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Abstract

This paper is an extension of Ahn, Lee and Schmidt (2001) to allow aparametric
function for time-varying coefficients of the individual effects. It provides a fixed-
effect treatment of models like those proposed by Kumbhakar (1990) and Battese and
Coelli (1992). We present a number of GMM estimators based on different sets of
assumptions. Least squares has unusual properties: its consistency requires white
noise errors, and given white noise errors it is less efficient than a GMM estimator. We
apply this model to the measurement of the cost efficiency of Spanish savings banks.
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1 Introduction

In this paper we consider the model:

yit = X ′itβ + Z ′iγ + λt(θ)αi + εit, i = 1, . . . , N, t = 1, . . . , T. (1.1)

We treatT as fixed, so that “asymptotic” means asN → ∞. The distinctive feature of the model

is the interaction between the time-varying parametric functionλt(θ) and the individual effectαi.

We consider the case that theαi are “fixed effects,” as will be discussed in more detail below. In

this case estimation may be non-trivial due to the “incidental parameters problem” that the number

of α’s grows with sample size; see, for example, Chamberlain (1980).

Models of this form have been proposed and used in the literature on frontier productions func-

tions (measurement of the efficiency of production). For example, Kumbhakar (1990) proposed

the case thatλt(θ) = [1 + exp(θ1t + θ2t
2)]−1, and Battese and Coelli (1992) proposed the case

thatλt(θ) = exp
(
− θ(t− T )

)
. Both of these papers considered random effects models in which

αi is independent ofX andZ. In fact, both of these papers proposed specific (truncated normal)

distributions for theαi, with estimation by maximum likelihood. The aim of the present paper is

to provide a fixed-effects treatment of models of this type.

There is also a literature on the case that theλt themselves are treated as parameters. That is,

the model becomes:

yit = X ′itβ + Z ′iγ + λtαi + εit, i = 1, . . . , N, t = 1, . . . , T. (1.2)

This corresponds to using a set of dummy variables for time rather than a parametric function

λt(θ), and nowλtαi is just the product of fixed time and individual effects. This model has been

considered by Kiefer (1980), Holtz-Eakin, Newey and Rosen (1988), Lee (1991), Chamberlain

(1992), Lee and Schmidt (1993) and Ahn, Lee and Schmidt (2001), among others. Lee (1991) and

Lee and Schmidt (1993) have applied this model to the frontier production function problem, in
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order to avoid having to assume a specific parametric functionλt(θ). Another motivation for the

model is that a fixed-effects version allows one to control for unobservables (e.g. macro events)

that are the same for each individual, but to which different individuals may react differently.

Ahn, Lee and Schmidt (2001) establish some interesting results for the estimation of model

(1.2). A generalized method of moments (GMM) estimator of the type considered by Holtz-Eakin,

Newey and Rosen (1988) is consistent given exogeneity assumptions on the regressorsX andZ.

Least squares applied to (1.2), treating theαi as fixed parameters, is consistent provided that the

regressors are strictly exogenous and that the errorsεit are white noise. The requirement of white

noise errors for consistency of least squares is unusual, and is a reflection of the incidental param-

eters problem. Furthermore, if the errors are white noise, then a GMM estimator that incorporates

the white noise assumption dominates least squares, in the sense of being asymptotically more ef-

ficient. This is also a somewhat unusual result, since in the usual linear model with normal errors,

the moment conditions implied by the white noise assumption would not add to the efficiency of

estimation.

The results of Ahn, Lee and Schmidt apply only to the case that theλt are unrestricted, and

therefore do not apply to the model (1.1). However, in this paper we show that essentially the same

results do hold for the model (1.1). This enables us to use a parametric functionλt(θ), and to test

the validity of this assumption, while maintaining only weak assumptions on theαi. This may be

very useful, especially in the frontier production function setting. Applications using unrestricted

λt have yielded temporal patterns of efficiency that seem unreasonably variable and in need of

smoothing, which a parametric function can accomplish.

The plan of the paper is as follows. Section 2 restates the model and lists our assumptions.

Section 3 considers GMM estimation under basic exogeneity assumptions, while Section 4 con-

siders GMM when we add the conditions implied by white noise errors. Section 5 considers least

squares estimation and the sense in which it is dominated by GMM. In Section 6, this methodology
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is applied to the measurement of cost efficiency of Spanish banks. Finally, Section 7 contains some

concluding remarks.

2 The Model and Assumptions

The model is given in equation (1.1) above. We can rewrite it in matrix form, as follows. Let

yi = (yi1, . . . , yiT )′,Xi = (Xi1, . . . , XiT )′, andεi = (εi1, . . . , εiT )′. Thusyi is T × 1,Xi is T ×K,

εi is T × 1, β is K × 1, γ is g × 1, andαi is a scalar. (In this paper, all the vectors are column

vectors, and the data matrices are “vertically tall.”) Define a functionλ : Θ → R
T , whereΘ is a

compact subset ofRp, such thatλ(θ) = (λ1(θ), . . . , λT (θ))′. Note thatT is fixed.

In matrix form, our model is:

yi = Xiβ + 1TZ
′
iγ + λ(θ)αi + εi, i = 1, . . . , N. (2.1)

λ(θ) must be normalized in some way such asλ(θ)′λ(θ) ≡ 1 or λ1(θ) ≡ 1, to rule out trivial

failure of identification arising fromλ(θ) = 0 or scalar multiplications ofλ(θ). Here we choose

the normalizationλ1(θ) ≡ 1.

We assume thatp ≤ T − 1. Whenp < T − 1, our parametric specification forλ(θ) restricts

the temporal pattern ofλ. However, this model also includes the model of Ahn, Lee and Schmidt

(2001) as the special case corresponding top = T−1 andλt(θ) = θt, t = 2, . . . , T (with λ1(θ) = 1

as above).

Let Wi = (X ′i1, . . . , X
′
iT , Z

′
i)
′. We make the following “orthogonality” and “covariance” as-

sumptions.

Assumption 1 (Orthogonality). E(W ′
i , αi)

′ε′i = 0.

Assumption 2 (Covariance).Eεiε′i = σ2
ε IT .
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Assumption 1 says thatεit is uncorrelated withαi,Zi, andXi1, . . . , XiT , and therefore contains

an assumption of strict exogeneity of the regressors. Note that it does not restrict the correlation

betweenαi and [Zi, Xi1, . . . , XiT ], so that we are in the fixed-effects framework. Assumption 2

asserts that the errors are white noise.

We also assume the following regularity conditions.

Assumption 3 (Regularity).

(i) (W ′
i , αi, ε

′
i)
′ is independently and identically distributed overi;

(ii ) εi has finite fourth moment, andEεi = 0;

(iii ) (W ′
i , αi)

′ has finite nonsingular second moment matrix;

(iv) EWi(Z
′
i, αi) is of full column rank;

(v) λ(θ) is twice continuously differentiable inθ.

The first four of these conditions correspond to assumptions (BA.1)–(BA.4) of Ahn, Lee and

Schmidt (2001), who give some explanation. We note that condition (iii ) requires that the effect

αi be correlated with some variable inWi. This condition is needed for identification under the

Orthogonality Assumption only. Condition (v) is new, and self-explanatory.

3 GMM under the Orthogonality Assumption

Let uit = uit(β, γ) = yit − X ′itβ − Z ′iγ, andui = ui(β, γ) = (ui1, . . . , uiT )′. Sinceuit =

λt(θ)αi + εit, it follows thatuit − λt(θ)ui1 = εit − λt(θ)εi1, which does not depend onαi. This

is a sort of generalized within transformation to remove the individual effects. The Orthogonality

Assumption (Assumption 1) then implies the following moment conditions:

EWi[uit(β, γ)− λt(θ)ui1(β, γ)] = 0, t = 2, . . . , T. (3.1)
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These moment conditions can be written in matrix form, as follows. DefineG(θ) = [−λ∗(θ),

IT−1]′, whereλ∗ = (λ2, . . . , λT )′. The generalized within transformation corresponds to multipli-

cation byG(θ)′, and the moment conditions (3.1) can equivalently be written as follows:

Eb1i(β, γ, θ) = E[G(θ)′ui(β, γ)⊗Wi] = 0. (3.2)

(This corresponds to equation (7) of Ahn, Lee and Schmidt (2001), but looks slightly different

because ourWi is a column vector whereas theirs is a row vector.) This is a set of(T − 1)(TK + g)

moment conditions.

