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Dynamically-Efficient Incentive Regulation

of Networks with Sunk Costs

Abstract

Incentive regulation allows decentralised decision-making under regulatory parame-

ters set on the basis of industry characteristics. When there is uncertainty, sunk

costs, and flexibility in the timing of investment a monopoly will invest later than

is socially desirable because it garners only a fraction of the benefits. This study

considers the design of regulatory profit caps based on a measure of cost, either

historical or replacement cost, to which a regulatory rate of return is applied. It

demonstrates that the sources and extent of supply and demand uncertainties, and

thereby characteristics of the industry, determine whether historical or replacement

cost regulation is desirable. The welfare optimising level of the regulatory rate

of return differs between historical and replacement cost regulation, this return is

generally higher than the weighted average cost of capital, and welfare is degraded

much more if it is set below, as opposed to above, the optimal regulatory return.
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Dynamically-Efficient Incentive Regulation

of Networks with Sunk Costs

1 Introduction

This paper examines welfare produced by regulated firms that have a significant pro-

portion of their costs generated by irreversible (sunk) investment. The extent to which

investment in networks is subject to uncertainty and is sunk is arguable (see Hausman

(1999) and Economides (1999) for the debate).1 However, it is widely accepted that there

is significant uncertainty attached to network costs and demand, and that much invest-

ment in physical networks is sunk because it has a specific use and because, once in place,

it is very expensive to recover for use elsewhere. The irreversibility implies that the value

attached to waiting is a critical determinant of the optimal time to invest. Because even

a monopoly does not garner all the surplus from investment, it may delay the act of

investing beyond that desired by a welfare-maximizing social planner.2

In this paper we examine the effect on the timing of investment of a regulation-imposed

profit cap that is composed of a cost-base and a regulatory rate of return. We consider

both the level of the regulatory rate of return (the “cap-return”) and whether it is applied

to historical cost or future best-practice replacement cost of the network. The regulation

is dynamically efficient if it produces the largest (present value) of the sum of producer

and consumer gain to the indefinite future.

Our setting is regulation within the context of decentralised investor decision-making.

It presumes that the only instrument of regulatory policy is the profit cap. There are three

points to be made about such an environment. First, the approach is in the spirit of most

forms of incentive price regulation and rate of return regulation.3 Incentive regulation can

be viewed as a weak form of rate of return regulation. In the latter, prices are set on the

basis of a revenue requirement generated by actual, or estimated, production costs and a

regulatory-chosen rate of return. Incentive regulation is weaker in that profits are allowed

to exist without the regulator adjusting the cap over intervals of time, but ultimately the

determination of the level of the cap is revised and typically a significant input to the

revision is some indicator of profitability. We apply the pure form of incentive regulation

1Hausman (1999) argues that, because of their sunk costs, telecommunications networks cannot mimic
a contestable market but must be competitively imperfect. He criticizes the ECPR rule of Baumol on
that basis. Hausman considers regulatory schema with forward-looking caps. The rule is agnostic as to
whether the investments should be made by an incumbent or the entrant: the same criterion applies.

2The notion that investment has significant beneficial externalities extends at least as far back as
Sidgwick (1887) as cited in Baumol (p. 122, 2000).

3The profit cap could be replaced with a revenue, even price, cap without altering the qualitative
features of our results under certain conditions.
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where the cap is entirely determined by fundamental demand and supply characteristics

of the industry.

Second, our approach enables decentralised decision-making subject only to a profit

cap that is designed to maximise welfare by the level of the regulatory rate of return and

by its application to historical cost or future best-practice costs. In fact, under many forms

of incentive regulation, and more so under standard rate of return regulation, investment

is significantly affected by the regulator. Regulatory prescription of investment that firms

may not otherwise have carried out has precipitated the phenomenon of stranded assets

that have constrained deregulation and the adoption of technological advance in electricity

and telecommunications in the USA since the 1970s (Spulber, 1989; Sidak and Spulber,

1997). In our model the profit cap allocates the total surplus generated by the relevant

market between the firm’s shareholders and consumers, but it does not affect the size of

the surplus. Social welfare is affected by the timing of investment. We do not specifically

consider the issues of divergence of firm and regulator actions made possible by asymmetric

information holdings between the firm and the regulator, or allow the regulator to dictate

investment. The effect on consumer and economic welfare of mis-timed investment or

product adoption is often very substantial and we examine this independently of other

regulatory issues.4

Thirdly, our approach treats uncertainty explicitly. Uncertainty stemming from both

systematic risk and industry-specific idiosyncratic risk properly affects investment deci-

sions and these are jointly considered in our model. The standard approach incorporates

systematic risk in the calculation of a firm’s weighted average cost of capital (WACC).

However, systematic risk is but one element of risk that investment decisions must consider

if they are to enhance economic efficiency. To ignore industry-specific risks is to ignore

firms’ inputs to investment decision-making and thereby important factors determining

investment. It is rational and socially desirable for investment to recognise these sources

of uncertainty because of the economic costs of getting the timing of investment wrong

and the potential downside of investments (in particular, the costs of bankruptcy). Our

model suggests that demand and supply uncertainty are critically important in setting

the level of the cap-return and in the choice of historical or future cost base. Indeed,

these industry-specific characteristics determine which should be chosen, and they affect

the extent to which systematic risk should be incorporated in the design of the cap.

We find that if a regulated firm has flexibility in timing of investment, then regulating

it utilising future replacement (forward looking) cost as an input induces some delay in

investment. For some levels of the cap-return, utilising historical (backward looking) cost

4Goolsbee (2000) makes the point that the welfare cost of delayed investment may be very high
especially where new products are being introduced. The cost arises because, in contradistinction to
welfare analysis of existing products, delayed investment in new products results in a “missing market”
where all consumer and producer surplus is “missing”.
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as an input can lead to earlier investment than the unregulated case, but only if the

network’s replacement cost is expected to fall and/or is significantly negatively correlated

with changes in the welfare surplus produced. Otherwise, backward-looking regulation

also leads to later investment. We conjecture that telecommunications — with rapid

technical change producing future cost uncertainty and cost reductions correlated with

gains in consumer welfare — is more a candidate for historical cost regulation than are

more technologically stable industries such as gas and electricity transmission. We show

that the systematic risk component of the allowed rate of return differs between backward

and forward looking regulation and that the welfare effect of the cap-return is strongly

asymmetric: setting the cap-return below the optimal level produces a much greater

degradation of consumer and total welfare than does setting the cap-return too high. We

also note that the optimal level of the cap-returns is higher than the firms’ WACCs in our

examples, and that this is consistent with evidence about investment hurdle rates that

firms have been observed to adopt.5

Our approach is closest to Guthrie, Small and Wright (2001), which is the only other

formal analysis of this issue that we are aware of. That paper considers setting cost-based

access charges for a network whose cost is uncertain. The profit and consumer surplus

flow from that access charge is known. Guthrie, Small and Wright’s broad conclusion is

that historical cost is preferred on welfare grounds to replacement cost in most situations.

Only when replacement cost is expected to rise with little uncertainty is it likely to be

preferred as it induces earlier investment. Our paper differs from Guthrie, Small and

Wright in respect of its incorporation of uncertainty in both network cost and economic

surpluses. Our different results stem in large part from the importance of the correlation

between these surpluses and costs, but they are affected by other characteristics of the

market as well.

