingly different answers.

7 Conclusions

In this paper we have considered a panel data model with parametrically time-varying coefficients
on the individual effects. Following Ahn, Lee and Schinidt (2001), we have enumerated the mo-
ment conditions implied by alternative sets of assumptions on the model. We have shown that our
sets of moment conditions capture all of the useful information contained in our assumptions, so
that the corresponding GMM estimators exploit these assumptions efficiently.

We have also considered concentrated least squares estimation. Here the incidental parameters
problem is relevant because we are treating the fixed effects as parameters to be estimated. An
interesting result is that the consistency of the least squares estimator requires both exogeneity
assumptions and the assumption that the errors are white noise. Furthermore, given the white
noise assumption, the least squares estimator is inefficient, because it fails to exploit all of the
moment conditions that are available.

We show how the GMM estimation problem can be simplified under some additional assump-
tions, including the assumption of no conditional heteroskedasticity and a stronger conditional

moment independence assumption. Under these assumptions we also give explicit expressions for
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the variance matrices of the GMM and least squares estimators.

Finally, we apply these GMM estimation methods to the measurement of cost efficiency of
Spanish savings banks over the period 1992-1998. Different estimators give different results,
and some estimators give very poor results. However, some of these estimators can be rejected
on statistical grounds, and others give results that are too ridiculous to be taken seriously. Those
methods that are not rejected on statistical or economic grounds give results that are similar to each
other, and also to the results from previous analyses of these data. We conclude that our GMM

methods can be practically useful.
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APPENDIX

A GMM Using a Subset of the Instruments

First we consider estimation under the orthogonality assumption only. The available moment con-
ditions areby; as given in equatiori(3.2). They assert thHatin uncorrelated with{u;; — Ayu;;) for
t=2,...,T, wherelV; is the “instrument” vector that contains;,, ..., X;r andZ;.

Now we suppose that we use only a subset of the instruments. S3¢,detany subset dfi’;,

and we consider the moment conditions
Eb1,(8,7,0) = E[G(0)uwi(8,7) @ P] =0, (A.1)

which is the same a$(8.2) excefjtreplacedV;. Now let V] = EbLb”, of which a consistent

estimate would be

. 1 . B

VE = <> 08,74, 0)b(5,7, 6 (A.2)
whereg, 7, § is any consistent estimate. LBY” be the matrix of expected derivativesiaf with

respect tg3, v andd. Then a consistent estimate Bf is
N
BF = L Y Bf, Bf=-(G'X;,G'1rZ,inh.) @ P, (A.3)
N — (2 (2 (2

whereG, i;, andA, are evaluated at any consistent estimate. Finally,V;;~'BF)~! is a con-
sistent estimate of the asymptotic variance/a¥ times[(3 — ), (3 —~)’, (8 — 0)]', where these
are the GMM estimates fromh (A.1).

Next we consider estimation under the orthonality and covariance assumptions. In this case
the set of available moment conditions consists,afb,; andbs; as given in equatiori(4.2). Now
suppose that we us® instead ofi¥;, so that the moment conditions we use are expressé¢] by

by; andbs;. Let b’ be the vector that contains;, by; andbs;; let V' be its variance matrix, and?
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be its expected derivative matrix. We can estiniateas in (A:2) above, but with?, replaced by
bP. The expected derivative matri®” has blocksBY’, B, and B; (arranged vertically) B can
be estimated as i (A.3)3; and B; do not depend on whether we uBeor IW;. We can estimate
Bs by

R 1N .

By = ~ ; Bs;, where (A.4a)

By = —H'[(G'X;, G110 Z] i A) @ 1 + Gty @ (X5, 1071, 0)). (A.4b)

Similarly we can estimat&; by

N

. 1 .

