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Investment, Uncertainty, and Liquidity

Abstract

We analyze the investment timing problem of a firm subject to a financing

constraint. The threat of future funding shortfalls encourages the firm to

accelerate investment beyond the level that is first-best optimal. Thus, our

model highlights a new way by which costly external financing can distort

investment behavior. Moreover, hedging is useful not only because it allows

investment to proceed, but also because it allows investment to be delayed.

These results can potentially help explain observed empirical relationships

between investment and liquidity, investment and uncertainty, investment and

hedging, and shareholder wealth and volatility.

1 Introduction

When there are informational asymmetries (e.g., Greenwald, Stiglitz and Weiss, 1984;

Myers and Majluf, 1984), external financing can be costlier than internal financing. Con-

sequently, investment projects that have positive net-present-value (NPV) under internal

financing can have negative NPV if the firm has insufficient internal funds to finance all

profitable investments. In this situation, the firm is subject to a financing constraint that

results in investment being less than its first-best level — the underinvestment problem.

Moreover, this effect may not be temporary; Minton and Schrand (1999) find that internal

funding shortfalls lead to a permanent decrease in firm investment.

Theoretical models of the underinvestment problem typically assume a static invest-

ment environment where the standard NPV rule applies. However, more recent work has

shown that the NPV rule may be sub-optimal in a dynamic environment. One of the

more influential contributions in this area is the investment timing model of McDonald

and Siegel (1986).1 In that model, the firm has perpetual rights to a project and seeks

to choose the investment date which provides the highest expected payoff. Because the

project has an uncertain future value and an irreversible investment cost, the optimal

policy is to invest only when the project’s NPV exceeds a positive threshold reflecting

the value of further delay. This contrasts with the conventional prescription that invest-

ment is justified whenever NPV is positive, thus emphasizing the importance of dynamic

considerations when investment is irreversible and uncertain.

1For examples of similar models, see Bernanke (1983), Brennan and Schwartz (1985), Majd and
Pindyck (1987), Triantis and Hodder (1990), Ingersoll and Ross (1992). Dixit and Pindyck (1994) provide
an excellent overview of this literature.
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The McDonald and Siegel (1986) model assumes that the investment decision can

be made independently of the financing decision.2 Although Mauer and Triantis (1994)

extend the model to allow for the simultaneous determination of investment and the

debt/equity mix, they do not consider the possibility that the firm may face a binding

finance constraint. In this paper, we examine the implications of such a constraint for

investment in a dynamic environment. Specifically, we consider the investment timing

decision of a firm that must rely on the cash generated by its existing assets in order

to finance any new investment. If, at any date, the firm’s cash stock is less than the

cost of a particular project, then investment in that project cannot occur at that date.

Thus, we explicitly permit the possibility of funding shortfalls. Although total reliance on

internal funds is an extreme case, it provides an interesting contrast with the standard, but

equally extreme, approach where internal funds can be completely ignored.3 Moreover, it

approximates the situation faced by many firms, particularly small ones, and is consistent

with the evidence of Minton and Schrand (1999) that firms forgo investment rather than

access capital markets.4

The requirement that investment be financed internally restricts the states in which

the firm can invest, so it lowers both the investment profitability threshold and the value

of the project rights. Thus, our model highlights a new way by which costly external

financing can distort investment behavior: the threat of a future funding shortfall reduces

the value of a firm’s timing options and leads to sub-optimal early investment. In other

words, financing constraints can not only discourage investment, but also accelerate it.

Although we are unaware of any work that explicitly compares the speed of the investment

process across different types of firm, this result is consistent with the standard folklore

that smaller and more marginal (and therefore more financially-constrained) firms are

more aggressive about entering new markets or launching new products than bigger,

safer and less financially constrained firms. This phenomenon is typically attributed to

differences in risk attitudes (i.e., more caution on the part of unconstrained firms) or

to differences in management and bureaucracy structure (i.e., slower decision-making by

unconstrained firms), but our model suggests another explanation.

Our model also has implications for other aspects of investment policy. First, while an

increase in the firm’s current cash stock may encourage investment by lowering the cost

2The same is true of more complex models that allow for partial reversibility, expandability, and
industry structure effects. See, for example, Dixit (1989), Abel et al. (1996), and Dixit and Pindyck
(1994).

3Our results require only that the firm face potential financing constraints, so they also apply when it
has access to (limited) external funds. However, as we discuss below, this would considerably complicate
the analysis required to solve our model, so we maintain the simplifying assumption that investment can
be financed only with cash.

4As Alsop (2001) notes, it may also accurately reflect the situation faced by venture capital firms
following the 2000–2001 NASDAQ collapse.
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of capital, it also lowers the risk of future funding shortfalls and thereby raises the prof-

itability threshold required to justify immediate investment. Moreover, because the risk

of future funding shortfalls is greatest for firms with low current liquidity, the effect on the

threshold of an increase in the current cash stock is greatest for these firms. Thus, low-

liquidity firms can have a lower investment-cashflow sensitivity than high-liquidity firms,

consistent with the evidence of Cleary (1999) and Kaplan and Zingales (1997). Second,

greater volatility in the firm’s future cashflow distribution affects investment in an op-

posite manner to greater volatility in the project’s future payoff distribution. Greater

payoff volatility increases the value of investment delay and lowers current investment,

but greater financing volatility raises the risk of future funding shortfalls and thereby

lowers the value of waiting and increases current investment. As most feasible measures

of uncertainty are likely to incorporate both types of volatility, our model therefore sug-

gests one reason why empirical research finds little or no short-term relationship between

investment and uncertainty.5

We also consider the optimal hedging policy of a firm subject to a financing constraint

and show that this leads to an additional motivation for hedging. When investment must

be funded from internal sources, any delay of investment exposes the firm to the risk

that it may lose the ability to finance the project. Without hedging, the firm might

have to rush into investment. But hedging mitigates the risk of funding shortfalls and

allows the firm to avoid sub-optimal early investment. Thus, hedging adds value not only

because it allows the firm to undertake profitable investment (as in Lessard, 1990, and

Froot, Scharfstein and Stein, 1993), but also because it allows investment to be delayed.

