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Cashflow Immediacy and the Value of Investment Timing

Abstract

We examine the relationship between project value and cashflow immediacy when interest rates

are uncertain and investment can be delayed. The value of investment delay has two components:

the expected gain from committing now to investment at a future date and the potential gain from

the ability to reverse this commitment. Holding the value of immediate investment constant, we

show that the values of both components are increasing in the proportion of project cashflows that

accrue in the more distant future, so total project value is greater for long-term projects. Our

results emphasize the importance of the interaction between cashflow immediacy and interest rate

uncertainty for the optimal investment policy.



Cashflow Immediacy and the Value of Investment Timing

I Introduction

In perfect markets, standard investment theory holds that project value is given by the sum of

discounted expected cashflows and is otherwise independent of project duration. However, Ingersoll

and Ross (1992) show that the combination of interest rate volatility and flexibility in investment

timing creates a role for duration. They consider a firm with a perpetual option to invest in a

T -period project and find that the value of the rights to this project depends on T .

In this paper, we extend and elucidate this result. Ingersoll and Ross (1992) focus on a simple

project that costs I dollars at the time of launching τ and yields a single $1 payoff at time τ + T .

With this kind of project, any change in T also results in a change in net-present-value (NPV). Thus,

the Ingersoll and Ross comparative static analysis of the relationship between T and project value

does not hold all else constant.1 Moreover, although the $1 single-cashflow assumption facilitates

comparison of projects with different T , it precludes analysis of the difference between multiple-

cashflow projects that differ in the timing of cashflow arrival over a given project life.2 To address

these issues, we consider projects with multiple future cashflows, allow for changes in cashflow

immediacy beyond those simply due to differences in project duration, and hold NPV constant

when cashflow immediacy changes. We also incorporate more general assumptions about interest

rates.

On the other hand, in order to make the economic intuition more transparent, we impose more

restrictions on the investment timing structure than do Ingersoll and Ross (1992). They consider a

1Ingersoll and Ross consider two types of change in T . First, T is increased while I is held constant; clearly, this

leads to a fall in NPV. Second, T is increased while the “breakeven” rate (the instantaneous spot rate for which NPV

equals zero) is held constant; since the “breakeven” rate is not the project’s internal rate of return, this change also

results in a fall in NPV. See Narayanan (1985) for a discussion of the importance of keeping NPV constant when

considering the effect of changes in project duration.
2For example, two projects can have the same NPV and duration, but one (the more “immediate” project)

generates higher early cashflows and lower later cashflows than the other. In Sections IV and V of their paper,

Ingersoll and Ross consider projects with multiple future cashflows, but do not analyze the effect of greater cashflow

immediacy on the value of these more complex investments.
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perpetual investment option whereas we permit the firm to invest at just two dates. This simpler

structure allows us to identify and clarify the mechanism by which cashflow immediacy and interest

rate uncertainty interact to affect project value while retaining the essential features of the timing

decision.3

Although most readers are likely to be intuitively aware of most of our results, our analysis

unifies these findings within a common framework and thus makes their underlying source more

transparent. In the two-date set-up, project value is equal to the greater of (i) the payoff to imme-

diate investment (the project’s NPV) and (ii) the present value of the option to delay investment

until the future date. Using this framework, we make two principal contributions. First, we show

that it is useful to view the value of the option to delay investment as consisting of two components:

the value of committing today to investment in the future and the value of being able to reverse

this commitment if necessary. Because shocks to discount rates have a greater effect on the value

of long-dated cashflows, and because investment payoffs are a convex function of discount rates,

both components of the delay option value are greater for longer-term projects in the presence of

interest rate uncertainty. Thus, for given NPV, project value is a decreasing function of cashflow

immediacy. Second, we demonstrate the importance of assumptions about the term structure for

the relationship between project value and cashflow immediacy. The assumptions implicit in Inger-

soll and Ross (1992) yield the negative relationship described above, but more general interest rate

environments that allow for twists in the yield curve can reverse this outcome. These results imply

that dynamic investment decisions should consider the timing of project cashflows, particularly in

a volatile interest rate environment.