Bg - N ZB&', Where (A5a)
=1

By = Xy (G X, G 7 i) — —Ci (X’X- N2 o) (A.5b)

) )\I/\ ~Zu 79 1 * A/)\ 1 (2 1) 7

_ Nibs - ~

Cy = —alA + 229 NA (A.5¢)

AN A

B Variance Expressions That Do Not Depend on NCH or CIM4

First we will show how to calculate an estimate of the asymptotic variance matrix of the GMM es-
timate based o (3.113). The consistency of this estimate does not depend on the NCH assumption.
Our estimate will be of the forriB’V ' B)~!. HereV’ is an estimate of the variance matrix of

the moment conditions, and it can be constructed in the usual way as the average over observations
of the sums of squares and cross-products of the moment conditions. (That is, the calculation is
analogous to[(Al2) above, but with a different set of moment conditions.) Similarly, the estimate
Biis an avarage over observations of matrices of derivatives of the moment conditions with respect
to the parameters. (That is, it is analogous[f0](A.B).1(A.4)[or](A.5) above.) To calculate these

derivatives, we can simply replace the tefitu; in (3-13a), [3-13b) and (3:113c) by the matrix
—[G'X;, G'10Z! ua A (B.1)
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In doing so, we are ignoring the fact that the terms precee@ingdepend ord. But the derivatives
of these terms would be multiplied lay'«;, and the expectation of this product is zero, so they can
be ignored.

Similar considerations apply to the GMM estimation based on (4.9),(4.2byand (4.2c). We can

construct an estimate of its variance matrix that does not depend on the correctness of the CIM4
assumption. The only complicated issue is the estimation of the expected derivative matrices. This
follows from the previous discussion, as follows. (i) For the expected derivative matiix bf (4.9),
replaceG'u; by —(G'X;,G'10Z!, i1 A,) and average over observations. (i) For the expected

derivative matrix of [4.2b) and{4]2c), sée (A.4) apd {A.5) above.

C The Asymptotic Variance of the GMM Estimator Based on
Orthogonality and Covariance Assumptions

Under the Orthogonality and Covariance Assumptions, the moment conditions we haye-are
G'u; @ Wi, byy = H'(G'u; @ u;), andbz; = (M)~ Nu; @ G'u;. In Appendix/A we showed how to
estimate the variance of the GMM estimate based on these moment conditions. In this Appendix,
we give an explicit expression of this variance matrix. The expression is calculated under the CIM4
assumption.

Letd = (¢,v,¢'). Let B; = —E(0b;;/09) for j = 1,2,3, evaluated at the true parameters.
Let Vj, = Eb;b), for j,k = 1,2,3, evaluated at the true parameters. Defige= Fe},/c? and

ke = E(e}, — 30)/o% Letuw = EW;; ® = ®(0) = A\, + diag(Aa, ..., A\r); and @, =

€
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ML+ diag(A3, ..., M%), where), = (\g, ..., A\7)’. After some algebra, we get

Vit = 02(G'G @ Zww) (C.1)
Vis = 02(G'G @ SwaN)H (C.2)
Vis =02[G'G @ Ewa + )\/)\(QD ® puw)] (C.3)
Vay = 02H'[G'G ® (02 AN + o217)|H (C.4)
Vgszafﬂ’ﬂ( 24 Xi) GG+EMQ@} ®>\} (C.5)
1/33203{( X2>G’G+2 A““qﬂr(m) P, } (C.6)
and
By = —[(G @ Zww) Sx, (G IZww)'Sz, A @ Zwa (C.7)
By =—H'(Ir_1 @ M)[(G® Zwa) Sx, (G Bwa) Sz, 02A,] (C.8)
By = —[(G ® Bwa)'Sx, (G ® Vwa)' Sz, 02A.]. (C.9)

With these results, the variance-covariance of the GMM estimator is
- 1 -1

Vir Vi Vi3 By
covV/N (0 —6) = (B, By, BY) | Vi) Vas Vas | | Bo . (C.10)

Vis Vas Va3 | \ B3

The evaluation of these results requires an estimaté ,adn issue not previously discussed. A
very simple estimate of? can be obtained (assuming that the Covariance assumption holds) by

solving (4:8) of the text. This yields
11 &
G2 = Z Uit Uiy (C.11)

for any singlet (e.g.t = 2). A slightly more complicated estimator is as follows. Under the

Covariance assumptiotiy’ Y. .G = 02G'G. Therefore, we can estimaté by

62 = trace(G’/Z?G)/trace(G'é) (C.12)
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whereG'S.G is given in equation{3:15), andace(G'G) = Et o(1+ A2). Next, define® as the

left hand side of equationi{3]14); it is a consistent estimate? 6f + 02\ )\'. So then a consistent

estimate ob? is

= trace(2 — 621,) /trace(AXN) = [trace(S) — T62] /N \. (C.13)

D The asymptotic variance of the CLS estimator

In this Appendix we evaluate the asymptotic variance of the CLS estimator. We obtain an explicit
expression by imposing the CIM4 assumption.