Some further analysis is needed to establish that (3.2) containsall of the moment conditions

implied by the Orthogonality Assumption. LetΣWW = EWiW
′
i , ΣWα = EWiαi, andσ2

α = Eα2
i .

Given the model (2.1), the Orthogonality Assumption holds if and only if the following moment

conditions hold:

E[ui(β, γ)⊗Wi − λ(θ)⊗ ΣWα] = 0. (3.3)

We could use these moment conditions as the basis for GMM estimation. Alternatively, we can

remove the parameterΣWα by applying a nonsingular linear transformation to (3.3) in such a way

that the transformed set of moment conditions is separated into two subsets, where the first subset

does not containΣWα and the second subset is exactly identified forΣWα, given (β, γ, θ). The

following transformation accomplishes this.

E

 G′ ⊗ Id

λ′ ⊗ Id

 [ui ⊗Wi − λ⊗ ΣWα] = 0 (3.4)

whered ≡ TK + g for notational simplicity; similarly,G, λ andui are shortened expressions for

G(θ), λ(θ) andui(β, γ). This is a nonsingular transformation, since(G, λ) is nonsingular, and

therefore GMM based on (3.4) is asymptotically equivalent to GMM based on (3.3). Now split
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(3.4) into its two parts:

E(G′ui ⊗Wi) = 0 (3.5)

E(λ′ui)Wi − (λ′λ)ΣWα = 0. (3.6)

Here (3.6) is exactly identified forΣWα, givenβ, γ andθ, in the sense that the number of moment

conditions in (3.6) is the same as the dimension ofΣWα. Also ΣWα does not appear in (3.5). It fol-

lows (e.g., Ahn and Schmidt (1995), Theorem 1) that the GMM estimates ofβ, γ andθ from (3.5)

alone are the same as the GMM estimates ofβ, γ andθ if we use both (3.5) and (3.6), and estimate

the full set of parameters(β, γ, θ,ΣWα). But (3.5) is the same as (3.2), which establishes that (3.2)

contains all the useful information aboutβ, γ andθ implied by the Orthogonality Assumption.

Let b̄1(β, γ, θ) = N−1
∑N

i=1 b1i(β, γ, θ). Then the optimal GMM estimator̂β, γ̂, andθ̂ based

on the Orthogonality Assumption solves the problem

min
β,γ,θ

Nb̄1(β, γ, θ)′V −1
11 b̄1(β, γ, θ) (3.7)

whereV11 = Eb1ib
′
1i evaluated at the true parameters. As usual,V11 can be replaced by any

consistent estimate. A standard estimate would be

V̂11 =
1

N

N∑
i=1

b1i(β̃, γ̃, θ̃)b1i(β̃, γ̃, θ̃)
′ (3.8)

where(β̃, γ̃, θ̃) is an initial consistent estimate of(β, γ, θ) such as GMM using identity weighting

matrix. Under certain regularity conditions (Hansen (1982), Assumption 3) the resulting GMM

estimator is
√
N -consistent and asymptotically normal.

To express the asymptotic variance of the GMM estimator analytically, we need a little more

notation. LetSX be theT (TK + g) ×K selection matrix such thatXi = (IT ⊗Wi)
′SX , and let

SZ be theT (TK + g)× g selection matrix such that1TZ ′i = (IT ⊗Wi)
′SZ . SX andSZ have the
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following forms:

SX = (IK O · · · O OK×g
...O IK · · · O OK×g

... · · · ...O O · · · IK OK×g)
′ (3.9a)

SZ = (Og×K · · · Og×K Ig
... · · · ...Og×K · · · Og×K Ig)

′ = 1T ⊗ (Og×TK , Ig)
′ (3.9b)

whereO’s without dimension subscript stand forOK×K . DefineΛ∗ = ∂λ∗(θ0)/∂θ′. The variance

of the asymptotic distribution of the GMM estimates ofβ, γ andθ equals(B′1V
−1

11 B1)−1 where

V11 = Eb1ib
′
1i as above and

B1 = −[(G⊗ ΣWW )′SX , (G⊗ ΣWW )′SZ ,Λ∗ ⊗ ΣWα]. (3.10)

This result can be obtained either by direct calculation, or by applying the chain rule toB1 calcu-

lated in Ahn, Lee and Schmidt (2001, p. 251). This asymptotic variance form is obtained from the

Orthogonality Assumption only and does not need any further assumption.

A consistent estimate ofB1 can be obtained as

B̂1 =
1

N

N∑
i=1

B̂1i, B̂1i = −(Ĝ′Xi, Ĝ
′1TZ

′
i, ûi1Λ̂∗)⊗Wi. (3.11)

HereB̂1i is the matrix of first derivatives ofb1i with respect to the parameters(β, γ, θ), evaluated

at the GMM estimates.

A practical problem with this GMM procedure is that it is based on a rather large set of mo-

ment conditions. For example, in our empirical analysis,b1i will reflect 846 moment conditions.

One might want to reduce this number by considering only a subset of the moment conditions.

One possibility is to replace the instrumentsWi in (3.2) byPi, wherePi is a subset ofWi. This

possibility is discussed in Appendix A.

Alternatively, we can reduce the number of moment conditions considerably without sacrificing

efficiency of estimation if we make the following assumption of no conditional heteroskedasticity

(NCH) of εi:

E(εiε
′
i|Wi) = Σεε. (NCH)
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Under the NCH assumption,

V11 = E[G(θ0)′εiε
′
iG(θ0)⊗WiW

′
i ] = G(θ0)′ΣεεG(θ0)⊗ ΣWW . (3.12)

Using this result, the set of moment conditions (3.2) can be converted into anexactly identified

set of moment conditions that yield an asymptotically equivalent GMM estimate. Specifically, we

can replace the moment conditionsEb1i = 0 by the moment conditionsEB′1V
−1

11 b1i = 0. Routine

calculation using the forms ofB1, V11 andb1i yields the explicit expression:

EX ′iG(G′ΣεεG)−1G′ui = 0 (3.13a)

EZi1
′
TG(G′ΣεεG)−1G′ui = 0 (3.13b)

EΣ′WαΣ−1
WWWi · Λ′∗(G′ΣεεG)−1G′ui = 0. (3.13c)

These three sets of moment conditions respectively correspond to (21a), (21b), and (21c) of Ahn,

Lee and Schmidt (2001, p. 229). The point of this simplification is that we have drastically reduced

the set of moment conditions: there are(T −1)(TK+g) moment conditions inb1i (equation (3.2))

but onlyK + g + p moment conditions in (3.13).

We note that this is a stronger result than the corresponding result (Proposition 1, p. 229) of

Ahn, Lee and Schmidt (2001). In order to reach essentially the same conclusion on the reduction of

the number of moment conditions, they impose the assumption thatεi is independent of(Wi, αi),

a much stronger assumption than our NCH assumption.

In order to make this procedure operational, we need to replace the nuisance parametersΣεε,

ΣWα andΣWW by consistent estimates, based on some initial consistent GMM estimates ofβ, γ

andθ. ΣWW can be consistently estimated byΣ̂WW = N−1
∑N

i=1 WiW
′
i . Also, for any sequence

(βN , γN) that converges in probability to(β0, γ0), we have

1

N

N∑
i=1

ui(βN , γN)ui(βN , γN)′
p−→ Σεε + σ2

αλ(θ0)λ(θ0)′. (3.14)
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SinceG(θ)′λ(θ) = 0, for any initial consistent estimate(β̃, γ̃, θ̃),

G(θ̃)′

(
N−1

N∑
i=1

ui(β̃, γ̃)ui(β̃, γ̃)′

)
G(θ̃) (3.15)

will consistently estimateG(θ0)′ΣεεG(θ0). Thus it is easy to construct a consistent estimate ofV11

as given in (3.12).