2 Model set-up

A firm has the perpetual right to invest in a network. If investment occurs at date T ,

the firm incurs a lump sum (real) cost of kT which evolves according to the geometric

Brownian motion

dkt = µkktdt+ σkktdζt,

where µk and σk are constants and ζt is a Wiener process. We assume that at any time

at which the network is operating, it will die during the next short interval of length dt

with probability φ dt, for some constant φ. Thus, the network’s lifetime is drawn from

an exponential distribution, and the expected lifetime of each incarnation of the network

is 1/φ years. Immediately after the network dies, the firm has the right to rebuild. If

5Poterba and Summers (1995) provide evidence of investment hurdle rates for Fortune 1000 firms.
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reconstruction occurs at date T ′, the firm must pay the lump sum kT ′ at that date.6

Investment is irreversible.

If the network is in place at date t, it generates a flow of total surplus θt. This evolves

according to the geometric Brownian motion

dθt = µθθtdt+ σθθtdξt,

where µθ and σθ are constants and ξt is a Wiener process. The two shocks can be corre-

lated: dζtdξt = ρkθdt for some constant ρkθ ∈ [−1, 1]. We assume that the firm can extract

a constant proportion γ of the total surplus if the network is not regulated. That is, the

unregulated network generates a flow of profit equal to γθt and of consumers’ surplus

equal to (1− γ)θt.
The stochastic process for the replacement cost of the network can reflect the adoption

of best-practice techniques, which may also produce enhanced services that are reflected

in the total surplus generated by the network, as well as capital price changes. The

correlation between shocks to economic surplus and capital costs can reflect this. For

example, a negative correlation could reflect network cost reductions that are associated

with service enhancements that produce increases in economic surpluses. In this model

shocks arrive independently over time, but the use of geometric Brownian motion implies

that they will have long term effects. The parameters of these processes determine the

firm’s behavior and thereby affect the optimal regulatory profit cap.

In our model a regulator acts as a von Stackelberg leader. It imposes a cap on the

firm’s profit flow from the network, based either on the replacement or historical cost

of the network.7 The firm responds by choosing its investment policy. We evaluate the

various regulatory policies by valuing the flow of total surplus from the network assuming

the firm follows the profit-maximizing investment policy.

We consider two different forms of regulation. In the first case, the level of the profit

cap is proportional to the cost of replacing the network. Thus, if investment occurred at

time T , profit at date T + t is capped at ρrckT+t, where ρrc is the maximum allowable

rate of return (the cap-return). Actual profit at date T + t is

π̂T+t = min{γθT+t, ρrckT+t}. (1)

The second case caps the profit according to the cost of building the network, measured at

the time investment took place. Thus, if investment occurred at date T , and the network

6Dixit and Pindyck (pp. 202–204, 1994) make this assumption when modelling depreciation. We mimic
their procedure for determining the firm’s optimal investment policy, although the regulation introduced
below makes the analysis much more complicated.

7This could be implemented by taxing network profits above this cap. Alternatively, knowledge of the
cap may constrain the behavior of the network in such a way that it always keeps its realised profit at or
below the level of the cap.
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is still operating t years later, profit at date T + t is capped at ρhckT , where ρhc is the

cap-return. The actual profit at date T + t therefore equals

π̂T+t = min {γθT+t, ρhckT} . (2)

We assume that regulation has no effect on the total surplus. Therefore the flow of

consumers’ surplus at date T + t equals θT+t − π̂T+t.
8

We value these future flows of profit and consumers’ surplus using contingent claims

analysis. Since kt and θt are not the prices of traded assets we make the standard as-

sumption that traded assets exist with returns which are perfectly correlated with dkt

and dθt. Suppose that the expected rates of return for these assets are r + λk and r + λθ

respectively, where r is the real riskless interest rate and the λs are risk premia which can

be derived from an equilibrium asset pricing model such as the CAPM. Any future cash

flow can then be valued by discounting the expected cash flow at the real riskless inter-

est rate, provided that the expected value is calculated using the following ‘risk-neutral’

process for the state variables9:

dkt = (µk − λk)ktdt+ σkktdζt,

dθt = (µθ − λθ)θtdt+ σθθtdξt.

We close this section by defining some constants which will appear frequently in the

rest of the paper:

µ = (µθ − λθ)− (µk − λk),

σ2 = σ2
k − 2ρkθσkσθ + σ

2
θ ,

β1 =

(
1

2
− µ

σ2

)
+

√
2(r − µk + λk)

σ2
+

(
1

2
− µ

σ2

)2

,

β2 =

(
1

2
− µ

σ2

)
−

√
2(r − µk + λk)

σ2
+

(
1

2
− µ

σ2

)2

,

β3 =

(
1

2
− µ

σ2

)
+

√
2(r + φ− µk + λk)

σ2
+

(
1

2
− µ

σ2

)2

.

3 Welfare and investment behavior

This section is the most technical part of the paper. Section 3.1 derives overall welfare

as a function of the firm’s chosen investment policy. Sections 3.2 and 3.3 then derive the

firm’s optimal investment behavior under the two forms of regulation. We compare the

two forms of regulation in Section 4.

8Since π̂T+t ≤ γθT+t, the flow of consumers’ surplus will never fall below (1− γ)θT+t. In particular,
an operating network always generates a positive flow of consumers’ surplus.

9See Cochrane (Section 3.2, 2001) for a recent textbook treatment of risk-neutral pricing.
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3.1 Measuring welfare

The assumption that both kt and θt evolve according to geometric Brownian motion

greatly simplifies the model. It means that most of the analysis can be done in terms of

the variable yt = θt/kt, which evolves according to the geometric Brownian motion

dyt = µytdt+ σytdηt,

where µ and σ are constants defined at the end of Section 2 and ηt is a Wiener process.10

In particular, we can consider investment policies of the type “invest if θ/k exceeds a

given threshold, otherwise delay investment.” The timing of investment thus depends on

both the cost of building the network and the flow of surplus it can generate. Consider

what happens when an existing network breaks down. If the network’s replacement cost

is sufficiently low, relative to the total surplus, then it will be rebuilt immediately and the

flow of total surplus will be uninterrupted. However, if the replacement cost is relatively

high, (re)investment may be delayed. The total surplus will not begin to flow until the

relative cost has fallen sufficiently.

Our first result calculates the value of the future flow of total surplus assuming the

firm adopts an investment policy of this form.11

Proposition 1 Suppose the firm invests as soon as θ/k ≥ y∗ for some constant y∗. Then

at any time prior to investment, the value of the flow of total surplus equals

F (k, θ; y∗) = θβ1k1−β1
U(y∗)
(y∗)β1

,

where

U(y∗) =

(
1− β2

β1 − β2

)
y∗

r + λθ − µθ
+

(
β3 − 1

β1 − β2

)
y∗

r + λθ + φ− µθ

+

(
β2

β1 − β2

)
φ

r + λk − µk

−
(
β3 − β2

β1 − β2

)
. �

Consider the special case where, once built, the network will last forever. In this case

φ = 0, β3 = β1 and

F (k, θ; y∗)
k

=

(
θ

ky∗

)β1
(

y∗

r + λθ − µθ
− 1

)
.