By the standard Taylor series expansion technique, we find that the asymptotic variance will be
equal to4,B; ' Ay where

9*C; oC; 9C;

a5as 2N Bo=E5s 50 (B.1)

AOZE

evaluated at the true parameter. Let us calculate each of them. £6i\(6,) /00" = (0,x1, A,)'.
By is the same as in Ahn, Lee and Schmidt (2001, p. 253).0Let G(G'G)"'® - (G'G) '@,

U, =G(GE'G)19,(G'G)1G"; andp, = Fa;. Then

E%% ggf = 4025 (P ® Sww)Sx (D.2)
s = 10755 (Pe ® Buw)Sz (0.3)
E%%’ ggj — 4028/, [PG ® Twa+ 1 A(\IJ ® uw)] A (D.4)
%c;i gif = 4025, (Ps ® Sww)Sz (D.5)
E%(’;i ‘2% = 4028, [PG ® Tive + M(\If ® MW)] A (D.6)
%% ggj = 402N { ( Ai) Pe+ 2Muaqf + (M) xp} A. (D.7)
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Ag Is obtained from the following.

0*C;

E 5oy
207
5.0°C

E

0700’
0?C;
0000’

= 2[S%(Pe @ Zww)Sx, S%(Pe @ Zww)Sz, S%x(Po ® Zwa)A]
= 2[S/Z(PG ® EWW)SX, SIZ(PG ® EWW)SZ, S/Z(PG ® EWQ)A]

= Q[A,(PG & EQ/VQ)SX, A/(PG X Eé/[/a)SZ; UiA/PgA].
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Table 1. Estimated coefficients.

WITHIN GMM1(W) GMM2(W) GMM3(W) GMM4(W) GMM5(W) CLS
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef.
In qq 0.284 22.60 0.314 12.28 0.323 10.65 0.302 11.88 0.320 56.97 0.328 33.67 0.309
In g9 0.491 24.45 0.423 9.97 0540 560 0.430 9.77 0548 46.86 0.578 30.32 0.543
In g3 0.036 2.74 0.120 4.39 0.062 3.44 0.109 4.33 0.062 6.49 0.063 4.24 0.057
In wq 0.694 61.27 0.634 49.71 0.668 87.33 0.634 49.98 0.685 168.09 0.723 66.08 0.678
In wo 0.292 21.10 0.328 14.05 0.286 18.68 0.332 1457 0.299 3754 0.285 20.30 0.305
5(Ingr)? 0.165 6.79 0.191 2.76 0.202 825 0.184 2.76 0.182 10.12 0.200 8.67 0.177
5(In g2)? 0.136 2.29 0.029 0.22 0.138 2.18 0.016 0.12 0.106 3.70 0.120 2.11 0.102
5(In g3)? 0.021 0.47 -0.009 -0.09 -0.077 -1.48 -0.055 -0.58 0.043 1.12 0.042 0.95 0.000
S(Inw;)? 0.108 4.48 0.140 3.82 0.136 1.11 0.134 3.73 0.179 10.78 0.160 548 0.141
5(In ws)? 0.055 1.16 0.218 240 0.110 224 0.211 2.24 0.086 3.12 0.088 1.62 0.065
IngiIng -0.119 -4.22 -0.121 -1.71 -0.202 -7.55 -0.132 -1.91 -0.108 -6.75 -0.118 -5.02 -0.126
Ingilnggs -0.039 -1.72 -0.061 -1.66 0.005 0.12 -0.044 -1.32 -0.082 -6.69 -0.095 -5.13 -0.054
Ing Inw, 0.075 4.36 0.017 0.39 0.047 0.95 0.023 059 0.037 3.05 0.008 0.36 0.050
Ing;lnwy, -0.062 -2.44 0.028 0.44 -0.014 -0.13 0.021 0.40 0.029 2.11 0.036 1.37 -0.004
Ingglngs -0.003 -0.06 0.043 0.48 0.049 0.83 0.070 0.77 0.008 0.23 0.019 0.41 0.017
Ingglnw; -0.130 -5.08 -0.035 -0.80 -0.035 -0.28 -0.041 -1.05 -0.057 -3.15 -0.009 -0.31 -0.086
In g9 In wo 0.068 1.77 -0.120 -2.01 -0.022 -0.32 -0.122 -2.20 -0.014 -0.53 -0.026 -0.65 0.036
In g3 Inw, 0.060 2.63 0.016 0.36 0.003 0.07 0.019 0.46 0.040 2.23 0.008 0.28 0.046
In g3 In wo 0.005 0.15 0.065 1.14 0.024 0.55 0.070 1.31 -0.004 -0.15 0.032 0.79 -0.013
Inw;lnwy -0.064 -2.45 -0.125 -2.64 -0.133 -0.98 -0.120 -2.62 -0.156 -11.36 -0.168 -5.75 -0.116
Intercept - - 9.968 132.45 9.811 23.68 9.962 155.64 9.745 1539.55 9.688 885.52 9.814
0 - - 0.045 281 0.082 0.32 0.042 3.08 0.097 23.05 0.160 15.38 0.063
RTS 0.188 0.143 0.075 0.159 0.070 0.031 0.091
Oa 0.298 0.298 0.104 0.063 0.159
Oc 0.040 0.040 0.017 0.022 0.015
Obj. Function 28.526 27.694 39.412 7.98 0.0032
d.f. 28 28 26 6