In order to consistently estimate the asymptotic variance under NCH, we need to estimate

ΣWW , ΣWα, andG′ΣεεG. Estimation ofΣWW andG′ΣεεG was discussed above. We can obtain

an estimate ofΣWα from the GMM problem (3.4). A direct algebraic calculation gives us that

Σ̂Wα =
1

N

N∑
i=1

Wi
λ̂′ûi

λ̂′λ̂
− 1

N

N∑
i=1

Wi[λ̂′ΣεεG ̂(G′ΣεεG)
−1

Ĝ′ûi]/(λ̂
′λ̂) (3.16)

whereûi = ui(β̂, γ̂), λ̂ = λ(θ̂), Ĝ = G(θ̂), andλ̂′ΣεεG is a consistent estimate ofλ′ΣεεG, one

possibility of which isN−1
∑N

i=1 λ̂
′ûiû

′
iĜ.

It is important to observe that the moment conditions (3.13) are linear combinations of the

moment conditionsb1i in (3.2), and therefore they are valid moment conditions under the Orthog-

onality Assumption only. That is, these moment conditions hold and can be used as a valid basis

of GMM estimation so long as the Orthogonality Assumption holds, whether or not the NCH as-

sumption holds. The set of moment conditions in (3.2) may be very large, and so the simplification

involved in using the exactly identified (minimal size) set of moment conditions (3.13) may be

useful in practice. The only point of the NCH assumption is that, if it holds, the conditions (3.13)

are theoptimal exactly identified set of moment conditions, so that GMM using (3.13) is just as

efficient as GMM using the full set of moment conditions given in (3.2). If the NCH condition

does not hold, we can still base GMM on (3.13), but there is a loss of efficiency relative to using

the full set (3.2).

We have already discussed how to estimate the variance matrix of the GMM estimator under

the NCH assumption. However, because the moment conditions (3.13) are still valid without the
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NCH assumption, it is useful to have an estimate of the variance of the GMM estimate that is

consistent whether or not the NCH condition holds. Standard methods starting with the moment

conditions (3.13) should yield such an estimate. Some details are given in Appendix B.

4 GMM under the Orthogonality and Covariance Assumptions

In this section we continue to maintain the Orthogonality Assumption (Assumption 1), but now we

add the Covariance Assumption (Assumption 2), which asserts thatEεiε
′
i = σ2

ε IT .

Clearly the Covariance Assumption holds if and only if

E(uiu
′
i) = σ2

αλλ
′ + σ2

ε IT . (4.1)

Condition (4.1) containsT (T + 1)/2 distinct moment conditions. It also contains the two nuisance

parametersσ2
α andσ2

ε , and so it should implyT (T +1)/2−2 moment conditions for the estimation

of β, γ andθ. These are in addition to the moment conditions (3.2) implied by the Orthogonality

Assumption.

To write these moment conditions explicitly, we need to define some notation. LetH =

diag(H2, H3, . . . , HT ), with Ht equal to theT × (T − t) matrix of the lastT − t columns (the

(t + 1)th throughT th columns) ofIT for t < T , and withHT equal to aT × (T − 2) matrix of

the second through(T − 1)-th columns ofIT .1 Then we can write the distinct moment conditions

implied by the Orthogonality and Covariance Assumptions as follows:

Eb1i = E(G′ui ⊗Wi) = 0 (4.2a)

Eb2i = EH ′(G′ui ⊗ ui) = 0 (4.2b)

Eb3i = E
[
G′ui ⊗

λ′ui
λ′λ

]
= 0. (4.2c)

1For any matrixB with T rows,H ′tB selects the lastT − t rows ofB for t < T , andH ′TB selects the
second through(T −1)-th rows ofB. For any matrixB with T columns,BHt selects the lastT −t columns
of B for t < T , andBHT selects the second through(T − 1)-th columns ofB.
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(In these expressions,G is short forG(θ), λ is short forλ(θ), andui is short forui(β, γ).)

The moment conditionsb1i in (4.2a) are exactly the same as those in (3.2) of the previous

section, and follow from the Orthogonality Assumption.

The moment conditionsb2i in (4.2b) correspond to those in equation (12) of Ahn, Lee and

Schmidt (2001). Note that it is not the case thatE(G′ui ⊗ ui) = 0. Rather, looking at a typical

element of this product, we haveE(uit − λtui1)uis, which equals zero fors 6= t ands 6= 1. The

selection matrixH ′ picks out the logically distinct products of expectation zero, the number of

which equalsT (T − 1)/2− 1. The selection matrixH plays the same role as the definition of the

matricesU◦it plays in Ahn, Lee and Schmidt (2001). We note that the moment conditionsb2i follow

from the non-autocorrelation of theεit; homoskedasticity would not be needed.

The (T − 1) moment conditions inb3i in (4.2c) correspond to those in equation (13) of Ahn,

Lee and Schmidt (2001). They assert that, fort = 2, . . . , T , E(uit − λtui1)(
∑T

s=1 λsuis) = 0, and

their validity depends on both the non-autocorrelation and the homoskedasticity of theεit.

Some further analysis may be useful to establish that (4.2b) and (4.2c) represent all of the useful

implications of the Covariance Assumption. We begin with the implication (4.1) of the Covariance

Assumption, which we rewrite as

E(ui ⊗ ui) = σ2
α(λ⊗ λ) + σ2

εvecIT . (4.3)

Now, letS be theT 2 × T (T + 1)/2 selection matrix such that, for aT × 1 vectoru, vech(uu′) =

S ′(u⊗ u), where “vech” is the vector of distinct elements. Then

ES ′(u⊗ u) = S ′[σ2
α(λ⊗ λ) + σ2

εvecIT ] (4.4)

contains the distinct moment conditions.

Now we transform the moment conditions (4.4) by multiplying them by a nonsingular matrix,

in such a way that (i) the firstT (T + 1)/2− 2 transformed moment conditions are those given in
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(4.2b) and (4.2c); and (ii) the last two moment conditions are exactly identified for the nuisance

parameters (σ2
α andσ2

ε ), given the other parameters. This will imply that the last two moment

conditions are redundant for the estimation ofβ, γ andθ, and thus that (4.2b) and (4.2c) contain

all of the useful information implied by the Covariance Assumption for estimation ofβ, γ andθ.

To exhibit the transformation, letGt be the(t− 1)th column ofG; let e∗t equal thetth column

of IT−2 andeT equal the last column ofIT ; and define

(H∗∗T )′ = [−λTH ′T , e∗1e′T , . . . , e∗T−2e
′
T , O(T−2)×T ]. (4.5)

(HT was defined above.) Then

[G2 ⊗H2, . . . , GT−1 ⊗HT−1, H
∗∗
T ]′S · S ′(ui ⊗ ui) = H ′(G′ ⊗ IT )(ui ⊗ ui), (4.6)

which is the same as inb2i in (4.2b). Also, letJ∗1 = IT − λλ′ andJ∗t , t = 2, . . . , T , is equal to

diag{Ot×t, λtIT−t} plus aT × T matrix with zero elements except for thetth row which isλ′.

Then

H ′1[J∗1 , . . . , J
∗
T ]S · S ′(ui ⊗ ui) = (λ′ ⊗G′)(ui ⊗ ui), (4.7)

which is equal tob3i in (4.2c).

The point of the above argument is that the transformations precedingS ′(ui ⊗ ui) in (4.6) and

(4.7), stacked vertically, construct a[T (T + 1)/2− 2]× T (T + 1)/2 matrix of full row rank, and

yield the moment conditionsb2i andb3i. The remaining two moment conditions that determine the

nuisance parameters are

E

 u2
i1

ui2ui1

 =

 σ2
α + σ2

ε

λ2σ
2
α

 (4.8)

and must be linearly independent of the others (since they involveσ2
α andσ2

ε while the others do

not).