This suggests an explanation for the empirical finding that hedging firms have similar

investment rates to non-hedging firms. By reducing cashflow volatility, hedging reduces

the number of states in which investment is financially-constrained, but in so doing raises

the threshold required to justify investment. The first effect increases investment, but the

second effect decreases it.

In related work, Mello and Parsons (2000) consider a financially-constrained firm with

stochastic input and output prices and derive the optimal operating and hedging policies.

Like us, they emphasize the role of the financing constraint in restricting the firm’s options.

However, because they focus on the operating policy of a firm that has already invested,

they do not consider the effects of the financing constraint on the initial decision to invest.

Our focus on the investment timing decision therefore complements their analysis.

In the next section, we set out our model and compare the investment decision of the

unconstrained firm with that of the financially-constrained firm. In Section 3, we explain

how these effects can shed some light on various aspects of observed investment behavior.

Section 4 examines the role of hedging and Section 5 contains some concluding remarks.

5Minton and Schrand (1999) report a negative long-run relationship between cashflow volatility and
investment.
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2 Investment under uncertainty

2.1 The unconstrained firm

In order to provide a benchmark for analyzing the effects of an investment financing

constraint, we begin by briefly summarizing the investment timing model developed by

McDonald and Siegel (1986) and simplified by Dixit and Pindyck (1994). In that model,

a firm owns the rights to an investment project and has the option to invest in this project

at any time. If the firm invests, it pays a fixed amount I and receives a project worth V .

Project value follows the geometric Brownian motion process

dV = µV dt + σV dε (1)

where µ and σ are constant parameters and dε is the increment of a Wiener process. In this

situation, the firm invests if and only if V exceeds some fixed threshold V̂ u, where we use

the superscript ‘u’ to denote that this is the investment threshold for the unconstrained

firm. Let F u(V ) = F (V ; V̂ u) denote the value of the investment option when the current

value of the project is V and the threshold is V̂ u. Then the optimal investment policy

consists of choosing the threshold V̂ u that maximizes F u. Standard replication arguments

imply that, prior to investment, F u satisfies the differential equation

1

2
σ2V 2F u

V V + (r − δ)V F u
V − rF u = 0, (2)

where subscripts denote partial derivatives, r is the riskless interest rate and δ is the

opportunity cost of cashflows forgone due to waiting (henceforth the project’s “dividend

yield”). Given the boundary conditions

F u(0) = 0, F u(V̂ u) = V̂ u − I,

equation (2) has the unique solution

F u = (V̂ u − I)

(
V

V̂ u

)β

(3)

where

β =
1

2
− r − δ

σ2
+

√
2r

σ2
+

(
1

2
− r − δ

σ2

)2

> 1.

Maximizing (3) with respect to V̂ u yields the optimal investment threshold

V̂ u =
βI

β − 1
,

and investment option value

F u =

(
I

β − 1

)1−β (
V

β

)β

.
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It is straightforward to show that β > 1, so V̂ u > I. That is, there are positive

payoff (V > I) states in which the firm does not invest. In doing so, the firm retains

the opportunity to receive potentially higher payoffs should project value rise (or avoid

losses if project value falls). Similarly, this upside potential ensures F u ≥ max{0, V − I}.

However, these outcomes assume that project financing is guaranteed at all dates and

thus ignore the possibility that waiting may eliminate the firm’s ability to finance the

project. To understand the implications of this for the investment timing decision, we

next consider the situation where the firm’s financing choices are restricted.

2.2 The constrained firm

We assume that the firm is restricted to financing the project with internal funds, i.e.,

there is no access to external capital markets.6 Although the source of this constraint is

immaterial for our purposes, it could arise for any of a number of reasons: informational

asymmetries of the kind envisaged by Myers and Majluf (1984), irrationally low equity

prices as in Baker et al. (2001), the types of agency problems described by Stulz (1990)

or Myers (1977), or because the firm does not wish to reveal information to competitors

about the project at the investment stage.

The firm begins with an initial cash balance X which, over time, is augmented in two

ways. First, if the firm does not launch the project, X is invested in riskless securities.

Second, the firm’s existing physical assets generate operational cashflow. Thus, prior to

investment in the project, the firm’s cash stock follows the process

dX = rXdt + νdt + φdζ, (4)

where ν and φ are constant parameters and dζ is the increment of a Wiener process with

dεdζ = ρdt. Although it plays no formal part in our analysis, it may be helpful to think

of (4) as describing a firm with a “lumpy” investment schedule. Additions or extensions

to its existing stock of physical assets can take place only in indivisible units and, while

the firm is waiting for sufficient funds to accumulate, the existing cash stock is placed in

short-term securities. In the meantime, the firm’s existing assets continue to augment (or

deplete) the cash stock. As we wish to focus on the firm’s investment strategy, and not

on its financial distress policy, we assume that the firm loses the rights to the project if

its cash stock becomes non-positive.

Note that equation (4) permits the interpretation of X as “available financing” rather

than “cash stock” so long as increments to the external component of X are perfectly

correlated with increments to the cash component. In this case, cash is a constant propor-

tion of available financing and the first term on the right side of (4) is simply multiplied

6This approach is similar in spirit to the cash-in-advance models of individual investor demand. For
discussions of that model, see Clower (1967) and Kohn (1981).
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by that constant. In more general cases, however, the cash proportion is not constant and

equation (4) cannot describe the evolution of available financing.

Investment is allowed if and only if X ≥ I, so the level of internal funds places restric-

tions on the states in which the investment option can be exercised. This ensures that (i)

the value of the investment option at any time prior to exercise depends on X as well as

V and (ii) the investment threshold is not a constant as in the case of the unconstrained

firm, but instead is a function of X.7 Let V̂ c(X) denote this investment threshold func-

tion and F c(X, V ) = F (X, V ; V̂ c) denote the value of the constrained investment option.