t-stat.
44.21
47.01
7.00
91.77
35.58
12.38
2.98
0.01
9.63
2.28
-7.61
-4.22
4.65
-0.24
0.63
-5.23
1.52
3.24
-0.63
-6.96
391.43
9.34
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Table 1. Estimated coefficients(cont).

MLE1 MLE2 GMM1(P) GMM2(P) GMM3(P) GMM5(P)
Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat. Coef. t-stat.
In qq 0.316 28.65 0.304 3150 0.156 2.85 0.322 23.73 0.164 475 0.322 36.58
In g9 0592 2756 0.590 34.75 0480 7.62 0575 11.38 0.454 852 0.548 27.21
In g3 0.032 2.37 0.047 3.95 -0.016 -0.24 0.053 2.78 0.071 1.61 0.054 3.59
In wq 0.754 73.10 0.683 60.26 0.642 19.45 0.675 45.11 0.642 24.04 0.681 68.77
In wo 0.245 18.22 0.305 24.23 0.283 353 0.292 7.72 0.249 351 0.303 21.76

(Ingy)? 0.181 7.42 0.176 8.25 -0.135 -1.09 0.174 5.34 -0.173 -1.78 0.174 8.14
(In go)? 0.122 170 0.068 141 0445 233 0.175 139 0336 196 0.103 1.78
(Ing3)? 0.052 086 0.014 037 0.161 1.17 -0.002 -0.03 0.152 1.08 0.018 0.35
(Inwy)? 0.140 5.78 0.143 6.45 0.066 122 0.140 1.09 -0.003 -0.05 0.149 7.35
5(Inws)? 0.053 112 0.028 0.68 0.159 127 0.062 093 0.335 213 0.055 1.12
IngiIngs -0.101 -3.41 -0.104 -4.08 -0.018 -0.10 -0.175 -3.50 0.029 0.21 -0.117 -5.26
Ing;lngs -0.079 -3.41 -0.076 -3.87 0.191 272 -0.006 -0.07 0.153 2.30 -0.058 -3.09
Ing; Inw; 0.061 354 0.051 3.13 0.238 3.19 0.044 051 0.274 446 0.040 242
Ingilnwp, -0.046 -1.77 -0.013 -0.60 -0.135 -2.00 0.000 0.00 -0.092 -1.52 0.020 0.94
IngzIngs  -0.004 -0.06 0.037 1.04 -0.400 -2.76 -0.008 -0.08 -0.334 -2.44 0.007 0.13
Ingglnw; -0.142 -5.01 -0.100 -3.95 -0.238 -2.59 -0.052 -0.32 -0.228 -2.84 -0.069 -2.65
In g2 In wo 0.082 219 0.066 1.99 -0.095 -1.01 0.029 0.34 -0.221 -2.06 0.001 0.03
In g3 Inw; 0.082 3.13 0.063 2.72 0.011 0.22 0.022 0.56 -0.016 -0.37 0.046 1.90
Ingslnwp, -0.016 -0.44 -0.027 -0.87 0.221 2.29 -0.010 -0.23 0.255 2.85 -0.008 -0.22
Inwynwy, -0.103 -3.86 -0.117 -4.81 -0.032 -0.49 -0.121 -0.78 -0.002 -0.03 -0.121 -5.96
Intercept 9.504 648.74 9.807 29145 7.751 0.44 9.750 44.05 10.112 128.04 9.758 520.37