The set of moment conditions (4.2) may be large, since the number of moment conditions

in (4.2a) may be large. As in the previous section, we can reduce this number by using only a
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subsetPi of the instrumentsWi. This is discussed in Appendix A. Alternatively, we can simplify

things with the following “conditional independence of the moments up to fourth order” (CIM4)

assumption:

Conditional on(Wi, αi), εit is independent overt = 1, 2, . . . , T , with mean
zero, and with second, third and fourth moments that do not depend on
(Wi, αi) or ont.

(CIM4)

This is a strong assumption; it implies the Orthogonality Assumption, the Covariance Assumption,

the NCH assumption, and more. In Appendix C, we calculate the asymptotic variance matrix of the

GMM estimate based on (4.2) under the assumption (CIM4). More fundamentally, if assumption

(CIM4) is true, we can reduce the number of moment conditions without reducing efficiency of

estimation. Specifically, letΛ = ∂λ(θ0)/∂θ and note thatΛ∗ = G′Λ. Given assumption (CIM4),

the moment conditions (3.13), which are asymptotically equivalent to (4.2a), can be simplified as

follows:

EX ′iPGui = 0 (4.9a)

EZi1
′
TPGui = 0 (4.9b)

EΣ′WαΣ−1
WWWi · Λ′PGui = 0. (4.9c)

That is, in place of the large set of moment conditions (4.2a), (4.2b) and (4.2c), we can use the

reduced set of moment conditions consisting of (4.9), (4.2b) and (4.2c).

We can note that, whenΣεε = σ2
ε I, the moment conditions (3.13) are the same as (4.9). This is

not surprising since, if the CIM4 assumption is true, so is the NCH assumption.

A final simplification arises if, conditional on(Wi, αi), εit is i.i.d. normal. In this case, (4.2b)

can be shown to be redundant given (4.2a) and (4.2c). (See Proposition 4 of Ahn, Lee and Schmidt

(2001, p. 231).) Hence, in that case, the GMM estimator using the moment conditions (4.9) and

(4.2c) is efficient.

We note that the simplifications that arise here, given the CIM4 assumption or the i.i.d. normal

assumption, are similar in spirit to those that arose in Section 3 under the NCH assumption. For

14



example, the set of moment conditions consisting of (4.9), (4.2b) and (4.2c) is much smaller than

the full set (4.2), and this simplified set of moment conditions may be useful in practice, whether

or not the CIM4 assumption holds. The point of the CIM4 assumption is simply that it identifies

the circumstances under which we can use the reduced set of moment conditions without a loss

of efficiency. If the CIM4 assumption does not hold, the GMM estimator using the reduced set of

moment conditions is still consistent (so long as the Orthogonality and Covariance Assumptions

hold), but it would be less efficient than the GMM estimator using the full set of moment conditions

(4.2). Similar comments apply to the simplification that arises from dropping (4.2b): we can always

do this, but it causes a loss of efficiency if the i.i.d. normal assumption does not hold.

In Appendix B we show how to calculate an estimate of the variance of these GMM estimates

that is consistent whether or not the CIM4 or i.i.d. normal assumptions hold.

5 Least Squares

In this section we consider the concentrated least squares (CLS) estimation of the model. We treat

theαi as parameters to be estimated, so this is a true “fixed effects” treatment. We can consider

the following least squares problem:

min
β,γ,θ,α1,...,αN

N−1

N∑
i=1

[yi −Xiβ − 1TZ
′
iγ − λ(θ)αi]

′[yi −Xiβ − 1TZ
′
iγ − λ(θ)αi]. (5.1)

Solving forα1, . . . , αN first, we get

αi(β, γ, θ) = [λ(θ)′λ(θ)]−1λ(θ)′ui(β, γ) i = 1, . . . , N. (5.2)

whereui(β, γ) = yi −Xiβ − 1TZ
′
iγ as before. Then the estimatesβ̂LS, γ̂LS, andθ̂LS minimizing

(5.1) are equal to the minimizers of thesum of the squared concentrated residuals

C̄(β, γ, θ) = N−1

N∑
i=1

Ci(β, γ, θ) = N−1

N∑
i=1

ui(β, γ)′Mλ(θ)ui(β, γ) (5.3)
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which is obtained by replacingαi in (5.1) with (5.2). From the name of (5.3), we callβ̂LS, γ̂LS and

θ̂LS theconcentrated least squares estimator.

SinceG′λ = 0, we haveMλG = G and thereforeMλ = PG = G(G′G)−1G′. So the first order

conditions of the CLS estimation become
∂C̄/∂β

∂C̄/∂γ

∂C̄/∂θ

 = − 2

N

N∑
i=1


X ′iPGui

Zi1
′
TPGui

Λ′PGuiu
′
iλ(λ′λ)−1

 = 0. (5.4)

Interpreting (5.4) as sample moment conditions, we can construct the corresponding (exactly iden-

tified) implicit population moment conditions:

EX ′iPGui = 0 (5.5a)

EZi1
′
TPGui = 0 (5.5b)

EΛ′PGuiu
′
iλ(λ′λ)−1 = 0. (5.5c)

That is, the CLS estimator is asymptotically equivalent to the GMM estimator based on (5.5).

The moment conditions (5.5a) and (5.5b) are satisfied under the Orthogonality Assumption.

However, this is not true of (5.5c). The moment conditions (5.5c) require the Covariance Assump-

tion to be valid (unless we make very specific and unusual assumptions about the form ofλ and its

relationship to the error variance matrix). Thus, the consistency of the CLS estimator requiresboth

the Orthogonality Assumptionand the Covariance Assumption. This is a rather striking result,

since the consistency of least squares does not usually require restrictions on the second moments

of the errors, and is a reflection of the incidental parameters problem.

We would generally believe that least squares should be efficient when the errors are i.i.d.

normal. However, similarly to the result in Ahn, Lee and Schmidt (2001), this is not true in the

present case. The efficient GMM estimator under the Orthogonality and Covariance Assumptions

uses the moment conditions (4.2), while the CLS estimator uses only a subset of these. This can be
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seen most explicitly in the case that, conditional on(Wi, αi), theεit are i.i.d. normal. Then (4.2b)

is redundant and (4.2a) can be replaced by (4.9), so that the efficient GMM estimator is based on

(4.9a), (4.9b), (4.9c) and (4.2c). The CLS estimator is based on (5.5a), which is the same as (4.9a);

(5.5b), which is the same as (4.9b); and (5.5c), which is a subset of (4.2c).2 So the inefficiency

of CLS lies in its failure to use the moment conditions (4.9c) and from its failure to use all of the

moment conditions in (4.2c). The latter failure did not arise in the Ahn, Lee and Schmidt (2001)

analysis (see footnote 2).

In Appendix D, we calculate the asymptotic variance matrix of the CLS estimator, under the

“conditional independence of the moments up to fourth order” (CIM4) assumption of Section 4.

Alternatively, along the lines of Appendix B, we could calculate our estimate of the asymptotic

variance matrix that does not depend on the validity of the CIM4 assumption.

6 Empirical Application

This section includes an application of the estimators suggested in previous sections to the mea-

surement of cost efficiency. The application uses panel data from Spanish savings banks covering

the period 1992-1998. In order to allow for changes in cost efficiency over time, the individual

effects are modeled in a parametric form as the “inverse” of the exponential time-varying function

proposed by Battese and Coelli (1992) in a MLE framework.
2The moment conditions (5.5c) are equivalent toEΛ′G(G′G)−1b3i = 0. When the number of parameters

in θ is less thanT−1, the transformationΛ′G(G′G)−1 loses information. This will be so in most parametric
models forλ(θ), though it is not true in the model of Ahn, Lee and Schmidt (2001).
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6.1 The Cost Frontier Model

The technology of banks is modeled using the following translog cost function:

lnCit = lnC∗(qit, wit, γ, β) + αit + εit

=

(
γ +

m∑
j=1

βqj ln qjit +
1

2

m∑
j=1

βqjqj(ln qjit)
2 +

∑
j<k

βqjqk ln qjit ln qkit

+
n∑
j=1

βwj lnwjit +
1

2

n∑
j=1

βwjwj(lnwjit)
2 +

∑
j<k

βwjwk lnwjit lnwkit

+
m∑
j=1

n∑
k=1

βqjwk ln qjit lnwkit

)
+ exp

(
θ(t− 1)

)
αi + εit

(6.1)

whereCit is observed total cost,qjit is thejth output,wkit is thekth input price,β is a vector of

parameters to be estimated,γ is a scalar to be estimated, andεit is the error term. The individual

effects are modeled as the product of an exponential time-varying functionλt(θ) = exp
(
θ(t− 1)

)
and a time-invariant firm effect.