That is, taking the network’s replacement cost as the numeraire, the present value equals

the net present (social) value of building the network, scaled by a factor less than one

10Exploiting the problem’s homogeneity in this way can be traced back at least to Margrabe (1978)
and his analysis of the option to exchange one asset for another, which was greatly simplified by taking
one asset as numeraire. Here all prices are expressed relative to the replacement cost of the network.

11Proofs for all results can be found in the appendix.
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which accounts for the delay until investment occurs. If y∗ is high, the investment payoff

will be high. However, we may have to wait a long time for θ/k to reach this threshold,

in which case the high investment payoff will be heavily discounted.

Proposition 1 gives the dependence of overall welfare on the firm’s investment thresh-

old. The firm will decide the timing of investment in practice. However, we can determine

the investment decision rule which a welfare-maximizing social planner would choose. If

investment in the network could not be delayed and the network could not be rebuilt, the

present value of the future flow of total surplus would equal θ/(r+λθ−µθ+φ). Investment

would therefore be socially optimal if θ/k ≥ r+ λθ − µθ + φ. The irreversibility of invest-

ing in the network makes the investment timing option valuable, raising the investment

threshold above r+ λθ −µθ +φ. However, as Dixit and Pindyck (p. 204, 1994) point out,

the ability not to rebuild the network in the future reduces the effect of irreversibility

— the original investment decision can effectively be reversed by not rebuilding the net-

work when it dies. This has the effect of lowering the threshold. The precise investment

threshold chosen by a social planner is given in Corollary 1.

Corollary 1 A social planner would invest as soon as

θ

k
≥ β3

β3 − 1
(r + λθ + φ− µθ).

�

It is straightforward to show that provided µk < r + λk + φ and µθ < r + λθ + φ then

the ‘option multiplier’ β3/(β3 − 1) is greater than 1.12 That is, the social planner will not

invest unless the present value of the flow of total surplus is significantly greater than the

cost of building the network.

The cost of delay is that society does not receive the flow of total surplus until some

later date. This opportunity cost must be balanced against the value of waiting. If

investment is delayed and either the network’s construction cost falls or the flow of total

surplus rises then investment can occur on more favourable terms; that is, the investment’s

(social) payoff will be higher. On the other hand, if the cost of building the network rises

or the flow of total surplus falls, investment can be further delayed. This ability to further

delay investment introduces an asymmetry into the payoff from delaying investment.

There is unlimited upside potential, but limited downside potential. As a result, the

expected payoff from delaying investment will be positive. Investment will only occur

when the opportunity cost of delaying investment exceeds this expected payoff from delay.

If the profit of the firm is unregulated, it receives a profit flow πt = γθt which is

proportional to the total surplus. When deciding when to invest, the firm measures the

cost of building the network against the present value of this flow. Both the firm and

the hypothetical social planner face the same lump sum cost, but the firm receives only

12In plausible circumstances the multiplier may be greater than 2. See Dixit and Pindyck (p. 204, 1994).
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a fraction (γ) of the flow. Thus, the firm will wait longer before investing. The following

corollary of Proposition 1 describes the exact investment behavior of the unregulated firm.

Corollary 2 If the firm is not regulated in any way, so that its profit flow is πt = γθt, it

will invest whenever

γθ

k
≥ β3

β3 − 1
(r + λθ + φ− µθ). �

The firm waits for profit to exceed the threshold, whereas the social planner waits for

surplus to exceed it. When both investment rules are expressed in terms of a threshold

for θ/k it is clear that the unregulated firm sets a threshold which exceeds the social

planner’s by a factor of 1/γ > 1.13

One possible response to this problem is the introduction of some form of regulation

which alters the firm’s investment incentives. We consider profit caps in the remainder of

this section.

3.2 Replacement cost

We start by supposing that the firm’s maximum allowable profit is proportional to the

replacement cost of its network, as in equation (1). The next proposition describes the

investment policy chosen by the firm when faced with this form of regulation.

Proposition 2 Suppose that the firm adopts a policy of investing whenever θ/k ≥ y∗ for

some constant y∗, and that the regulator imposes a cap on the firm’s profit flow which

is proportional to the network’s replacement cost. Then the firm’s optimal investment

threshold is defined implicitly by

β3 =
y∗g′rc(y

∗)
grc(y∗)− 1

, (3)

where

grc(y) = E

[∫ ∞

0

e−(r+λk+φ−µk)t min{γyt, ρrc}dt
∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]
(4)

and ρrc is the cap-return. At any time prior to investment, the value of the firm equals

θβ1k1−β1


y

∗h′rc(y
∗)− β2

(
hrc(y

∗)− 1− φ
r + λk − µk

)
(β1 − β2)(y∗)β1


 ,

where

hrc(y) = E

[∫ ∞

0

e−(r+λk−µk)t min{γyt, ρrc}dt
∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]
. �

13This presumes that the firm has no competition. As Dixit and Pindyck (Ch. 8 and 9, 1994) have
shown, feasible competition will generally bring forward investment, in many circumstances to a date
approximating that desired by the social planner.
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We can use Lemma 1 in the appendix to rewrite the expression for grc(y):

grc(y) =

∫ ∞

0

(
e−(r+λθ+φ−µθ)tγyN(d1) + e

−(r+λk+φ−µk)tρrcN(d2)
)
dt,

where

d1 =
− log(γy/ρrc)− (µ+ 1

2
σ2)t

σt1/2
, d2 =

log(γy/ρrc) + (µ− 1
2
σ2)t

σt1/2
.

Multiplying the resulting expression for grc(y) through by k gives

k grc(θ/k) =

∫ ∞

0

(
e−(r+λθ+φ)t(πeµθt)N(d1) + e

−(r+λk+φ)t(ρrcke
µkt)N(d2)

)
dt.

The term πeµθt is the expected unregulated profit t years after the network is built, and this

is discounted at rate r+ λθ + φ. The second component in the discount rate incorporates

the systematic risk of surplus shocks (and hence of unregulated profit shocks), while the

third adjusts for depreciation. The term ρrcke
µkt is the expected level of the cap t years

after the network is built, and this is discounted at rate r + λk + φ. Since the cap is

proportional to the network’s replacement cost, it is subject to replacement cost shocks,

explaining the second component of the discount rate — it adjusts for the systematic

risk of shocks to the cap. Once more, the third component adjusts for depreciation.

The integrand is (almost) a weighted average of two terms: the present value of profit,

assuming the cap is non-binding, and the present value of profit, assuming the cap is

binding. The ‘weights’ reflect the probabilities that unregulated profit will exceed the

cap.14

The network lasts forever in the special case where φ = 0. Then β3 = β1 and hrc(y) =

grc(y) for all y. This implies that the value of the firm prior to investment is

θβ1k1−β1

(
grc(y

∗)− 1

(y∗)β1

)
=

(
θ

ky∗

)β1

(kgrc(y
∗)− k).

The market value of the future profit flow at the time of investment is kgrc(y
∗), so that the

value of the firm equals the net present value at investment time, kgrc(y
∗)− k, multiplied

by a factor (y/y∗)β1 to account for the delay until investment occurs.