In the next section, we outline the details of our model. In Section III, we use this model to

examine the relationship between cashflow immediacy and project value in the presence of inter-

est rate uncertainty. Section IV examines the importance of our assumptions about interest rate

behavior while Section V offers some concluding remarks.

3The two-date assumption is, moreover, unimportant. In the appendix, we show that allowing the investment

option to be perpetual does not change the sign of the relationship between cashflow immediacy and project value.
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II The Model

Consider an investment project that incurs a sunk cost I and that lasts T years. At any launching

time τ , X(t) denotes the cumulative real cashflow expected t years after launching, that is at time

τ + t. We assume that the owners of this project (henceforth “the firm”) are risk-neutral, so all

expected cashflows are discounted at the applicable riskless interest rate. Although not strictly

necessary, this assumption helps to keep our model simple and transparent.

At any time τ , interest rates and bond prices are a function of the n-vector of state variables

zτ ∈ R
n. Let B(zτ , t) be the time τ price of a t-year riskless discount bond. Then time τ investment

in the project yields the payoff4

π(zτ ) =

∫ T

0

B(zτ , t)dX(t)− I. (1)

We assume the firm has a simple investment timing choice: either invest now (at time 0) and receive

an asset worth π(z0) or delay the investment decision until some future time s when the project is

worth π(zs).
5 A necessary condition for current (time 0) investment in the project is π(z0) > 0, so

we henceforth assume this to be the case.

To determine the discount factors B(zτ , t), let f(z, t) denote the instantaneous t-year forward

rate on a riskless discount bond when the state of the economy is z. Then (see Duffie, 1996, p150,

or Yan, 2001)

B(zτ , t) = exp

(
−
∫ t

0

f(zτ , t
′)dt′

)
.

We assume that forward rates have the following properties.

(A1) For any value of zs either f(z0, t) ≥ f(zs, t) for all t ≥ 0 or f(z0, t) ≤ f(zs, t) for all t ≥ 0.

(A2) E0[f(zs, t)] ≤ f(z0, t) for all t ≥ 0.
4Use of the Riemann-Stieltjes integral was suggested by the referee. The principal advantage of this approach is

that it allows us to embed the simple Ingersoll and Ross (1992) project within our set-up: by setting X(t) = 0 for all

t < T and X(T ) = 1, we obtain π(zτ ) = B(zτ , T )− I, which is exactly the case considered by Ingersoll and Ross. On

the other hand, if the project has a continuous cashflow x(t), then dX(t) can be replaced by x(t)dt in the definition

of π.
5This simple timing decision is similar to that analyzed by Abel et al. (1996)
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Assumption (A1) asserts that shocks to the state vector move all instantaneous forward rates in

the same direction while (A2) states that the distribution of the state vector is such that the

instantaneous forward rate curve is expected to be no higher at time s than it is at time 0. We

examine the importance of these assumptions in Section IV, but for the moment note only that

both are implicit in Ingersoll and Ross (1992).

These assumptions allow for a wide variety of yield curves. To see this, note that the t-year

yield-to-maturity at time s is
1

t

∫ t

0

f(zs, t
′)dt′.

Thus, since we have placed no restrictions on the relationship between f and t, the yield curve can

be monotonic or humped. Similarly, the yield-to-maturity of a long-term bond can be more or less

sensitive to state vector shocks than the yield-to-maturity of a short-term bond, although these

shocks move all yields in the same direction.

If the firm invests at time 0, it gives up the opportunity to invest at time s, so the cost of this

sacrifice must be incorporated in the investment decision. From the perspective of time 0, the payoff

from time s investment is random. At that time, if zs is such that π(zs) is negative, the project

is abandoned and the payoff is zero. For other values of zs, investment at time s yields a positive

payoff equal to π(zs). Thus, the future payoff from delaying investment is max{0, π(zs)} and the
value of the option to delay investment until time s is given by

δ(z0) = B(z0, s)E0[max{0, π(zs)}], (2)

where the expectation is over all possible values of zs. The time 0 value of the project is therefore

given by

F (z0) = max{δ(z0), π(z0)}

That is, project value equals the greater of (i) the value of immediate investment and (ii) the value

of the option to delay investment until time s. In what follows, we hold the value of immediate

investment π(z0) constant and examine the effect of changes in cashflow immediacy on the delay

option value δ(z0), and thus on project value F (z0).