Our GMM estimators effectively treat theαi as fixed. We can define the time-varying individual

effects (intercepts) asαit = αiλt(θ). We wish to decompose the time-varying intercepts into a

frontier intercept which varies over time (αt) and a non-negative inefficiency term (vit). That is:

αit = λt(θ)αi = αt + vit, vit ≥ 0. (6.2)

Following Cornwell, Schmidt and Sickles (1990) the frontier intercept can be estimated as:

α̂t = min
i

(α̂it) = λt(θ̂) ·min
i

(α̂i) (6.3)

and the inefficiency term as:

v̂it = λt(θ̂)[α̂i −min
i

(α̂i)] = λt(θ̂)v̂i (6.4)

Since the dependent variable is expressed in natural logs, cost efficiency indexes can be calculated

from (6.4) as:

ĈEit = exp
(
− λt(θ̂)[α̂i −min

i
(α̂i)]

)
(6.5)
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It is easy to see from expressions (6.4) and (6.5) that cost efficiency compares the performance

(individual effect) of a particular firm with a firm located on the frontier (i.e. with the minimum

effect). Since cost efficiency is a relative concept, the average efficiency index is related to the

varianceσ2
α: the higher the variance of the individual effects, the smaller the average efficiency.

6.2 Data

The application uses yearly data from Spanish savings banks. The number of banks has decreased

over the last ten or fifteen years due to mergers and acquisitions. These mergers took place mainly

in the early 1990s. In order to work with a balanced panel, we use data from 50 savings banks over

the period 1992–98. ThusN = 50 andT = 7.

In Spain there are private banks as well as savings banks. We did not include private banks in

our sample because private banks and savings banks are rather different. Savings banks concentrate

on retail banking, providing checking, savings accounts and loan service to individuals (especially

mortgage loans), whereas private banks are more involved in commercial and industrial loans.

Another difference is that savings banks are more specialized than private banks in long-term loans,

which do not require continuous monitoring. Since the two groups are likely to have different cost

structures and have been regulated in different ways, we did not want to pool them. We tried

to analyze private banks separately, but we were not very successful, and we do not report those

results here.

The variables used in the analysis are defined as follows. We follow the majority of the liter-

ature and use the intermediation approach (proposed by Sealey and Lindley, 1977) which treats

deposits as inputs and loans as outputs. We include three types of outputs and three types of

inputs. The outputs are: Loans to banks, and other profitable assets (q1); Loans to firms and house-

holds (q2); and noninterest income (q3). Using noninterest income goes beyond the intermediation

approach as commonly modeled. We include it in an attempt to capture off-balance-sheet activi-
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ties such as securitization, brokerage services, and management of financial assets for individual

customers and mutual funds. This method of measuring nontraditional banking activities is not

fully satisfactory. For example, we cannot distinguish between variation due to changes in volume

and variation due to changes in price, and noninterest income is partly generated from traditional

activities such as service charges on deposits or credits rather than from nontraditional activities.

The inputs are: Borrowed money, including demand, time and saving deposits, deposits from

non-banks, securities sold under agreements to repurchase, and other borrowed money (x1); Labor,

measured by total number of employees (x2); and Physical Capital, measured by the value of fixed

assets in the balance sheet (x3). All of the input prices,wi (i = 1, 2, 3) were calculated in a

straightforward way by dividing nominal expenses by input quantities. Accordingly, total cost

includes both interest and operating expenses.

We normalize our variables by dividing by the sample geometric mean, so that the first order

coefficients can be interpreted as the elasticities evaluated at that point. Furthermore, the standard

homogeneity of degree one in input prices is imposed by normalizing cost and input prices using

the price of physical capital as a numeraire. Thus in the end we have a translog function of five

variables—three outputs and two normalized input prices. We also have an overall intercept, and

our functionλt(θ) hasθ as a scalar. So, in terms of our previous notation, we haveN = 50, T = 7,

K = 20, g = 1 andp = 1. We have a total of 22 parameters (20 inβ, 1 in γ, 1 in θ), in addition to

the individual effectsαi (i = 1, . . . , 50).

We note that the intrument vectorWi defined in Section 2 is of dimensionTK + g = 141,

which is rather large. For some of our methods of estimation we will instead make use of a

reduced instrument setPi, of dimension 6, which contains (for banki) an intercept, plus the mean

(over time) values of the three outputs and the two normalized input prices.
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6.3 Methods of Estimation

The cost equation is estimated using the GMM estimators of the previous sections. We will use the

following notation to refer to our estimators.

GMM1(W) is the GMM estimator based on the moment conditions (3.2). This estimator uses

the Orthogonality assumption only. TheW in the parentheses indicates that it uses the full instru-

ment setWi. There are 846 moment conditions. SinceN = 50 < 846, V̂11 as given in equation

(3.8) is singular—it is of rank 50 but dimension 846. In this case, and in other similar cases below,

we used the Moore-Penrose pseudo-inverseV̂ +
11 as our weighting matrix. For a justification of this

procedure, see Doran and Schmidt (2002).

GMM1(P) is the GMM estimator that exploits the same Orthogonality assumption, but uses

only the reduced instrument setPi, that is, the moment conditions (A.1). There are 36 moment

conditions so the estimated weighting matrix is non-singular (which is the point of usingPi).

GMM2 refers to the estimator based on the moment conditions (3.13), which were motivated

by the NCH assumption. However, we evaluate the asymptotic variances without assuming NCH—

see Appendix B. This is an exactly identified problem (number of moment conditions = number of

parameters = 22) so the weighting matrix is irrelevant. We need estimates of the nuisance param-

eters in (3.13c), however.GMM2(W) will refer to the case that the nuisance parameter estimates

are based on the GMM1(W) results, whereasGMM2(P) means that the GMM1(P) results were

used.

GMM3(W) is the GMM estimator that is based on the moment conditions (4.2). This estimator

relies on the Orthogonality and Covariance assumptions. The number of moment conditions is

846 + 20 + 6 = 872. Once again we need a generalized inverse.

GMM3(P) uses the reduced instrument setPi in (4.2a), and also omits the conditions (4.2b), in

order to avoid having more instruments than banks. The number of moment conditions is36+6 =
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42.

GMM4 is the estimator based on the moment conditions (4.9), (4.2b) and (4.2c). This set of

moment conditions was motivated by the CIM4 assumption. The number of moment conditions is

22 + 20 + 6 = 48. (We evaluate nuisance parameters in (4.9) using the GMM3(W) results so we

could call our estimatorGMM4(W) .) We evaluate the asymptotic variance without imposing the

CIM4 assumption, as in Appendix B.

GMM5 is the estimator based on the moment conditions (4.9) and (4.2c). That is, compared

to GMM4 we just drop theb2i condition (4.2b). The number of moment conditions is 28. We will

call this estimatorGMM5(W) when the nuisance parameters are evaluated using the GMM3(W)

results, andGMM5(P) when the nuisance parameters are evaluated using the GMM3(P) results.

CLS is the concentrated least squares estimator of Section 5. Its asymptotic variance is evalu-

ated as in Appendix D.

In addition, we also consider the following estimators from the existing literature.

WITHIN is the standard within (fixed-effects) estimator that assumes time-invariant efficiency.

See Schmidt and Sickles (1984).

MLE1 is a Battese-Coelli (1992)-type estimator. The model is still (6.1) but now we assume

thatεit is i.i.d.N(0, σ2
ε ) whereasαi is i.i.d. as the truncation ofN(0, σ2

α). See Battese and Coelli

(1992) for details of estimation of the inefficiencies.