Then the optimal investment policy consists of choosing the threshold function V̂ c(X)

that maximizes F c. In this case, F c satisfies the differential equation (see the appendix

for details)

1

2
σ2V 2F c

V V +
1

2
φ2F c

XX + ρσφV F c
XV + (r − δ)V F c

V + r(X + G)F c
X − rF c = 0, (5)

where G is the market value of a claim to the future cashflow generated by the firm’s

existing physical assets. If V ≥ V̂ c(X) and X ≥ I, then F c = V − I; otherwise it

satisfies equation (5). In addition, the solution to (5) must satisfy (i) the same boundary

conditions as the unconstrained firm and (ii) F c(0, V ) = 0.

The greater complexity of this model means that an analytical solution for F c is

unknown. However, it is clear that

V̂ c(X) ≤ V̂ u, ∀X ≥ I,

F c(V,X) ≤ F u(V ).

The basis for these differences between constrained and unconstrained firms is as follows.

First, there are low X states in which the unconstrained firm would exercise the investment

option, but the constrained firm has insufficient internal funds and so must continue to

wait. Second, there are intermediate X states in which the unconstrained firm would

choose to delay investment, but the benefits of doing so for the constrained firm are

outweighed by the risks of losing the ability to finance the project. Thus, the additional

investment constraints faced by the financially constrained firm are two-fold: in some

states it cannot begin investment when it wishes to do so; in other states it cannot delay

investment when it wishes to do so. The potential for these outcomes lowers the value of

the project rights to the constrained firm. Moreover, the potential loss of financing for a

currently-profitable project causes the constrained firm to adopt a lower threshold than

7Note we are implicitly assuming either that the project is in some way unique to the firm or that the
rights are not tradeable. If the firm could freely trade the project rights, then the effect of the financing
constraint is weakened because the firm could simply sell the rights at the optimal investment date if
it had insufficient funds to invest itself. In this case, F c would reflect the value of the project to other
(potentially less-constrained) firms. In practice, the extent to which a firm could fully realize a project’s
value in this way is limited, so we ignore this complication.
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Table 1: Baseline parameter values used in the numerical solution procedure

Parameter Value

Project investment cost I = $100

Project value volatility σ = 0.2

Project dividend yield δ = 0.03

Riskless interest rate r = 0.03

Project value-firm cashflow correlation ρ = 0.5

Cashflow volatility φ = $60

Market value of existing physical assets G = $100

the unconstrained firm. Using numerical techniques, we next explore these differences in

greater detail.

2.3 A numerical solution

We solve for the constrained firm’s optimal investment timing policy using a numerical

procedure based on finite difference methods, the details of which are provided in the

appendix. Implementation requires that we specify values for the model parameters.

Although we also consider the sensitivity of our results to alternative parameter values, we

begin with the benchmark set of values appearing in Table 1. Most of the values appearing

in Table 1 are similar to those used by other authors, e.g., Milne and Whalley (2000) and

Mauer and Triantis (1994). The additional parameters are G, ρ and φ. Although the

choice of G is necessarily arbitrary, setting it equal to $100 means that firms with low

current liquidity (X < 100) expect to receive a greater proportion of future increments

to their cash stocks from the cashflow generated by their existing physical assets than

from the interest return on their existing cash stocks.8 Setting the correlation between X

and V to 0.5 is consistent with the investment project having similar, but not identical,

characteristics to the firm’s existing assets. Finally, given G = $100 and r = 0.03, φ = $60

is chosen to correspond with actual corporate data.9

Table 2 provides an initial indication of the effects of financing constraints on the

8This seems reasonable insofar as firms that are currently financially constrained are motivated to
improve the efficiency of their existing assets in order to break free of the financing constraint. For firms
with higher liquidity (X ≥ 100), the primary expected contribution to their cash stocks is from the return
on their existing cash. Again, this seems reasonable if, for example, firms that have accumulated high X

have done so by skimping on additions to their stock of physical assets.
9Since rG must equal certainty-equivalent cashflow, the choice of r = 0.03 and G = $100 yields

certainty-equivalent cashflow of $3. Assuming no systematic cashflow risk, the choice of φ = $60 implies
a ratio of cashflow mean to cashflow standard deviation of 1/20, approximately the value found for US
firms listed in the COMPUSTAT database between 1995 and 1999.
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Table 2: Investment threshold and option values for unconstrained and constrained firms

Cash Stock Investment Thresholds Option Values

X V̂ u V̂ c F u F c

100 220 141 8.06 4.33

150 220 180 8.06 5.35

200 220 190 8.06 5.99

250 220 200 8.06 6.43

This table reports the investment thresholds (V̂ u and V̂ c) and investment option values (Fu

and F c) for unconstrained and constrained firms respectively. X denotes the firm’s current

cash stock. Parameter values used in generating the threshold and option values are those

given in Table 1. In addition, for calculating Fu and F c, we assume initial project value V

equals 100.

investment timing decision. For various values of initial cash stock X, we calculate the

investment thresholds and option values for both unconstrained and constrained firms.10

These calculations support our hypotheses that the financing constraint lowers both the

investment threshold and the option value. For the unconstrained firm with parameters

as given in Table 1, investment should be delayed until the current project value of $100

reaches $220; given this policy, the current value of the project rights is $8.06. However,

delay for the constrained firm incurs the risk that the firm’s cash stock will drop below

$100, thereby making investment (temporarily, at least) impossible. This additional risk

makes waiting less valuable, so the optimal investment policy for the constrained firm

requires a lower threshold than for the unconstrained firm. This in turn lowers the value

of the investment option. For example, when the constrained firm’s current cash stock

is just sufficient to cover the investment cost (X = $100), the threshold is $141 and the

opportunity cost of immediate investment (V̂ c − I) is $41, some 66% less than for the

unconstrained firm. Not surprisingly, this lowers the value of the investment option, in

this case to $4.33, a level some 46% below its unconstrained value. Even when the firm’s

current cash stock is double that needed for investment, the investment option value for

the constrained firm is 20% below its unconstrained counterpart. Overall, the existence of

a financing constraint may cause the firm to sacrifice a significant proportion of a project’s

potential value.