3.3 Historical cost

In the second form of regulation we consider, the firm’s maximum allowable profit is

proportional to the actual cost of building its network, as in equation (2). The next

proposition describes the investment policy chosen by the firm when faced with this form

of regulation.

Proposition 3 Suppose that the firm adopts a policy of investing whenever θ/k ≥ y∗ for

some constant y∗, and that the regulator imposes a cap on the firm’s profit flow which

14It is not actually a weighted average because the ‘weights’, N(d1) and N(d2), do not sum to 1.
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is proportional to the actual cost of building the network. Then the optimal investment

threshold is defined implicitly by

β3 =
y∗g′hc(y

∗)
ghc(y∗)− 1

, (5)

where

ghc(z) = E

[∫ ∞

0

e−(r+φ)t min{γzt, ρhc}dt
∣∣∣∣z0 = z, dzt = (µθ − λθ)ztdt+ σθztdηt

]
(6)

and ρhc is the cap-return. At any time prior to investment, the value of the firm equals

θβ1k1−β1


y

∗h′hc(y
∗)− β2

(
hhc(y

∗)− φ
r + λk − µk

)
+ (β3 − β2)(ghc(y

∗)− 1)

(β1 − β2)(y∗)β1


 ,

where

hhc(y) = φE

[∫ ∞

0

e−(r+λk−µk)tghc(yt)dt

∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]
.

We can use Lemma 1 to rewrite the expression for ghc(y):

ghc(y) =

∫ ∞

0

(
e−(r+λθ+φ−µθ)tγyN(d3) + e

−(r+φ)tρhcN(d4)
)
dt,

where

d3 =
− log(γy/ρhc)− (µθ − λθ +

1
2
σ2

θ)t

σθt1/2
, d4 =

log(γy/ρhc) + (µθ − λθ − 1
2
σ2

θ)t

σθt1/2
.

Multiplying the resulting expression for ghc(y) through by k gives

k ghc(θ/k) =

∫ ∞

0

(
e−(r+λθ+φ)t(πeµθt)N(d3) + e

−(r+φ)t(ρhck)N(d4)
)
dt.

The term πeµθt is the expected unregulated profit t years after the network is built, and

this is discounted at rate r+λθ +φ. The explanation for this discount rate is identical to

that for the corresponding term in Section 3.2. The term ρhck is the (certain) level of the

cap t years after the network is built, and this is discounted at rate r+φ. Since the cap is

based on the historical cost of building the network, it is not subject to replacement cost

shocks, so there is no adjustment for the systematic risk of shocks to the cap. Once more,

there is an adjustment for depreciation, and the integrand is (almost) a weighted average

of two terms: the present value of profit, assuming the cap is non-binding, and the present

value of profit, assuming the cap is binding. The ‘weights’ reflect the probabilities that

unregulated profit will exceed the cap.

Consider the special case where φ = 0 so that, once built, the network lasts forever.

Then β3 = β1 and hhc(y) = 0 for all y. This implies that the value of the firm prior to

investment is

θβ1k1−β1

(
ghc(y

∗)− 1

(y∗)β1

)
=

(
θ

ky∗

)β1

(kghc(y
∗)− k).
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Notice that kghc(y
∗) equals the market value of the future profit flow at the time of

investment, so that the value of the firm equals the net present value at investment time,

kghc(y
∗) − k, multiplied by a factor (y/y∗)β1 to account for the delay until investment

occurs.

4 Comparing the two forms of regulation

This section begins with a non-technical discussion of the two forms of regulation and the

intuition behind their relative performance. We use numerical analysis to obtain a deeper

understanding in Section 4.2.

4.1 The bad news principle

As we have shown, in the absence of competition the unregulated firm will delay invest-

ment longer than the social planner. The purpose of regulation is to induce investment

timing that more accords with that of the social planner. In evaluating profit cap regu-

lation under historical and replacement cost, the key insight is provided by the so-called

bad news principle first discussed by Bernanke (1983)15: the profit flow at the time of

investment must be sufficient to compensate the firm not only for its investment of capi-

tal in the network, but also for any bad news which may arise following the (irreversible)

investment decision. In our model, such bad news can take two forms: a fall in the net-

work’s replacement cost and a fall in profit. In the first case, if the reduction is large

enough the firm will wish it had delayed investment and thus benefited from the lower

construction cost; in the second case, if the reduction is large enough the firm will wish

it had not invested at all. The situation is summarized in the first panel of Table 1.

Capping profit according to the network’s replacement cost alters the potential for

bad news to affect a firm which invested early. As in the unregulated case, a fall in

replacement cost is bad news for a regulated firm which invested early — if it had delayed

investment, it could have paid less for the network — as is a reduction in the total surplus.

However, a reduction in the replacement cost of the network also tightens the profit cap

and therefore potentially lowers the profit flow. Furthermore, because profit is capped,

in any given state the present value of future profits under regulation will be less than

the unregulated case. Thus the set of states in which the network becomes unprofitable

grows when profits are capped according to the network’s replacement cost. Some good

news becomes bad news, and all bad news becomes worse. On average, the potential for

bad news is made worse by this form of regulation, so that the network’s initial profit

flow will have to exceed its opportunity cost of capital by an even greater margin before

investment occurs. Thus, this form of regulation delays investment.

15The ideas can also be found in Cukierman (1980).
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Table 1: Profit cap regulation and the bad news principle

Shock to Event Cost of project Profit flow

Unregulated firm Cost dkt < 0 Bad news –

Surplus dθt < 0 – Bad news

Replacement cost Cost dkt < 0 Bad news Bad news

Surplus dθt < 0 – Bad news

Historical cost Cost dkt < 0 Bad news Good news

Surplus dθt < 0 – Bad news

Notes. The table classifies changes in the two state variables as either good news or bad
news for a firm which has already invested in the network. News can impact on the cost of
capital invested in the network and on the present value of the profit flow generated by the
network.

The situation is more complicated when profits are capped according to the historical

cost of building the network. As in the unregulated case, a fall in replacement cost is

bad news for a regulated firm which invested early. However, this is tempered by the

realization that if the firm had delayed investment, the fall in the network’s replacement

cost would have resulted in a tightening of the cap on its future profits. By investing

early, the firm was able to lock in a permanently high cap. This reduces the extent of the

bad news from downward movements in the network’s replacement cost.16 Since imposing

a cap accentuates the effects of negative shocks to total surplus, the effect on investment

timing is ambiguous. We find that this form of regulation promotes investment in some

circumstances, and delays it in others, relative to the unregulated state. Two factors are

relevant.

The first factor is the drift in the network’s replacement cost. A downward trend in

replacement cost means that a regulated firm which invests early is more likely to get

the good news that by investing early it locked in a high level of the profit cap. The

downward trend in replacement cost makes it especially important for the firm to invest

early, and lock in the profit cap before it moves even lower. Thus, appropriate historical

cost-based regulation can promote investment.

The correlation between changes in the two state variables is the second factor affecting

the success of this form of regulation. If the two shocks are negatively correlated, any

16The effect is likely to be greatest for intermediate values of ρhc. When ρhc is very large, the cap
will almost never be binding, and the reduction in present value from lowering the cap slightly will be
negligible. When ρhc is small, the cap will be binding more often, but profits are capped so tightly that
the reduction in present value will be small. However, for intermediate values of ρhc, the cap will bind
often enough that any tightening will have a noticeable effect, while ρhc is large enough that the reduction
in the cap (ρhc dkt) will be significant.