MLE2 is an extension of MLE1, as follows. The model for MLE1 is not really comparable to

our model for GMM, because the model for MLE1 has a time-invariant frontier. For MLE2 we

assert thatαi = α+ui, whereui is truncated normal, butα 6= 0. Now the error isεit+ui exp(θ(t−

1)), so that we have a model of Battese-Coelli type, but the regression function (frontier) contains

α exp(θ(t− 1)) which is time varying. An empirically relevant obseration is thatα andγ are only

separately identified whenθ 6= 0.

Comparing estimators, WITHIN can be viewed as a special case of GMM1. GMM1 relies
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on less assumptions than GMM3. The MLE2 results rely on stronger assumptions. In particular

MLE2 makes the “random effects” assumption thatαi is independent of the regressors. Moreover,

the individual effectsαi in the MLE model are also restricted to be i.i.d. half-normal (i.e., to be

positive) andεit to be i.i.d. normal. The other GMM estimators (GMM2, GMM4, GMM5, CLS)

represent attempts at simplication of GMM1 or GMM3. As noted, MLE1 is really non-comparable

to the other estimators.

6.4 Empirical Results

The parameter estimates for the cost frontiers are presented in Table 1. All of the output coefficients

are positive, except for one coefficient for GMM1(P), indicating that the estimated cost frontiers

are, at the sample geometric mean, increasing in outputs. The input price elasticities are also

positive at the geometric mean. These results confirm the positive monotonicity of the cost frontiers

with respect to input prices and assure positive input cost-shares. Borrowed Money represents

about 65 percent of banks’ total cost, while Labor represents about 30 percent, and Physical Capital

less than 5 percent.

Returns to scale can be estimated as one minus the scale elasticity; that is, as one minus the sum

of the output cost elasticities. At the sample mean, the scale elasticity and returns to scale are only

a function of the first-order output parameters. The results indicate moderately increasing returns

to scale. However, this differs somewhat over methods of estimation. We can distinguish three

groups of estimators in terms of their estimated returns to scale. For GMM2(P or W), GMM4,

GMM5(P or W), CLS and MLE(1 or 2), this value is positive but less than0.10, indicating the

existence of moderate scale economies, as found in many past analyses of Spanish banks. These

scale economies, however, are larger for WITHIN, GMM1(W) and GMM3(W), and they are un-

reasonably large for GMM1(P) and GMM3(P).

Next we consider the levels of cost efficiency implied by these estimates. The cost efficiency
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indexes are obtained using equation (6.5), except for the MLE estimators, where we follow Battese

and Coelli (1992), with minor modifications to accomodate the case of a cost frontier instead of a

production frontier.

Table 2 reports the yearly average of the estimated efficiency levels. For GMM4, GMM5(P or

W), CLS and MLE(1 or 2) we obtain a mean efficiency index of approximately 85 or 90 percent.

In these cases the average efficiency levels are similar to those found in other studies using the

same data set (see, for instance, Cuesta and Orea, 2002). However, the scores are slightly lower

for GMM1(W), GMM2(P or W) and GMM3(W), even lower for WITHIN, and ridiculously low

for GMM1(P) and GMM3(P).

Except for the WITHIN estimator (where time-invariance of efficiency is imposed), the cost

efficiency indexes increase or decrease over time on the basis of the sign ofθ. If this parameter

is positive (negative), efficiency decreases (increases) and the differences among firms increase

(decrease) due to the exponential functional form ofλt(θ). The estimatedθ value is positive in all

cases, and it is statistically different from zero except for GMM2(P or W), GMM1(P), GMM3(P)

and MLE1. For GMM2(P or W), the estimatedθ is not small, but its standard error is very large.

Conversely, GMM1(W) and GMM3(W) give relatively small values ofθ but they are still signifi-

cant because their standard errors are small. Except for MLE1, the estimators that have the smallest

values ofθ (namely WITHIN, GMM1(P or W) and GMM3(P or W)) are also the ones that have

the lowest efficiency scores.

In Table 3 we show the Spearman rank correlation coefficients between the efficiency levels

estimated using the alternative models. Here the “observations” are the efficiency rankings of the

various banks at a given time period (t). The efficiency levels vary overt but the ranks do not, so

these rank correlations are the same fort = 1, 2, . . . , T . The rank correlation coefficients are often

high (in general, over0.8), indicating that choosing a specific estimator is not necessarily a crucial

issue when ranking firms in terms of their efficiency levels. However, WITHIN, GMM1(P) and
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GMM3(P) are outliers, in the sense that their efficiencies do not correlate well with the efficiencies

from the other methods, though they correlate strongly with each other. Recall that these three

methods gave the lowest average efficiencies and also those that varied least over time, so they are

outliers in many senses.

The estimated efficiency scores for the first period are graphed according to bank size in Fig-

ure 1. This figure seems to show a negative correlation between efficiency and size. We can see

that again WITHIN, GMM1(P) and GMM3(P) are outliers, in that the efficiency levels are lower

and they decrease more markedly with bank size. This is true to a lesser extent for GMM1(W) and

GMM3(W). Even for the other methods, however, the efficiency levels are low for the very largest

banks. This is especially apparent for the five biggest savings banks, which are the result of large

mergers that took place in the early 1990’s. Hence, these results support the argument that merged

banks are less efficient than non-merged banks, as found also by Cuesta and Orea (2002).

Having discussed the economic results implied by our estimates, we now turn to a more econo-

metrically oriented discussion. The basic issue is how to choose among these different estimators.

We want to ask whether any of the models appear to be adequate and which seem to be best, in

some sense. These are important and difficult questions in many efficiency estimation exercises,

of course.

We will begin with the estimators that rely on the Orthogonality Assumption only, namely,

GMM1 and GMM2. We can test the validity of the Orthogonality Assumption (and also the cor-

rectness of the regression specification) using the usual GMM overidentification test. A little no-

tation will be useful here. LetN (= 50) be the number of observations,s (= 22) be the number of

parameters, andr be the number of moment conditions (e.g., for GMM1(W),r = 846). A standard

GMM result is that the minimized value of the GMM criterion function is asymptotically (for large

N ) distributed as chi-squared, with degrees of freedom equal to the degree of overidentificaion.

This degree of overidentification is usually quoted asr− s, but this may not be appropriate whenr
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is larger thanN . We will usemin(r,N)− s as our degrees of freedom, sincemin(r,N) is the rank

of the estimated variance matrix of the moment conditions, whose inverse (or generalized inverse)

is used in calculating the criterion function. This distinction matters only whenN < r, as is true

for GMM1(W) and GMM3(W). Rejection of the joint hypothesis of correct specification and valid

moment conditions is indicated by a significantly large chi-squared value.

For GMM2, the estimation problem is exactly identified so there is no overidentification test.

For GMM1(W), we obtain a criterion function of28.5, which is unremarkable in a chi-squared

distribution with50 − 22 = 28 degrees of freedom. For GMM1(P), the statistic is4.47, which

is certainly not significantly large in a chi-squared distribution with36 − 22 = 14 degrees of

freedom. In fact, the opposite is true: such a small value should arise with a probability of less

than0.01. This does not argue against the validity of the moment conditions but it indicates some

problem, perhaps a failure of asymptotics to be reliable. We conclude that there is no strong

evidence against the validity of the Orthogonality Assumption. However, having said that, we are

not satisfied with the results that come from any of these estimators. The GMM1(P) results are

simply not believable, as discussed above. For GMM1(W), the results are somewhat strange also,

and we do not trust the accuracy of the asymptotic results, given the very large number of moment

conditions. For GMM2(P or W), many of the results seem plausible, but the level of precision is

too low to be acceptable. For example, the standard error for the estimate ofθ is over ten times

larger for GMM2 than for any other method. This may argue against the validity of the NCH

assumption. However, it is also reasonable to wonder whether we might just have the “random

effects” case that the effects are uncorrelated with all of the explanatory variables. In this caseθ is

not identified under the Orthogonality Assumption only.