A more general picture of the effects of the financing constraint appears in Figures 1

and 2. In Figure 1, we display the relationship between the investment threshold (V̂ c)

and the firm’s initial cash stock (X). As X rises above I, the risk that the firm will

10For the purposes of calculating the option values, the initial project value V is set equal to the
investment cost I = $100, so the project has significant waiting value.
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Figure 1: The constrained firm’s investment threshold function
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160

180
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V̂ c

φ = 40
φ = 60

φ = 80

X

The value of the constrained firm’s investment threshold is plotted for different values of
initial cash stock (X) and cashflow volatility (φ). Parameter values are given in Table 1. For
given φ, a rise in the initial cash stock decreases the risk that the firm will have insufficient
cash to finance the project in the future, thereby increasing the value of waiting and raising
the investment threshold. For given X , a rise in cashflow volatility increases the risk that
the firm will have insufficient cash to finance the project in the future, thereby decreasing
the value of waiting and lowering the investment threshold.

have insufficient cash to finance the project in the future falls, thereby increasing the

incentive to wait (in order to learn more about project value) and raising the investment

threshold. Initially, this effect is strong as increases in X from a low level significantly

reduce the probability of future funding shortfalls.11 Eventually however, the risk of such

shortfalls becomes trivial, so further increases in X have little effect and the constrained

firm’s threshold converges on that of the unconstrained firm. Figure 1 also illustrates

the influence of cashflow volatility φ. For each X, greater cashflow volatility increases

the amount by which the constrained firm’s threshold deviates from its unconstrained

counterpart. The greater is φ, the greater the likelihood that adverse cashflow shocks will

eliminate the firm’s ability to finance the project when it wishes to invest. In response,

the firm reduces its exposure to this risk by lowering the investment threshold. We can

think of this as a formalized “bird-in-the-hand” strategy; a relatively small payoff received

soon and with low risk is preferable to a potentially large payoff received later if there is

significant risk of the latter payoff becoming zero due to a funding shortfall.12

11This occurs because higher X results in greater interest income, but has no effect on future cashflow
volatility.

12One implication of Figure 1 is that investment hurdle rates rise with firm liquidity. Surveys by
Summers (1987) and Poterba and Summers (1995) report hurdle rates well in excess of any reasonable
cost of capital, a finding that Dixit and Pindyck (1994) suggest can be explained by investment timing
considerations; investment incurs the opportunity cost of forgoing the option to wait, so the project
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Figure 2: The constrained firm’s investment option value
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The value of the project rights for the constrained firm (F c) is plotted for different values
of initial cash stock (X) and project value (V ). Parameter values are given in Table 1. For
given V , a rise in X decreases the risk that the firm will have insufficient cash to finance the
project in the future, thereby increasing the value of waiting and raising F c. If V is low, the
expected waiting time is high and so F c increases monotonically with X . For intermediate
V , an increase in X raises F c for X ≤ I. When X = I, the risk that the firm will have
insufficient cash to finance the project in the future offsets the potential gains from waiting,
so the project rights are exercised and additional increments in X have no effect on F c

until X is sufficiently high to reduce the risk of future funding shortfalls. If V is above
the unconstrained threshold, then immediate investment is optimal, so F c increases sharply
with X for X ≤ I, but is independent of X thereafter.

Figure 2 displays the relationship between the value of the investment option (F c)

and the firm’s initial cash stock (X) for different project values (V ). In general, higher

X decreases the risk that the firm will have insufficient cash to finance the project in

the future, thereby increasing the value of waiting and raising F c. However, if V is low,

the expected waiting time is long and so the funding shortfall risk is high even if X

is currently well above the investment cost I. In this case, F c increases monotonically

with X until it converges on the unconstrained option value. By contrast, if V exceeds

the unconstrained investment threshold (so that immediate investment is optimal), then

F c first rises sharply with X for values of X that are less than the investment cost I

(because additional cash reduces the expected sub-optimal delay in investment), but is

then independent of X beyond this point (because investment occurs and F c = V − I).

Finally, if V is greater than I, but less than the unconstrained investment threshold, the

hurdle rate contains a “premium” in recognition of this cost. If the Dixit and Pindyck hypothesis is
correct, then our model implies that the cross-sectional variation in “excess” hurdle rates (i.e., the hurdle
rate minus the firm’s cost of capital) should reflect the cross-sectional variation in liquidity. That is, the
excess hurdle rate should be an increasing function of firm liquidity.
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Figure 3: The marginal effect of cash stock on the constrained firm’s investment option

value
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The marginal value of initial cash stock for the constrained firm (F c
X) is plotted for different

values of initial cash stock (X) and project value (V ). Parameter values are given in Table 1.
When V > I > X , an additional dollar of cash can add more than $1.50 to the value of
project rights, thereby increasing firm value by $2.50. When either V < I or X > I, the
effect on firm value is more modest, but frequently exceeds $1.

relationship becomes more complex. Then, for X < I, F c is strongly increasing in X

because each additional dollar reduces the probability that the firm will face a funding

shortfall when the optimal investment date arrives. For X equal to or slightly greater than

I, the potential benefits of delaying investment are outweighed by the risk of subsequently

losing the ability to finance the project, so the firm invests and additional increments to

X have no effect on F c (see the dashed line component of the V = 180 curve). However,

for X sufficiently greater than I, the funding shortfall risk is small enough for investment

delay to again become the optimal strategy. Additional increases in X then raise the

value of the investment option until it converges on the unconstrained option value.