12



reduction in replacement cost is likely to be accompanied by higher flows of total surplus,

and therefore higher flows of potential profit — investing early locks in a higher profit

cap when the firm experiences an increase in demand. In contrast, if the two shocks

are positively correlated, locking in a higher profit cap is of little use, since this usually

occurs when demand is falling. Thus, when shocks are negatively correlated, historical

cost-based regulation has the effect of reducing the potential for bad profit news. If the

allowed rate of return is chosen correctly, investment is promoted.

4.2 Numerical analysis

Because of the complexity of the model, we have to resort to numerical analysis to examine

the relative performance of the two forms of regulation in more detail. Our baseline

parameters are chosen in such a way that the two forms of regulation lead to identical

investment behavior by the firm. We then vary crucial parameters and see how the

performance of the two regimes is affected.

Careful comparison of the pair of equations (3) and (4), which describe optimal invest-

ment under replacement cost-based regulation, with equations (5) and (6), which apply

to historical cost-based regulation, reveals strong similarities. In fact, if the cap-returns

are the same (that is, ρrc = ρhc), and the risk-neutral processes for θt and θt/kt have the

same drifts and volatilities, then the two forms of regulation lead to exactly the same

investment threshold. These three conditions reduce to17

ρrc = ρhc, µk = λk, βkθ ≡ ρkθσθ

σk

=
1

2
. (7)

While the historical cost and replacement cost regulatory profit caps appear similar, we

have shown that they are fundamentally different at least in respect of accounting for

systematic risk. As we shall demonstrate, there is no reason why the cap-returns should

be the same even if they maximise welfare under the respective schemes.

Our baseline parameter values are shown in Table 2. Both conditions in (7) are

satisfied. We first let µk ∈ {0.01,−0.01} to examine the role of drift in the network’s

replacement cost; all other parameters take their baseline values. Next, we choose ρkθ ∈
{0.25, 0.75}, holding all other parameters equal to their baseline values.18

For each set of parameter values we calculate the firm’s profit-maximizing investment

threshold y∗ as a function of the cap-return (ρrc or ρhc). Once we know the investment

threshold we can calculate the level of welfare. From Proposition 1, the present value of

the flow of total surplus is

W = θβ1k1−β1
U(y∗)
(y∗)β1

17βkθ is the slope coefficient in the regression of changes in log θ on changes in log k.
18We have checked that our results hold for a wide range of baseline parameter values.
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Table 2: Baseline parameters

Cost Surplus

Drift µk = 0 µθ = 0

Volatility σk = 0.05 σθ = 0.05

Correlation ρkθ = 0.5

Risk premium λk = 0 λθ = 0.02

Riskfree rate r = 0.04

Depreciation φ = 0

Unregulated profit γ = 0.3

Notes. The table shows the parameter values underlying the graphs in Figures 1 to 4.

in any state prior to investment. From Propositions 2 and 3 respectively, the value of the

firm equals

Πrc = θ
β1k1−β1


y

∗h′rc(y
∗)− β2

(
hrc(y

∗)− 1− φ
r + λk − µk

)
(β1 − β2)(y∗)β1




when its profits are capped according to the network’s replacement cost, and

Πhc = θ
β1k1−β1


y

∗h′hc(y
∗)− β2

(
hhc(y

∗)− φ
r + λk − µk

)
+ (β3 − β2)(ghc(y

∗)− 1)

(β1 − β2)(y∗)β1


 ,

when the profit cap is proportional to the historical cost of the network. Notice that

Wθ−β1kβ1−1, Πrcθ
−β1kβ1−1 and Πhcθ

−β1kβ1−1 depend only on the investment threshold y∗

and not on the state variables (k, θ). Therefore in any given state it is appropriate to rank

different forms of regulation according to the value of Wθ−β1kβ1−1 (if we are measuring

overall welfare) and Πθ−β1kβ1−1 (if we are measuring profitability). We report the results

of our numerical analysis in the following form:

Welfare = Wθ−β1kβ1−1,

Profitability = Πθ−β1kβ1−1,

Consumers’ surplus = Wθ−β1kβ1−1 − Πθ−β1kβ1−1.

These are all functions of y∗, ρrc (or ρhc where appropriate), and the parameters listed in

Table 2.

Figure 1 compares the two regulatory regimes when µk = 0.01. The top solid curve

plots our welfare measure as a function of ρrc, assuming that profit is capped using

the network’s replacement cost; the bottom solid curve plots our measure of consumers’

14



Figure 1: Positive trend in replacement cost
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Notes. The solid curves correspond to regulation based on replacement cost, the dashed
curve to historical cost. For each pair, the upper curve plots overall welfare, and the lower
curve consumers’ surplus. With the exception of µk, all parameter values are given in
Table 2.

surplus as a function of ρrc. The broken curves plot the corresponding functions for the

case where profit is capped using the historical cost of building the network. The vertical

axis is scaled so that welfare and consumers’ surplus are expressed relative to the total

welfare in the unregulated case. Thus both welfare measures converge to 1 as ρ→ ∞.19

Close inspection of the solid curves shows that capping profit based on replacement

cost can make consumers better off (relative to the unregulated case), provided that the

cap-return is not set too low. However, overall welfare will not be improved. Unless the

cap-return is already very low, lowering it further simply results in a transfer from the

firm to consumers — overall welfare is not affected. However, if the cap-return is set

too low, overall welfare can be substantially lower. Regulation based on historical cost

performs even worse in this case, lowering both consumers’ surplus and overall welfare.

In contrast, when µk = −0.01, historical cost is a better basis for regulation than

replacement cost. The results are shown in Figure 2. The figure demonstrates that an

appropriately chosen backward-looking profit cap can actually improve on the unregulated

state, both in terms of consumers’ surplus and overall welfare. This is consistent with our

discussion in Section 4.1; the downward drift in the network’s replacement cost makes it

less likely that the firm would regret investing early and thereby locking in a high cap on

profits.

Our final two figures concentrate on the effect of the correlation of shocks to total

surplus and replacement cost. We first reset µk to its baseline value of zero, and set ρkθ =

19As the cap-return is lifted, the outcome converges to the unregulated case. In contrast, if the cap-
return is set too low, the firm will never invest in the network, explaining why overall welfare is zero in
this region.
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Figure 2: Negative trend in replacement cost
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Notes. With the exception of µk, all parameter values are given in Table 2.

Figure 3: Low correlation
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Notes. With the exception of ρkθ, all parameter values are given in Table 2.

0.25. Figure 3 shows the results of our numerical analysis. The results are qualitatively

similar to those in Figure 2, with historical cost outperforming replacement cost. If the

backward-looking profit cap is chosen appropriately, consumers’ surplus and total welfare

are both higher than in the unregulated case.