To determine the nature of this relationship, it turns out to be helpful to decompose δ(z0) into

two parts — the value of cashflow delay, and the value of decision reversibility. To see how this
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decomposition works, imagine that the firm decides now to launch the project after a delay of s

years, regardless of the state of the economy at that time. That is, it makes the investment decision

now, but actually launches the project after a delay. Under such a policy, the current value of the

project is

δCD(z0) = B(z0, s)E0[π(zs)] (3)

which we call the value of cashflow delay. However, we have already seen that the option to delay

the investment decision until time s, which allows the firm to abandon the project if the economic

climate is unfavorable, has current value δ(z0). Using the identity max{0, y} − y = max{0,−y} to
subtract (3) from (2), we have

δDR(z0) = δ(z0)− δCD(z0) = B(z0, s)E0[max{0,−π(zs)}].

We can interpret this last term as the value of being able to reverse the investment decision. If

π(zs) > 0, there is nothing to be gained by reversing an earlier decision to invest; if π(zs) < 0,

reversing the earlier investment decision (i.e., abandoning the project) saves −π(zs).

The issue we wish to consider is whether or not project value depends on the timing of expected

project cashflows beyond the extent to which this affects NPV. That is, does F (z0) depend on

whether a project of given NPV has most of its expected cashflows in the near future or in the

distant future? To address this question, it is convenient to consider a second project with greater

cashflow immediacy than the first, but which is otherwise identical. If launched at time τ , this

second project has expected cumulative cashflows X̂(t) at time τ + t such that X̂(t) − X(t) is an

increasing function of t for all t ∈ [0, t∗] and a decreasing function of t for all t ∈ [t∗, T ] for some
time t∗ < T ; that is, the second project has higher early cashflows and lower later cashflows than

the first project. Note that greater cashflow immediacy can indicate a shorter project duration, a

re-weighting (towards the near future) of the expected cashflows over the same duration, or both.

We use π̂(zτ ) to denote the payoff from launching this more immediate project at time τ . Thus,

holding NPV constant, X̂(t) also satisfies

π(z0) =

∫ T

0

B(z0, t)dX(t)− I =

∫ T

0

B(z0, t)dX̂(t)− I = π̂(z0),

Finally, we use δ̂(z0) to denote the time 0 value of the option to delay investment in the more

immediate project until time s. The various components of this are defined in an analogous manner,
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i.e.,

δ̂(z0) = δ̂CD(z0) + δ̂DR(z0)

and

F̂ (z0) = max{δ̂(z0), π̂(z0)}.

Our analysis of the relationship between cashflow immediacy and project value is facilitated by

the following technical result:

Lemma 1 Let u : [a, c]→ R and û : [a, c]→ R be increasing functions with the property that û−u

is increasing on [a, b] and decreasing on [b, c], for some b ∈ (a, c). For any continuous, increasing

function v : [a, c]→ R,∫ c

a

v(t)dû(t)−
∫ c

a

v(t)du(t) ≤ v(b)

(∫ c

a

dû(t)−
∫ c

a

du(t)

)
.

Proof: See Appendix.

III Cashflow Immediacy and the Investment Decision

The first, and most important, point to note is that increasing cashflow immediacy makes the time

s investment payoff less sensitive to interest rate shocks. To be precise, any change in the state

vector which raises the payoff from investing in the more immediate project has an even greater

positive effect on the investment payoff for the other project. Similarly, interest rate shocks which

lower the investment payoff for the more immediate project have an even more negative effect on

the other project. The intuition for this is straightforward — the more immediate the cashflows,

the more they are concentrated in the short-term, where even large changes in the current state

have a relatively small effect on their present value.