Now consider estimators that use the Covariance Assumption in addition to the Orthogonality

Assumption. We can test the hypothesis of the validity of the Covariance Assumption (as well as

the model specification and the Orthogonality Assumption) using the GMM overidentification test
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for any of the GMM estimators that use these assumptions. GMM3(W) has a chi-squared statistic

of 27.7, which is unremarkable in a chi-squared distribution with28 degrees of freedom. GMM3(P)

has a statistic of10.2, which is suspiciously small, not large, with20 degrees of freedom. GMM4

has a statistic of39.4, which is significant at about the0.05 level. GMM5(W) has a statistic of

7.98, which is not significant at usual levels. GMM5(P) has a statistic of12.0, which is significant

at about the0.10 level. Thus there is some evidence, but not overwhelmingly strong evidence,

against the Covariance Assumption.

We can also test theb2i moment conditions (4.2b) separately from theb3i moment conditions

(4.2c). Here we use the general GMM result that, if we move froms moment conditions toq > s

conditions (and where the smaller set is a subset of the larger set), the difference in the GMM

criterion functions is asymptotically chi-squared withq − s degrees of freedom. To test theb3i

conditions, we compare GMM3(P) to GMM1(P), giving a statistic of10.22− 4.47 = 5.75, which

is not significant in a chi-squared with42 − 36 = 6 degrees of freedom. We can test theb2i

conditions by comparing GMM4 to GMM5(W), in which case the statistic is39.4 − 8.0 = 31.4,

which is significant at about the0.05 level in the chi-squared distribution with28−8 = 20 degrees

of freedom. Again there is some evidence but not extremely strong evidence against the validity of

the moment conditions implied by the Covariance Assumption.

Among these estimators, we would discard GMM3(P) on the basis of its too-small overidenti-

fication test statistic and its economically unbelievable results, and we would discard GMM3(W)

because we do not trust the validity of the asymptotic results with so many moment conditions.

Among the other estimators (GMM4, GMM5(P or W), and also CLS) there is less basis for choice,

but fortunately it is also the case that the economically interesting results do not depend very much

on which of these estimators one would choose. It is probably fair to say that GMM4 looks better

than GMM5(P or W), since the estimates are quite similar but the level of precision is much better

for GMM4. This argues against the assumption of normality of the errors (εit) since under the
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normality assumption GMM5 should be just as efficient as GMM4.

Finally, we turn to the MLE estimators. These depend on the Orthogonality and Covariance

assumptions, but also on the “random effects” assumption and on distributional assumptions for

the εit and theαi. We can decisively reject the MLE1 model in favor of the MLE2 model, since

the parameterα (see the discussion of MLE2 in Section 6.3) is very significantly different from

zero. The MLE2 results are economically not terribly different from those from GMM4 (or CLS

or GMM5, for that matter), a reassuring result in the sense that those models that we have trouble

choosing between do not give strikingly different answers.

7 Conclusions

In this paper we have considered a panel data model with parametrically time-varying coefficients

on the individual effects. Following Ahn, Lee and Schmidt (2001), we have enumerated the mo-

ment conditions implied by alternative sets of assumptions on the model. We have shown that our

sets of moment conditions capture all of the useful information contained in our assumptions, so

that the corresponding GMM estimators exploit these assumptions efficiently.

We have also considered concentrated least squares estimation. Here the incidental parameters

problem is relevant because we are treating the fixed effects as parameters to be estimated. An

interesting result is that the consistency of the least squares estimator requires both exogeneity

assumptions and the assumption that the errors are white noise. Furthermore, given the white

noise assumption, the least squares estimator is inefficient, because it fails to exploit all of the

moment conditions that are available.

We show how the GMM estimation problem can be simplified under some additional assump-

tions, including the assumption of no conditional heteroskedasticity and a stronger conditional

moment independence assumption. Under these assumptions we also give explicit expressions for
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the variance matrices of the GMM and least squares estimators.

Finally, we apply these GMM estimation methods to the measurement of cost efficiency of

Spanish savings banks over the period 1992–1998. Different estimators give different results,

and some estimators give very poor results. However, some of these estimators can be rejected

on statistical grounds, and others give results that are too ridiculous to be taken seriously. Those

methods that are not rejected on statistical or economic grounds give results that are similar to each

other, and also to the results from previous analyses of these data. We conclude that our GMM

methods can be practically useful.
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APPENDIX

A GMM Using a Subset of the Instruments

First we consider estimation under the orthogonality assumption only. The available moment con-

ditions areb1i as given in equation (3.2). They assert thatWi in uncorrelated with(uit− λtui1) for

t = 2, . . . , T , whereWi is the “instrument” vector that containsXi1, . . . , XiT andZi.

Now we suppose that we use only a subset of the instruments. So, letPi be any subset ofWi,

and we consider the moment conditions

EbP1i(β, γ, θ) = E[G(θ)′ui(β, γ)⊗ Pi] = 0, (A.1)

which is the same as (3.2) exceptPi replacesWi. Now letV P
11 = EbP1ib

P ′
1i , of which a consistent

estimate would be

V̂ P
11 =

1

N

N∑
i=1

bP1i(β̃, γ̃, θ̃)b
P
1i(β̃, γ̃, θ̃)

′ (A.2)

whereβ̃, γ̃, θ̃ is any consistent estimate. LetBP
1 be the matrix of expected derivatives ofbP1i with

respect toβ, γ andθ. Then a consistent estimate ofBP
1 is

B̂P
1 =

1

N

N∑
i=1

B̂P
1i, B̂P

1i = −(G̃′Xi, G̃
′1TZ

′
i, ũi1Λ̃∗)⊗ Pi (A.3)

whereG̃, ũi1 andΛ̃∗ are evaluated at any consistent estimate. Finally,(B̂P
1 V̂

P
11
−1B̂P

1 )−1 is a con-

sistent estimate of the asymptotic variance of
√
N times[(β̂ − β)′, (γ̂ − γ)′, (θ̂− θ)′]′, where these

are the GMM estimates from (A.1).

Next we consider estimation under the orthonality and covariance assumptions. In this case

the set of available moment conditions consists ofb1i, b2i andb3i as given in equation (4.2). Now

suppose that we usePi instead ofWi, so that the moment conditions we use are expressed bybP1i,

b2i andb3i. Let bPi be the vector that containsbP1i, b2i andb3i; let V P be its variance matrix, andBP
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be its expected derivative matrix. We can estimateV P as in (A.2) above, but withbP1i replaced by

bPi . The expected derivative matrixBP has blocksBP
1 , B2 andB3 (arranged vertically).BP

1 can

be estimated as in (A.3).B2 andB3 do not depend on whether we usePi orWi. We can estimate

B2 by

B̂2 =
1

N

N∑
i=1

B̂2i, where (A.4a)

B̂2i = −H ′[(G̃′Xi, G̃
′1TZ

′
i, ũi1Λ̃∗)⊗ ũi + G̃′ũi ⊗ (Xi, 1TZ

′
i, 0)]. (A.4b)

Similarly we can estimateB3 by

B̂3 =
1

N

N∑
i=1

B̂3i, where (A.5a)

B̂3i = − λ̃
′ũi

λ̃′λ̃
(G̃′Xi, G̃

′1TZ
′
i, ũi1Λ̃∗)−

1

λ̃′λ̃
G̃′ũi

(
λ̃′Xi, λ̃

′1TZ
′
i, Ci

)
(A.5b)

Ci = −ũ′iΛ̃ + 2
λ̃′ũi

λ̃′λ̃
λ̃′Λ̃ (A.5c)

B Variance Expressions That Do Not Depend on NCH or CIM4

First we will show how to calculate an estimate of the asymptotic variance matrix of the GMM es-

timate based on (3.13). The consistency of this estimate does not depend on the NCH assumption.