Finally, we choose ρkθ = 0.75. The results, reported in Figure 4, are qualitatively sim-

ilar to those in Figure 1, with historical cost performing poorly. This outcome stems from

the fact that under historical cost regulation and positive corrrelation between network

costs and economic surplus, locking in a cap early does not protect the firm from declines

in network costs and access to market surplus. The incentive to invest in early high cost

periods is reduced because the effect of the cap will be moot. In these circumstances, re-

placement cost regulation induces relatively earlier investment because the cap on profit

will adjust with economic surplus via the correlation with replacement cost.
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Figure 4: High correlation
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Notes. With the exception of ρkθ, all parameter values are given in Table 2.

The results of our numerical analysis for the optimal cap-return are summarised in

Table 3. The table reports the optimal cap-return ρ∗ and a measure of its performance for

the five different scenarios. For some the optimal cap-return is infinitely high and these

are marked n/a in the table. We consider the caps which maximize consumers’ surplus

and those which maximize overall welfare. We report the level of consumers’ surplus

(overall welfare) as a proportion of unregulated consumers’ surplus (overall welfare) in

the rows labeled ‘Perf.’ In all the cases we consider, there exists a forward-looking profit

cap which makes consumers better off than in the unregulated situation. When the

drift in replacement cost is negative, and/or the correlation between the two shocks is

low, a backward-looking profit cap also dominates the unregulated case, both in terms

of consumers’ surplus and overall welfare. The results suggest that historical cost-based

regulation performs better than replacement cost when µk < λk and βθk is less than 0.5;

that is, in circumstances where the risk-adjusted drift of the costs process is negative and

where the correlation between economic surplus and costs is small or even negative.

5 Concluding remarks

In this paper we presented a model of a firm with monopoly rights to invest in a network.

A regulator caps the firm’s profit, with the maximum allowable profit based on either

the actual cost of building the network or its replacement cost. Once the policy is in

place, the firm, which faces uncertainty about future profit flows and the cost of replacing

the network in the future, decides when to invest. The bad news principle provides an

explanation of the circumstances in which alternative regulatory policies will be optimal.

To simplify the analysis, we assumed that the form of regulation has no effect on the

level of total surplus, only on its distribution between producer and consumers. This
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Table 3: Optimal backward and forward looking profit caps

Consumers’ surplus Welfare

Parameters FL BL BL

Baseline ρ∗ 0.0633 0.0633 n/a

1.003 1.003 n/a

µk = 0.01 ρ∗ 0.0624 n/a n/a

Perf. 1.001 n/a n/a

µk = −0.01 ρ∗ 0.0652 0.0632 0.0634

Perf. 1.010 1.062 1.055

ρkθ = 0.25 ρ∗ 0.0647 0.0632 0.0634

Perf. 1.006 1.051 1.045

ρkθ = 0.75 ρ∗ 0.0618 n/a n/a

Perf. 1.001 n/a n/a

Notes. The table reports the replacement cost-based cap-return which maximizes con-
sumers’ surplus, and the historical cost-based cap-returns which maximize consumers’ sur-
plus and total welfare. Five different scenarios are considered. ρ∗ is the optimal cap-return,
and ‘Perf’ gives the level of consumers’ surplus (overall welfare) as a proportion of unreg-
ulated consumers’ surplus (overall welfare). All parameter values are given in Table 2. In
particular, the WACC of an unregulated firm is r + λθ = 0.06.
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allowed us to concentrate on regulation’s impact on investment timing. From the regu-

lator’s point of view, an unregulated firm will wait too long before investing — the firm

bears the full cost of building the network, but must share some of the benefit with con-

sumers.20 Thus, any form of regulation which further delays investment will lower welfare

even further. In contrast, regulation which leads the firm to invest sooner will improve

overall welfare.

The regulated firm will delay investment longer (compared to the unregulated case)

when the cap-return is applied to the network’s replacement cost. However, for some

levels of the cap-return, applying it to the historical cost of the network can lead to

earlier investment than the unregulated case. This is possible if the risk-adjusted growth

rate in replacement cost is less than zero, and the (positive) correlation between this cost

and economic surplus is not too strong. Otherwise, historical cost-based regulation also

leads to later investment.

A possible example where historical cost-based regulation could raise welfare is a

telecommunications network, where technology shocks might move the network’s replace-

ment cost and total surplus in opposite directions (so that ρkθ is actually negative), and

the cost of replacing the network is expected to fall rapidly over time. In contrast, the

replacement cost of a network, such as gas, for which innovation is less prominent might

actually increase over time and be positively correlated with economic surplus. The best

way to regulate a gas network would then be to use its replacement cost. In many indus-

tries, only one of the conditions (drift in cost, or correlation) might be met, in which case

detailed numerical analysis would be required to determine which form of regulation is

appropriate.

In those situations where historical cost-based regulation can raise welfare relative

to the unregulated state, such an improvement is only possible for some values of the

cap-return. Furthermore, the welfare-maximizing value of the cap-return is sensitive to

the properties of the network’s replacement cost and the flow of surplus. Our numerical

analysis makes it clear that welfare can drop dramatically if the cap-return is set even

slightly too low. It is generally better to set the cap-return too high than too low. This

is a consequence of the feature that delayed investment delays the market for consumers

and producers and missing markets carry very high welfare costs (Goolsbee, 2000).

There are potential extensions to our work. One is to examine the situation where the

regulated firm is forced to invest by the regulator. The analysis of this case will rest on

what options are left to the firm and the specific characteristics of the regulatory regime.

Another possibility is to evaluate the role which geometric Brownian motion plays in

our results. With historical cost regulation, if the cost of the network falls while the firm

20Our analysis has to be modified if entry to the industry is possible. In this circumstance the unreg-
ulated firm may not invest too late from society’s point of view. The effect of, even problematic, entry
has the effect of a profit cap and renders a different objective for any regulation.
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is waiting to invest, the profit cap is permanently reduced. Our adoption of geometric

Brownian motion means that a similar outcome results with replacement cost regulation

— since shocks to cost are (stochastically) permanent, the profit cap is permanently

lowered under replacement cost regulation as well. If cost was mean-reverting, the profit

cap effects of cost shocks would be greater under historical cost than replacement cost

regulation. This might imply that a historical cost cap is more effective at promoting

investment than a replacement cost cap. We have not formally examined this issue.

Finally, we note that the profit caps differ between the two forms of regulation, partly

reflecting the absence of systematic risk for historical cost regulation — risk that remains

with replacement cost regulation. Both cap-returns are independent of time. While this

may reflect the form of depreciation assumed, it does mean that under historical cost

regulation the cap-return is applied to the full historical cost, and not the depreciated

cost. This issue deserves further attention.

References

Baumol, William J., 2000. The Free-Market Innovation Machine: Analyzing the Growth

Miracle of Capitalism, Princeton University Press, Princeton.

Bernanke, B., 1983. “Irreversibility, uncertainty, and cyclical investment.” Quarterly

Journal of Economics 98, 85–106.

Cochrane, J., 2001. Asset Pricing. Princeton University Press, Princeton.

Cukierman, A., 1980. “The effects of uncertainty on investment under risk neutrality

with endogenous information.” Journal of Political Economy 88, 462–475.

Dixit, A., Pindyck, R., 1994. Investment Under Uncertainty. Princeton University Press,

Princeton.