6 0.001 0.05 0.075 6.38 0.002 0.12 0.126 046 0.005 1.03 0.087 8.78
o - - -0.230 -6.77 - - - - - - - -
RTS 0.060 0.059 0.380 0.050 0.311 0.076
Oa 0.140 0.112 1.893 0.095 0.607 0.109
Oc 0.027 0.024 0.045 0.020 0.052 0.018
Obj. Function 668.06 706.55 4.472 10.221 11.953

d.f. 14 20 6
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Table 2. Average efficiency (in percentage).

YEAR WITHIN GMM1 GMM2 GMM3 GMM4 GMMS CLS MLE1 MLE2 GMM1 GMM2 GMM3 GMMS
w W W W W (P) (P) (P) (P)
t= 57.25 8273 86.33 8270 89.89 9154 88.37 89.00 91.03 27.58 89.27 36.64
t= 57.25 8205 8528 82.07 8893 90.16 87.68 89.00 90.38 27.50 87.93 36.47
t= 57.25 8135 84.15 8142 8790 88.58 86.96 88.99 89.69 27.43 86.44 36.29
t= 57.25 80.63 8295 80.75 86.78 86.77 86.19 88.98 88.95 27.35 84.79 36.12
t= 57.25 79.89 81.67 80.06 8556 84.70 85.39 88.98 88.17 27.27 8296 35.95
t= 57.25 79.12 80.31 79.35 84.25 8236 8455 8897 87.33 27.19 80.94 3578
t= 57.25 78.33 78.87 78.63 82.84 79.70 83.67 88.97 8645 27.12 78.71 3561
t=1,...,7| 5725 80.59 8279 80.71 86.59 86.26 86.12 88.98 88.86 27.35 84.43 36.12

89.13
88.22
87.24
86.18
85.05
83.84
82.55
86.03
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Table 3. Spearman rank correlation coefficients (in percentage).

WITHIN GMM1 GMM2 GMM3 GMM4 GMMS5 CLS MLE1 MLE2 GMM1 GMM2 GMM3 GMM5

(W) (W) (W) (W) (W) (P) (P) (P) (P)
WITHIN | 100
GMM1(W)| 86.3 100
GMM2(W)| 749  93.0 100
GMM3(W)| 91.2 989 906 100
GMM4(W)| 72.8 909 982 882 100
GMM5(W)| 36.1  66.6 836 599 87.0 100
CLS 80.5 953 984 938 982 80.0 100
MLE1 752 841 928 838 949 817 944 100
MLE2 69.1 865 969 844 984 881 964 960 100
GMM1(P)| 956 785 63.6 845 59.7 205 693 61.2 56.1 100
GMM2(P)| 572 820 955 776 964 932 923 904 97.1 446 100
GMM3(P)| 959 823 688 874 646 270 738 665 615 986 512 100
GMM5(P)| 735 912 984 888 998 861 985 947 983 61.0 961 658 100
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Figure 1. Efficiency levels at first period.
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