Our results suggest that the value to the firm of additional cash can be far greater

than the face value of the cash. An illustration of the magnitude of this effect is provided

in Figure 3 where we plot the marginal value of cash for the constrained firm (F c
X). When

V > I > X, an additional dollar of cash can add more than $1.50 to the value of project

rights, thereby increasing firm value by more than $2.50. When either V < I or X > I,

the effect on firm value is more modest, but still exceeds $1. The only exception to this

occurs when V exceeds the unconstrained threshold and X is greater than I; in this case

firm value changes only by the face value of the additional cash.
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3 Some implications for investment issues

Since the work of Myers and Majluf (1984) and others, the underinvestment problem

has received considerable attention. Underinvestment occurs when external financing is

more costly than internal financing, thereby raising the cost of capital for firms that are

unable to finance their investment plans from internal sources. This, in turn, lowers the

profitability of all projects and causes some previously-profitable projects to become un-

profitable. Our model suggests that dynamic considerations may introduce an additional

distortion. When investment timing is flexible, costly external financing not only lowers

project profitability, but also lowers the profitability hurdle required to justify investment.

In other words, although a financing constraint discourages investment by causing projects

to be less profitable, it also encourages investment by lowering the value of waiting for

projects that can be delayed. Thus, in a dynamic framework, costly external financing

can distort investment decisions by understating the value of waiting, thereby resulting

in accelerated investment.

In the context of the investment-liquidity relationship, a recent debate has focused on

whether or not the sensitivity of investment to firm liquidity is a useful measure of financ-

ing constraints. Beginning with an influential paper by Fazzari, Hubbard and Petersen

(1988), the standard approach has been to divide a sample of firms into groups reflecting

a priori rankings of likely financial constraints and then compare the investment-cashflow

sensitivities of these different groups. Most studies find that the firms that a priori seem

most likely to be financially constrained exhibit greater investment-cashflow sensitivity,

thereby suggesting that the investment-cashflow sensitivity is indeed a useful measure of

the severity of financing constraints. However, this approach has been criticized by Ka-

plan and Zingales (1997, 2000). Most tellingly, they find that within the sample of firms

Fazzari, Hubbard and Petersen argue are most likely to be financially constrained, the

firms with significant liquidity problems exhibit a lower investment-cashflow sensitivity

than the firms that appear unlikely to have been financially constrained. Kaplan and

Zingales stress that it is important to understand the source of this result and speculate

that it may be due either to non-linearities in the external finance cost function or to

currently unknown aversions to raising external finance.

Our model suggests another source. When the firm must finance investment from

internal sources, greater cashflow not only increases current investment by lowering the

cost of capital, but also decreases current investment by increasing the required pay-

off threshold. Thus, the sensitivity of investment to cashflow depends on the relative

magnitudes of these two effects. Moreover, recall that (see Figure 1) the threshold-cash

relationship is strongest for firms that are most financially constrained (low X) because

these are the firms for whom delay poses the greatest risks. As a result, the threshold

component of the investment-cashflow sensitivity is greatest for these firms. Since this
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component reduces investment, it follows that an increase in cash has a smaller posi-

tive effect on the investment of low-cash firms than it does on high-cash firms.13 That

is, the investment of highly-constrained firms is less sensitive to changes in cash than

is the investment of firms facing weaker constraints, essentially the pattern observed by

Kaplan and Zingales.14 Our model therefore provides some support for the view that ob-

served investment-cashflow sensitivities may indicate little about the severity of financing

constraints.15

Our model can also shed some light on the relationship between investment and un-

certainty. In the standard model of the unconstrained firm, all uncertainty eminates from

the stochastic evolution of project value, so greater uncertainty increases the value of

waiting and lowers investment. However, the empirical evidence for this relationship is

inconclusive; Ghoshal and Loungani (1996, 2000) find the expected relationship between

investment and price or profit uncertainty in industries with large numbers of small firms,

but not for other industry structures; Caballero and Pindyck (1996) report a statistically

significant relationship between investment and the variance of the marginal revenue prod-

uct of capital, but one that is substantially smaller than predicted by the unconstrained

firm model. Our model suggests one possible reason for these ambiguous results. In the

presence of a financing constraint, both payoff and financing uncertainty exist and these

have opposite effects on the investment threshold; payoff uncertainty raises the threshold

while financing uncertainty lowers it. Thus, any attempt to empirically identify the re-

lationship between uncertainty and investment will pick up offsetting uncertainty effects

unless the exact nature of the uncertainty is carefully identified. For example, the uncer-

tainty measures used in the above studies are based on historical estimates of volatility

in some aspect of firm performance and thus seem likely to include aspects of both value

and cashflow uncertainty. Consequently, it is unsurprising that the estimated relationship

between investment and uncertainty is small or non-existent.

13To see this more formally, consider a firm with initial cash stock X0 and project value V0. Then it
is straightforward to show that cov(d(V − V ∗), dX) = φ(ρσV0 − φV ∗

X(X0))dt. To the extent that ρ > 0,
the first term inside the square brackets captures the cost of capital effect; the second term captures the
threshold effect. Moreover, since V ∗

XX < 0, cov(d(V − V ∗), dX) is an increasing function of X0.
14Povel and Raith (2001) arrive at the same conclusion in a two-period model of investment when there

is asymmetric information about the firm’s revenue stream.
15We implicitly define a firm to be more financially constrained if it has fewer internal funds available

for investment. A broader definition (and one more commonly used in the literature) of a more severe
financing constraint is a greater wedge between the cost of external and internal funds. By this definition,
all firms are equally constrained in our model (as none can access external funds), yet, as we have
seen, they may have different investment-cashflow sensitivities. Thus, our conclusion — that observed
investment-cashflow sensitivities may indicate little about the severity of financing constraints — also
holds for this broader definition of financial constraints and serves as a complementary case to that of
Alti (2001) who shows that the observed investment-cashflow relationships can occur in the absence of
any market frictions.
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The conflicting effects of payoff and financing uncertainty can also have implications for

the interpretation of other empirical results. Shin and Stulz (2000) find that shareholder

wealth is negatively related to equity price volatility (as a proxy for cashflow volatility),

a result they attribute to financial distress costs. However, our model makes it clear that

such a result is also consistent with real options models of investment decision-making;

greater cashflow volatility reduces the value of the investment option (and therefore share-

holder wealth) because it increases the likelihood of a future funding shortfall and therefore

leads to sub-optimal investment timing.