Economides, N., 1999. “Real options and the costs of the local telecommunications

network.” In: Alleman, J., Noam, E. (Eds.), The New Investment Theory of Real

Options and its Implications for the Cost Models in Telecommunications, Kluwer

Academic Publishers, Boston, MA.

Goolsbee, A., 2000. “The value of broadband and the deadweight loss of taxing new

technology.” Mimeo., University of Chicago.

Guthrie, G., Small, J., Wright, J., 2000. “Pricing access: forward versus backward

looking cost rules.” Mimeo., Department of Economics, University of Auckland.

20



Hausman, J., 1999. “The effect of sunk costs in telecommunications regulation,” In:

Alleman, J., Noam, E. (Eds). The New Investment Theory of Real Options and

its Implications for Telecommunications Economics, Kluwer Academic Publishers,

Boston, MA.

Margrabe, W., 1978. “The value of an option to exchange one asset for another.” Journal

of Finance 33, 177–186.

Poterba, J., Summers, L., 1995. “A CEO survey of U.S. companies’ time horizons and

hurdle rates.” Sloan Management Review, Fall, 43–53.

Sidak, J., Spulber, D., 1997. De-regulatory Takings and the Regulatory Contract: The

Competitive Transformation of Network Industries in the United States. Cambridge

University Press, New York.

Spulber, D., 1989. Regulation and Markets. MIT Press, Cambridge MA.

Proofs

The following technical lemma will be useful.

Lemma 1 Suppose that xt evolves according to the geometric Brownian motion

dxt = µxtdt+ σxtdζt,

where µ and σ are constants. Then

ET [min{xT+t, A}] = xT e
µtN

(
logA− (log xT + µt)− 1

2
σ2t

σt1/2

)

+ AN

(
(log xT + µt)− logA− 1

2
σ2t

σt1/2

)
,

where A is a constant and N is the cumulative distribution function for the standard

normal distribution. �

Proof of Proposition 1

Let F (k, θ) denote the value of the flow of surplus if the network is not currently in place,

and let G(k, θ) denote its value if the network is currently operating.

Whenever θ < y∗k, F must satisfy

F (k, θ) = e−r dtE[F (k + dk, θ + dθ)].

Along the investment boundary (that is, whenever θ = y∗k) it must satisfy

F (k, y∗k) = G(k, y∗k)− k.
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We look for a solution of the form F (k, θ) = kU(y) where y = θ/k and find that U must

satisfy the ordinary differential equation

0 =
1

2
σ2y2U ′′(y) + µyU ′(y)− (r − µk + λk)U(y).

We impose the extra condition U(0) = 0 so that the firm has zero value when the flow of

surplus (and hence the flow of profit) is zero. The solution to this system is U(y) = A1y
β1

for some constant A1.

Now we turn to the situation where the network is in operation. Whenever θ < y∗k,

G must satisfy

G(k, θ) = θdt+ (1− φdt)e−r dtE[G(k + dk, θ + dθ)] + φdte−r dtE[F (k + dk, θ + dθ)].

We look for a solution of the form G(k, θ) = kV (y) where y = θ/k and find that V must

satisfy the ordinary differential equation

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r + φ− µk + λk)V (y) + y + φU(y).

If we impose the additional condition V (0) = 0, we find that the solution to this system

is

V (y) = U(y) +
y

r + λθ + φ− µθ
+B1y

β3

where B1 is an arbitrary constant.

Returning to the investment boundary, recall that we require F (k, y∗k) = G(k, y∗k)−k
for all k. When written in terms of the functions U and V , this becomes

U(y∗) = V (y∗)− 1.

Upon substituting in our solutions for U and V this becomes

0 =
y∗

r + λθ + φ− µθ
+B1(y

∗)β3 − 1.

Therefore

B1 =

(
1− y∗

r + λθ + φ− µθ

)
(y∗)−β3. (A-1)

We still need to consider the solution for G(k, θ) in the region where θ > y∗k. Here it

must satisfy

G(k, θ) = θdt+(1−φdt)e−r dtE[G(k+dk, θ+dθ)]+φdte−r dt(E[G(k+dk, θ+dθ)−(k+dk)]).

We look for a solution of the form G(k, θ) = kV (y) where y = θ/k and find that V must

satisfy the ordinary differential equation

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r − µk + λk)V (y) + y − φ.
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The solution to this system is

V (y) =
y

r + λθ − µθ
− φ

r + λk − µk
+B2y

β2

where B2 is an arbitrary constant. The function G must be continuous and differentiable

everywhere. It follows that V must be continuous and differentiable at y = y∗. Continuity

requires that V (y∗−) = V (y∗+), so that

A1(y
∗)β1 +

y∗

r + λθ + φ− µθ
+B1(y

∗)β3 =
y∗

r + λθ − µθ
− φ

r + λk − µk
+B2(y

∗)β2 ,

and differentiability requires that V ′(y∗−) = V ′(y∗+), so that

β1A1(y
∗)β1−1 +

1

r + λθ + φ− µθ

+ β3B1(y
∗)β3−1 =

1

r + λθ − µθ

+ β2B2(y
∗)β2−1.

Eliminating B2 between these two equations, and using equation (A-1), allows us to show

that

U(y∗) = A1(y
∗)β1 =

(
1− β2

β1 − β2

)
y∗

r + λθ − µθ
+

(
β3 − 1

β1 − β2

)
y∗

r + λθ + φ− µθ

+

(
β2

β1 − β2

)
φ

r + λk − µk

−
(
β3 − β2

β1 − β2

)
.

The value of the surplus at the time the firm invests is

F (k, y∗k) = kU(y∗).

Proof of Proposition 2

Let F (k, θ) denote the value of the firm if the network is not currently in place, and let

G(k, θ) denote its value if the network is currently operating.

Whenever θ < y∗k, F must satisfy

F (k, θ) = e−r dtE[F (k + dk, θ + dθ)].

Along the investment boundary (that is, whenever θ = y∗k) it must satisfy

F (k, y∗k) = G(k, y∗k)− k.

We look for a solution of the form F (k, θ) = kU(y) where y = θ/k and find that U must

satisfy the ordinary differential equation

0 =
1

2
σ2y2U ′′(y) + µyU ′(y)− (r − µk + λk)U(y).

We impose the extra condition U(0) = 0 so that the firm has zero value when the flow of

surplus (and hence the flow of profit) is zero. The solution to this system is U(y) = A1y
β1

for some constant A1.
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Now we turn to the situation where the network is in operation. Whenever θ < y∗k,

G must satisfy

G(k, θ) = min{γθ, ρrck}dt+(1−φdt)e−r dtE[G(k+dk, θ+dθ)]+φdte−r dtE[F (k+dk, θ+dθ)].

We look for a solution of the form G(k, θ) = kV (y) where y = θ/k and find that V must

satisfy the ordinary differential equation

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r + φ− µk + λk)V (y) + min{γy, ρrc}+ φU(y).

If we impose the additional condition V (0) = 0, we find that the solution to this system

is

V (y) = U(y) + grc(y) +B1y
β3

where

grc(y) = E

[∫ ∞

0

e−(r+λk+φ−µk)t min{γyt, ρrc}dt
∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]

and B1 is an arbitrary constant.