Our estimate will be of the form(B̂′V̂ −1B̂)−1. HereV̂ is an estimate of the variance matrix of

the moment conditions, and it can be constructed in the usual way as the average over observations

of the sums of squares and cross-products of the moment conditions. (That is, the calculation is

analogous to (A.2) above, but with a different set of moment conditions.) Similarly, the estimate

B̂ is an avarage over observations of matrices of derivatives of the moment conditions with respect

to the parameters. (That is, it is analogous to (A.3), (A.4) or (A.5) above.) To calculate these

derivatives, we can simply replace the termG′ui in (3.13a), (3.13b) and (3.13c) by the matrix

−[G̃′Xi, G̃
′1TZ

′
i, ũi1Λ̃∗]. (B.1)
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In doing so, we are ignoring the fact that the terms preceedingG′ui depend onθ. But the derivatives

of these terms would be multiplied byG′ui, and the expectation of this product is zero, so they can

be ignored.

Similar considerations apply to the GMM estimation based on (4.9), (4.2b) and (4.2c). We can

construct an estimate of its variance matrix that does not depend on the correctness of the CIM4

assumption. The only complicated issue is the estimation of the expected derivative matrices. This

follows from the previous discussion, as follows. (i) For the expected derivative matrix of (4.9),

replaceG′ui by −(G̃′Xi, G̃
′1TZ

′
i, ũi1Λ̃∗) and average over observations. (ii) For the expected

derivative matrix of (4.2b) and (4.2c), see (A.4) and (A.5) above.

C The Asymptotic Variance of the GMM Estimator Based on
Orthogonality and Covariance Assumptions

Under the Orthogonality and Covariance Assumptions, the moment conditions we have areb1i =

G′ui⊗Wi, b2i = H ′(G′ui⊗ ui), andb3i = (λ′λ)−1λ′ui⊗G′ui. In Appendix A we showed how to

estimate the variance of the GMM estimate based on these moment conditions. In this Appendix,

we give an explicit expression of this variance matrix. The expression is calculated under the CIM4

assumption.

Let δ = (β′, γ′, θ′)′. LetBj = −E(∂bji/∂δ) for j = 1, 2, 3, evaluated at the true parameters.

Let Vjk = Ebjib
′
ki for j, k = 1, 2, 3, evaluated at the true parameters. Defineκ3 = Eε3it/σ

2
ε and

κ4 = E(ε4it − 3σ4
ε )/σ

2
ε . Let µW = EWi; Φ = Φ(θ) = λ∗λ

′
∗ + diag(λ2, . . . , λT ); and Φ∗ =
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λ∗λ
′
∗ + diag(λ2

2, . . . , λ
2
T ), whereλ∗ = (λ2, . . . , λT )′. After some algebra, we get

V11 = σ2
ε (G

′G⊗ ΣWW ) (C.1)

V12 = σ2
ε (G

′G⊗ ΣWαλ
′)H (C.2)

V13 = σ2
ε

[
G′G⊗ ΣWα +

κ3

λ′λ
(Φ⊗ µW )

]
(C.3)

V22 = σ2
εH
′[G′G⊗ (σ2

αλλ
′ + σ2

ε IT )]H (C.4)

V23 = σ2
εH
′
{[(

σ2
α +

σ2
ε

λ′λ

)
G′G+

κ3

λ′λ
µαΦ

]
⊗ λ
}

(C.5)

V33 = σ2
ε

{(
σ2
α +

σ2
ε

λ′λ

)
G′G+ 2

κ3

λ′λ
µαΦ +

κ4

(λ′λ)2
Φ∗

}
(C.6)

and

B1 = −[(G⊗ ΣWW )′SX , (G⊗ ΣWW )′SZ , Λ∗ ⊗ ΣWα] (C.7)

B2 = −H ′(IT−1 ⊗ λ)[(G⊗ ΣWα)′SX , (G⊗ ΣWα)′SZ , σ
2
αΛ∗] (C.8)

B3 = −[(G⊗ ΣWα)′SX , (G⊗ ΣWα)′SZ , σ
2
αΛ∗]. (C.9)

With these results, the variance-covariance of the GMM estimator is

cov
√
N(δ̂ − δ) =

(B′1, B
′
2, B

′
3)


V11 V12 V13

V ′12 V22 V23

V ′13 V ′23 V33




B1

B2

B3




−1

. (C.10)

The evaluation of these results requires an estimate ofσ2
α, an issue not previously discussed. A

very simple estimate ofσ2
α can be obtained (assuming that the Covariance assumption holds) by

solving (4.8) of the text. This yields

σ̂2
α =

1

λ̂t

1

N

N∑
i=1

ûitûi1 (C.11)

for any singlet (e.g. t = 2). A slightly more complicated estimator is as follows. Under the

Covariance assumption,G′ΣεεG = σ2
εG
′G. Therefore, we can estimateσ2

ε by

σ̂2
ε = trace(Ĝ′ΣεεG)/trace(Ĝ′Ĝ) (C.12)
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whereĜ′ΣεεG is given in equation (3.15), andtrace(Ĝ′Ĝ) =
∑T

t=2(1 + λ̂2
t ). Next, definêΣ as the

left hand side of equation (3.14); it is a consistent estimate ofσ2
ε IT + σ2

αλλ
′. So then a consistent

estimate ofσ2
α is

σ̃2
α = trace(Σ̂− σ̂2

ε It)/trace(λ̂λ̂′) = [trace(Σ̂)− T σ̂2
ε ]/λ̂

′λ̂. (C.13)

D The asymptotic variance of the CLS estimator

In this Appendix we evaluate the asymptotic variance of the CLS estimator. We obtain an explicit

expression by imposing the CIM4 assumption.

By the standard Taylor series expansion technique, we find that the asymptotic variance will be

equal toA0B
−1
0 A0 where

A0 = E
∂2Ci
∂δ∂δ′

, and B0 = E
∂Ci
∂δ

∂Ci
∂δ′

(D.1)

evaluated at the true parameter. Let us calculate each of them. LetΛ = ∂λ(θ0)/∂θ′ = (0p×1, Λ′∗)
′.

B0 is the same as in Ahn, Lee and Schmidt (2001, p. 253). LetΨ = G(G′G)−1Φ · (G′G)−1G′;

Ψ∗ = G(G′G)−1Φ∗(G
′G)−1G′; andµα = Eαi. Then

E
∂Ci
∂β

∂Ci
∂β′

= 4σ2
εS
′
X(PG ⊗ ΣWW )SX (D.2)

E
∂Ci
∂β

∂Ci
∂γ′

= 4σ2
εS
′
X(PG ⊗ ΣWW )SZ (D.3)

E
∂Ci
∂β

∂Ci
∂θ′

= 4σ2
εS
′
X

[
PG ⊗ ΣWα +

κ3

λ′λ
(Ψ⊗ µW )

]
Λ (D.4)

E
∂Ci
∂γ

∂Ci
∂γ′

= 4σ2
εS
′
Z(PG ⊗ ΣWW )SZ (D.5)

E
∂Ci
∂γ

∂Ci
∂θ′

= 4σ2
εS
′
Z

[
PG ⊗ ΣWα +

κ3

λ′λ
(Ψ⊗ µW )

]
Λ (D.6)

E
∂Ci
∂θ

∂Ci
∂θ′

= 4σ2
εΛ
′
{(

σ2
α +

σ2
ε

λ′λ

)
PG + 2

κ3

λ′λ
µαΨ +

κ4

(λ′λ)2
Ψ∗

}
Λ. (D.7)
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A0 is obtained from the following.

E
∂2Ci
∂β∂δ′

= 2[S ′X(PG ⊗ ΣWW )SX , S
′
X(PG ⊗ ΣWW )SZ , S

′
X(PG ⊗ ΣWα)Λ] (D.8)

E
∂2Ci
∂γ∂δ′

= 2[S ′Z(PG ⊗ ΣWW )SX , S
′
Z(PG ⊗ ΣWW )SZ , S

′
Z(PG ⊗ ΣWα)Λ] (D.9)

E
∂2Ci
∂θ∂δ′

= 2[Λ′(PG ⊗ Σ′Wα)SX , Λ′(PG ⊗ Σ′Wα)SZ , σ
2
αΛ′PGΛ]. (D.10)
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