4 The hedged firm

In the model of the previous section, the firm was provided with no means of mitigating

or modifying its financing risk. In practice, firms can have various mechanisms available

for hedging this risk. Indeed, Froot, Scharfstein and Stein (1993) stress that the primary

motivation for hedging is to ensure that firms have the necessary financing for undertaking

valuable investment projects. As we have seen, financing constraints not only cause firms

to forgo investment, but also encourage premature investment. This suggests that another

benefit of hedging is to ensure that firms have sufficient funding to confidently delay

investment, thereby precluding the need for sub-optimal early launching due to concerns

about future financing capabilities. In this section, we develop this and other hedging-

related issues in more detail. To do so, we first derive and characterize the optimal hedge

policy and then consider the effects of this policy on the investment threshold and option

value.

We assume the firm can maintain a dynamic hedge. Specifically, at time t the firm

holds ht short positions in an asset or portfolio with price xt whose returns are perfectly

correlated with firm cashflow. The proceeds hx from this activity are held in a margin

account earning interest at a rate r̄ < r. This arrangement ensures that the short positions

can only be used to hedge operating cashflows (and not to raise cash) and that hedging

is costly. In this case, the investment threshold V̂ h(X, h) depends on the hedging policy

which in turn is reflected in the investment option value F h = F (X, V ; V̂ h). The optimal

hedge policy is found by solving the Bellman equation (see the appendix for details)

rF h = sup
h≥0

{
1

2
σ2V 2F h

V V +
1

2
(φ− σxhx)2F h

XX + ρσ(φ− σxhx)V F h
XV (6)

+ (r − δ)V F h
V + (r(X + G) − (r − r̄))hx)F h

X − (r − r̄)hx

}
,

where σx is the standard deviation of returns on asset x. It follows that the value of the

optimal hedge position is given by

h∗x =
φ

σx
+

ρσV F h
XV

σxF h
XX

+
(r − r̄)(1 + F h

X)

σ2
xF

h
XX

. (7)
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The first two terms on the right side of (7) represent the optimal demand for hedging

in the absence of transactions costs; the last term captures the reduction in this optimal

demand due to the forgone interest (r − r̄) that hedging requires. To understand the

meaning of the first two terms more fully, note first that any hedging policy typically

reduces cashflow volatility by shifting cash from high-cash states to low-cash states. In

equation (7), the first term gives the value of the complete hedge position, i.e., the hedge

that completely eliminates random fluctuations in the firm’s cashflow. However, shifting

cash from a high-cash state to a low-cash state is counter-productive if the marginal value

of cash is high in the former state, but low in the latter state. Consequently, the optimal

hedging policy does not shift cash from all high-cash states to all low-cash states, but

only from high-cash states in which the marginal value of cash is low to low-cash states

in which the marginal value of cash is high.16 Thus, if the correlation between V and X

is positive (ρ > 0), then low-cash states also tend to be those in which cash is not very

valuable, so the optimal hedge position is less than the complete hedge position. On the

other hand, if ρ < 0, then low-cash states also tend to be those in which the value of cash

is high, so the optimal hedge position is greater than the complete hedge position.17

The idea that the optimal hedging quantity is a decreasing function of the correlation

between cashflow and project value has previously been discussed by Froot, Scharfstein

and Stein (1993) in a model which shows that a firm should hedge in order to ensure that

it is able to undertake profitable investments when they arise. In both our model and that

of Froot, Scharfstein and Stein, positive correlation between X and V reduces the need

for hedging because it implies that cashflow is low in states where the marginal value of

cash is low. However, there is an important difference between their argument and ours.

In the Froot, Scharfstein and Stein model, cash has value because it allows the firm to

invest, so insufficient hedging may cause the firm to forgo investment. Thus, hedging adds

value because it allows investment to occur. In our model, by contrast, cash has value

because it allows the firm to retain the option to invest, so insufficient hedging may cause

the firm to invest prematurely. Hedging adds value because it allows investment to be

delayed.

16Mello and Parsons (2000) show that similar considerations apply to the situation where the firm is
concerned with hedging the value of its operating options. It is straightforward to show, using a variant
of the proof of their Proposition 2, that the hedging policy given by the first two terms in (7) minimizes
var(Fh

X), the volatility of the marginal value of cash.
17This implicitly assumes that Fh

XV > 0. Although this is generally the case, the reverse sign holds
in the region where V is just below the investment threshold. In that region, additional cash makes the
value of the investment option less sensitive to changes in V , i.e., FV declines in X . The reason is that
extra cash gives the firm the flexibility to wait before investing, so the threshold increases and FV falls
below the value (= 1) it takes in the investment region. In this singular region, positive ρ means that
low-cash states also tend to be those in which the value of cash is high, so the optimal hedge position is
less than the complete hedge position.
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Figure 4: The constrained firm’s investment threshold function: hedged and unhedged
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The value of the constrained firm’s investment threshold function is plotted for (i) no hedging
and (ii) optimal hedging. Parameter values are given in Table 1. The optimal hedging policy
decreases the risk that the firm will have insufficient cash to finance the project in the future,
thereby increasing the value of waiting and raising the investment threshold.

This principle can be seen in Figure 2 for the firm with V = 175. For X in the region of

100, the risk of losing the ability to finance the project discourages the firm from waiting

and investment occurs immediately. Only when X rises sufficiently far above 100 does

waiting again become optimal. In this situation, a suitable hedge increases the value of

the investment option by reducing the number of states in which premature investment

occurs.