Returning to the investment boundary, recall that we require F (k, y∗k) = G(k, y∗k)−k
for all k. When written in terms of the functions U and V , this becomes

U(y∗) = V (y∗)− 1.

In addition, we impose the smooth-pasting condition

U ′(y∗) = V ′(y∗).

Upon substituting in our solutions for U and V these become

0 = grc(y
∗) +B1(y

∗)β3 − 1, 0 = g′rc(y
∗) + β3B1(y

∗)β3−1. (A-2)

Eliminating B1 gives us

β3 =
y∗g′rc(y

∗)
grc(y∗)− 1

which defines the firm’s investment threshold.

We still need to consider the solution for G(k, θ) in the region where θ > y∗k. Here it

must satisfy

G(k, θ) = min{γθ, ρrck}dt+ (1− φdt)e−r dtE[G(k + dk, θ + dθ)]

+ φdte−r dt(E[G(k + dk, θ + dθ)− (k + dk)]).

We look for a solution of the form G(k, θ) = kV (y) where y = θ/k and find that V must

satisfy the ordinary differential equation

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r − µk + λk)V (y) + min{γy, ρrc} − φ.
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The solution to this system is

V (y) = hrc(y)− φ

r + λk − µk

+B2y
β2

where

hrc(y) = E

[∫ ∞

0

e−(r+λk−µk)t min{γyt, ρrc}dt
∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]

and B2 is an arbitrary constant.

The function G must be continuous and differentiable everywhere. It follows that V

must be continuous and differentiable at y = y∗. Continuity requires that V (y∗−) =

V (y∗+), so that

A1(y
∗)β1 + grc(y

∗) +B1(y
∗)β3 = hrc(y

∗)− φ

r + λk − µk
+B2(y

∗)β2,

and differentiability requires that V ′(y∗−) = V ′(y∗+), so that

β1A1(y
∗)β1−1 + g′rc(y

∗) + β3B1(y
∗)β3−1 = h′rc(y

∗) + β2B2(y
∗)β2−1.

Eliminating B2 between these two equations, and using equations (A-2), allows us to show

that

U(y∗) = A1(y
∗)β1 =

y∗h′rc(y
∗)− β2

(
hrc(y

∗)− 1− φ
r + λk − µk

)
β1 − β2

.

The value of the firm at the time it invests is

F (k, y∗k) = kU(y∗).

Proof of Proposition 3

Let F (k, θ) denote the value of the firm if the network is not currently in place, and let

G(k, θ; k̄) denote its value if the network is currently operating, where k̄ is the historical

cost of building the network.

Whenever θ < y∗k, F must satisfy

F (k, θ) = e−r dtE[F (k + dk, θ + dθ)].

Along the investment boundary (that is, whenever θ = y∗k) it must satisfy

F (k, y∗k) = G(k, y∗k; k)− k.

We look for a solution of the form F (k, θ) = kU(y) where y = θ/k and find that U must

satisfy the ordinary differential equation

0 =
1

2
σ2y2U ′′(y) + µyU ′(y)− (r − µk + λk)U(y).
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We impose the extra condition U(0) = 0 so that the firm has zero value when the flow of

surplus (and hence the flow of profit) is zero. The solution to this system is U(y) = A1y
β1

for some constant A1.

Now we turn to the situation where the network is in operation. Whenever θ < y∗k,

G must satisfy

G(k, θ; k̄) = min{γθ, ρhck̄}dt+(1−φdt)e−r dtE[G(k+dk, θ+dθ; k̄)]+φdte−r dtE[F (k+dk, θ+dθ)].

We look for a solution of the form

G(k, θ; k̄) = kV (y) + k̄W (z)

where y = θ/k and z = θ/k̄. We find that V and W must satisfy the ordinary differential

equations

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r + φ− µk + λk)V (y) + φU(y)

and

0 =
1

2
σ2

θz
2W ′′(z) + (µθ − λθ)zW

′(z)− (r + φ)W (z) + min{γz, ρhc}.
Solutions to these equations are

V (y) = U(y) +B1y
β3

and

W (z) = ghc(z),

where

ghc(z) = E

[∫ ∞

0

e−(r+φ)t min{γzt, ρhc}dt
∣∣∣∣z0 = z, dzt = (µθ − λθ)ztdt+ σθztdηt

]

and B1 is an arbitrary constant.

Recall that we require F (k, y∗k) = G(k, y∗k; k)− k for all k. When written in terms

of the functions U , V and W , this becomes

U(y∗) = V (y∗) +W (y∗)− 1.

In addition, we impose the smooth-pasting condition

U ′(y∗) = V ′(y∗) +W ′(y∗).

Upon substituting in our solutions for U , V and W these become

0 = ghc(y
∗) +B1(y

∗)β3 − 1, 0 = g′hc(y
∗) + β3B1(y

∗)β3−1. (A-3)

Eliminating B1 gives us

β3 =
y∗g′hc(y

∗)
ghc(y∗)− 1
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which defines the firm’s investment threshold.

We still need to consider the solution for G(k, θ; k̄) in the region where θ > y∗k. Here

it must satisfy21

G(k, θ; k̄) = min{γθ, ρhck̄}dt+ (1− φdt)e−r dtE[G(k + dk, θ + dθ; k̄)]

+ φdte−r dt(E[G(k + dk, θ + dθ; k + dk)− (k + dk)]).

We look for a solution of the form

G(k, θ; k̄) = kV (y) + k̄W (z)

where y = θ/k and z = θ/k̄. We find that V and W must satisfy the ordinary differential

equations

0 =
1

2
σ2y2V ′′(y) + µyV ′(y)− (r − µk + λk)V (y) + φW (y)− φ.

and

0 =
1

2
σ2

θz
2W ′′(z) + (µθ − λθ)zW

′(z)− (r + φ)W (z) + min{γz, ρhc}.
Solutions to these equations are

V (y) = hhc(y)− φ

r + λk − µk

+B2y
β2

and

W (z) = ghc(z),

where

hhc(y) = E

[∫ ∞

0

e−(r+λk−µk)tφghc(yt)dt

∣∣∣∣y0 = y, dyt = µytdt+ σytdηt

]
and B2 is an arbitrary constant.

The function G must be continuous and differentiable everywhere. It follows that V

must be continuous and differentiable at y = y∗. Continuity requires that V (y∗−) =

V (y∗+), so that

A1(y
∗)β1 +B1(y

∗)β3 = hhc(y
∗)− φ

r + λk − µk
+B2(y

∗)β2 ,

and differentiability requires that V ′(y∗−) = V ′(y∗+), so that

β1A1(y
∗)β1−1 + β3B1(y

∗)β3−1 = h′hc(y
∗) + β2B2(y

∗)β2−1.

Eliminating B2 between these two equations, and using equations (A-3), allows us to show

that

U(y∗) = A1(y
∗)β1 =

y∗h′hc(y
∗)− β2

(
hhc(y

∗)− φ
r + λk − µk

)
+ (β3 − β2)(ghc(y

∗)− 1)

β1 − β2
.

The value of the firm at the time it invests is

F (k, y∗k) = kU(y∗).

21Notice that the profit cap changes in the event that the network needs replacing. The cap is currently
ρhck̄; if the network dies in the next instant, the new cap will be ρhc(k + dk).
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