The optimal hedge in our model can thus be greater or less than its counterpart in

the Froot, Scharfstein and Stein (1993) model. On the one hand, allowing the firm to

choose the timing of its investment reduces its need for hedging since it does not lose

the project if funding is not available on a given date. On the other hand, the need

to maximize the value of the investment option may increase the quantity of required

hedging. For example, suppose X and V are perfectly positively correlated such that

X exceeds 100 whenever V exceeds 100. Then the optimal Froot, Scharfstein and Stein

hedge is zero. But for firms with an ongoing option to invest, the value of this option is

positive even when V < 100 and, moreover, is enhanced by additional X. Consequently,

firm value would be increased by a hedge that moved cash from states where X is more

than sufficient to finance investment to states where X is low.

The effect of the optimal hedge on the investment threshold is displayed in Figure 4.

For low values of X, the optimal hedge allows the firm to improve the timing of its

investment and thus results in a higher threshold (V̂ h). For higher values of X, the risk

of future funding shortfalls is lower, so the need for hedging declines and the threshold

approaches that of the non-hedging firm (V̂ c). The difference in investment thresholds
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between hedging and non-hedging firms can potentially explain a puzzling aspect of the

recent empirical literature on hedging. One implication of the Froot, Scharfstein and Stein

(1993) basis for hedging is that hedging firms should, all else equal, invest more than non-

hedging firms.18 However, after adjusting for size differences, Allayannis and Mozumdar

(2000) report little difference in the level of investment between the two groups of firms

while Géczy, Minton and Schrand (1997) find that non-hedgers invest more than hedgers.19

Our model suggests that these findings may be due to the ambiguous effect of hedging

on the attractiveness of investment. On the one hand, hedging allows firms to undertake

more investment by reducing the number of current states in which there is a funding

shortfall. On the other hand, it also reduces the risk of future funding shortfalls and thus

raises the investment threshold. Since these two effects work in opposite directions, it is

not surprising that the data reveal little difference in investment between hedging and

non-hedging firms.

5 Conclusion

When external finance is more costly than internal finance, firms may be forced to rely

on internal funds to finance investment. Although this fundamental point has long been

recognized, its implications for optimal investment timing have not previously been ana-

lyzed. In this paper, we consider the implications of imposing a “cash-in-advance”-type

constraint on firm investment. Our principal conclusions are as follows:

1. A financing constraint lowers the value of waiting to invest because investment delay

exposes the firm to the risk of future financing shortfalls.

2. Financing risk lowers the optimal investment threshold, thereby resulting in sub-

optimal early investment. Thus, a financing constraint may cause the firm to sac-

rifice a significant proportion of a project’s value not only by forcing it to forgo

investment (as would be the case in static models), but also by forcing it to accel-

erate investment. This identifies a new way by which costly external financing can

distort investment behavior.

3. Hedging protects the value of the firm’s investment options and thus gives it the

flexibility to delay investment. This identifies an additional rationale for hedging.

These basic results have implications for several unexplained empirical phenomena:
18Other theories (e.g., Stulz; 1999) also suggest this outcome. For example, if the costs of financial

distress are material, then failing to hedge idiosyncratic risk may increase a firm’s cost of capital and
thereby depress investment.

19An obvious explanation for this is that non-hedgers in these samples have better investment oppor-
tunities than hedgers, but this is unsupported by the data as both studies report the latter as having
higher Q and market-to-book values.

17



4. Greater cashflow permits more investment, but also raises the threshold required to

justify investment. Since the latter effect is greatest for tightly-constrained firms,

such firms may have lower investment-cashflow sensitivities than firms that are

less constrained. This contrasts with the conventional view that high sensitivities

indicate strong constraints, but is consistent with the evidence of Cleary (1999) and

Kaplan and Zingales (1997).

5. Greater payoff uncertainty increases the threshold required to justify investment,

but greater financing uncertainty decreases it. Since most empirical measures of

uncertainty are likely to contain elements of both, their offsetting effects can help

explain why the observed short-term relationship between investment and uncer-

tainty is weak.

6. Cashflow hedging reduces the risk of future financing shortfalls, but in so doing

increases the value of waiting to invest and thus raises the threshold required to

justify investment. Thus, the effect of hedging on the level of corporate investment

is ambiguous, consistent with existing empirical data.

Our analysis has focused on single stand-alone projects that have no effect on the

financing constraints faced by other projects. An obvious extension of our work would

consider the more general situation where the firm has a number of competing projects,

each of which has different implications for the financing constraints faced by all others.

For example, suppose a firm has two projects with the same positive NPV and cost I. If

the firm is constrained (i.e., I < X < 2I), then launching one project now augments the

future cash stock and thereby increases the likelihood of being able to subsequently launch

the other. Thus, there is an additional incentive for the constrained firm to invest now.

By contrast, if the payoffs to the two projects are negatively correlated, the unconstrained

firm has an additional incentive to delay investment in order to see which turns out best. In

this case, the differences that we have identified between constrained and unconstrained

firms seem likely to be accentuated, but other cases may yield different outcomes, so

further analysis of this complex problem has the potential to yield additional insights.
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A Appendix

A.1 Derivation of equation (5)

We assume that the risks inherent in V and X are spanned by the market of existing

securities. Specifically, suppose that there are traded assets or portfolios with prices v

and x that evolve according to

dv = µvvdt + σvvdε, (A-1)

dx = µxxdt + σxxdζ. (A-2)

Then a long position in the investment option can be combined with short positions of

σV FV /(σvv) units of asset v and φFX/(σxx) units of asset x to produce a total return

dR over the time interval dt such that (for shorthand, we drop the ’c’ superscript on F

since it is obvious that we are referring only to the constrained firm)

dR = dF −
(
σV FV

σvv

)
dv −

(
φFX

σxx

)
dx.

Using Itô’s Lemma to obtain an expression for dF , substituting (A-1) and (A-2) for

dv and dx respectively, and simplifying, we obtain

dR =

(
1

2
σ2V 2FV V +

1

2
φ2FXX + ρσφV FXV +

(
µ− µvσ

σv

)
V FV +

(
rX + ν − µxφ

σx

)
FX

)
dt.

Since this return is riskless, the portfolio must earn the riskless rate of return. Therefore,

dR = r

(
F − σV FV

σv
− φFX

σx

)
dt.
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Equating this to the above expression for dR means that F satisfies the differential equa-

tion

0 =
1

2
σ2V 2FV V +

1

2
φ2FXX + ρσφV FXV

+

(
µ− µvσ

σv

+
rσ

σv

)
V FV +

(
rX + ν − µxφ

σx

+
rφ

σx

)
FX − rF. (A-3)

Further simplification can most readily be obtained if we assume the expected returns µv

and µx are given by some equilibrium model such as the CAPM. If the latter holds, then

µx = r + ρxmσxλ,

µv = r + ρvmσvλ,

where ρxm (= ρXm) and ρvm (= ρV m) are the correlation coefficients of the market return

with dx and dv respectively, and λ is the market price of risk. If δ ≡ µv−µ is the project’s

dividend yield, then

µ + δ = r + ρvmσvλ.

Hence, the (A-3) coefficient on V FV , µ− (µvσ/σv) + (rσ/σv), becomes

µ− ρvmσλ = r − δ.

Now let G denote the market value of a claim to the future cashflow generated by the

firm’s existing physical assets. Clearly, from (4), G is independent of X and V , so dG = 0

over any time interval dt. Thus, the return on a long position in G consists only of the

current cashflow (νdt + φdζ). Hence, using (A-2), a long position in G combined with a

short position in φ/(σxx) units of asset x yields a total return of

νdt + φdζ −
(

φ

σxx

)
dx =

(
ν − φµx

σx

)
dt.

Since this return is riskless, we must have

ν − φµx

σx
= r

(
G− φ

σx

)
,

which implies that the (A-3) coefficient on FX , rX + ν − (µxφ/σx) + (rφ/σx), is equal to

r(X + G). Making this substitution back into (A-3) yields (5).

A.2 Derivation of equation (6)

Over the time interval dt, the firm’s initial cash stock pays interest equal to rXtdt, the

margin account pays interest equal to r̄htxtdt, and the firm’s existing operations generate

cashflow equal to νdt + φdζt. In addition, the firm must inject cash equal to htdxt into
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the margin account to maintain the required balance. Thus, the change in the firm’s cash

stock is

dX = (rX + ν + (r̄ − µx)hx)dt + (φ− σxhx)dζ.

The firm now holds a portfolio consisting of a long position in the project rights, a short

position in asset x, and an interest-bearing margin account. Over the time interval dt,

the change in the value of this portfolio equals

dF h − hdx + r̄hxdt.

Using Itô’s Lemma, this becomes(
1

2
σ2V 2F h

V V +
1

2
(φ− σxhx)2F h

XX + ρσ(φ− σxhx)V F h
XV + µV F h

V

+ (rX + ν + (r̄ − µx)hx)F h
X + (r̄ − µx)hx

)
dt

+
(
(φ− σxhx)F h

X − σxhx
)
dζ + σV F h

V dε,

Applying standard replication arguments using the assets x and v yields the differential

equation for F h:

rF h =
1

2
σ2V 2F h

V V +
1

2
(φ− σxhx)2F h

XX + ρσ(φ− σxhx)V F h
XV

+ (r − δ)V F h
V + (r(X + G) − (r − r̄))hx)F h

X − (r − r̄)hx.

It follows immediately that the optimal hedge policy satisfies (6)

A.3 Numerical solution procedure

The partial differential equation is solved on a grid with nodes {(Xk, Vj) : j = 1, . . . , J, k =

1, . . . , K}, where Xk = k dX and Vj = j dV . At node (Xk, Vj), the resulting difference

equation can be written in the form

0 = ajFj−1,k + bjFj,k + cjFj+1,k + dkFj,k−1 + ekFj,k+1

+ fj(Fj+1,k+1 + Fj−1,k−1 − Fj−1,k+1 − Fj+1,k−1),

where

aj =
σ2V 2

j

2dV 2
− (r − δ)Vj

2dV
,

bj = − φ2

dX2
− σ2V 2

j

dV 2
− r,

cj =
σ2V 2

j

2dV 2
+

(r − δ)Vj

2dV
,

dk =
φ2

2dX2
− r(Xk + G)

2dX
,

ek =
φ2

2dX2
+

r(Xk + G)

2dX
,

fj =
ρφσVj

4dXdV
,
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and Fj,k = F (Xk, Vj). This equation is defined whenever 2 ≤ j ≤ J−1 and 2 ≤ k ≤ K−1.

We extend it to the edges of the grid using four boundary conditions. Two are given in

the statement of the problem: F (X, 0) = F (0, V ) = 0. We therefore define F0,k = Fj,0 = 0

for all j and k. Motivated by the observation that

F (X, V + dV ) = 2F (X, V ) − F (X, V − dV ) + O(dV 2),

we define

FJ+1,k = 2FJ,k − FJ−1,k

for all k. Finally, we suppose that K is sufficiently large that Fj,K = F (Vj; V̂
u). That

is, we use the value of the project owned by an unconstrained firm along the X = XK

boundary.

We start by setting Fj,k = 0 if Xk < I or Vj < I, and set Fj,k = Vj − I at all other

nodes, and then solve the system using the method of Successive Over Relaxation. During

each iteration of this method, we solve the difference equation at each node (Xk, Vj) in

turn, replacing the calculated value of Fj,k with Vj − I at any node for which Xk ≥ I and

Fj,k < Vj − I. We stop iterating when the largest change in any Fj,k, measured relative

to its value at the end of the preceding iteration, is less than I/10000.
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