Lemma 2 If (A1) holds, then the investment payoff functions π and π̂ have the following properties:

1. If π̂(zs) ≥ π̂(z0) then π(zs) ≥ π̂(zs).

2. If π̂(zs) ≤ π̂(z0) then π(zs) ≤ π̂(zs).

Proof: See Appendix.
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Figure I: The effect of interest rate shocks on the investment payoff

✲

✻

zs

π(zs)

π̂(zs)

πs

0
z0 z∗ ẑ∗

Figure I illustrates the relationship implied by Lemma 2 in the frequently-analyzed special case

where the instantaneous spot interest rate is the sole state variable. By definition, the two projects

have the same NPV, so they also have the same time s investment payoff if zs = z0. If the spot

interest rate falls, the less immediate project has the greater payoff, since it is more sensitive to

interest rate shocks. If the spot interest rate rises a small amount (to no more than z∗), both projects

have positive payoffs, but the more immediate project has the greater payoff since it is affected less

by the shock. If the spot interest rate rises to between z∗ and ẑ∗, only the more immediate project

has a positive payoff. For larger increases in the spot interest rate, neither project is launched and

the payoffs are both zero. As any of these realizations are possible at time s, it is not immediately

clear which project has the greater delay option value. However, decomposing this value into

the two components introduced in Section II provides an unambiguous answer, as shown by the

following two lemmas which specify the relationship between cashflow immediacy and the value of

each component in the general case where zs is an n-vector of state variables.

Lemma 3 If (A1) holds, then the project with more immediate cashflows has a lower value of

decision reversibility:

δDR(z0) ≥ δ̂DR(z0).
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Proof: See Appendix.

Lemma 4 If (A1) and (A2) hold, then the project with more immediate cashflows has a lower value

of cashflow delay:

δCD(z0) ≥ δ̂CD(z0).

Proof: See Appendix.

Lemma 3 states that the value of decision reversibility is a decreasing function of cashflow

immediacy. The option to reverse an earlier decision to commence investment at time s will only be

exercised if new information reveals that decision to be a bad one. This will only occur if interest

rates increase to such an extent that the investment payoff becomes negative. As can be seen in

Figure I, there is a smaller likelihood of this happening when cashflows are more immediate: for

the less immediate project, the investment decision will only be reversed if the state variable climbs

above z∗; for the more immediate project, the state variable must climb above the higher threshold

ẑ∗. Furthermore, when an investment decision is reversed, the savings are smaller when immediacy

is high. This can also be seen in Figure I: when both payoffs are negative, the less immediate

project’s investment payoff is more negative.

Lemma 4 states that the value of cashflow delay is also a decreasing function of cashflow imme-

diacy. With expected cashflows fixed, the time 0 expected payoff from a decision to invest at time

s depends only on the distribution of the time s state variables. Since forward rates are expected

to be no higher at time s, Jensen’s inequality implies that E0[B(zs, t)] > B(z0, t). Thus, interest

rate uncertainty increases the expected present value of cashflows generated by investment at time

s. Moreover, this increase is greater for the less immediate project since it has more of its cashflows

concentrated in the more distant future and long-term bond prices are more sensitive to interest

rate movements than their short-term counterparts.

Lemmas 3 and 4 show that the value of each component of the option to delay investment is a

decreasing function of cashflow immediacy. This yields our main result:

Proposition 1 If (A1) and (A2) hold, then project value is a decreasing function of cashflow

immediacy, all else equal.
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Proof: From Lemmas 3 and 4,

δ(z0) = δDR(z0) + δCD(z0) ≥ δ̂DR(z0) + δ̂CD(z0) = δ̂(z0).

Therefore

F (z0) = max{δ(z0), π(z0)} ≥ max{δ̂(z0), π̂(z0)} = F̂ (z0).

Proposition 1 states that an increase in cashflow immediacy lowers project value when interest

rates are uncertain and NPV is held constant. The reason is that interest rate uncertainty creates

the potential for a higher investment payoff at date s. This potential is greater the more “long-

term” the project since discount rate fluctuations have a greater impact on more distant cashflows.

Thus, the value of the option to delay investment becomes greater as cashflow immediacy decreases.

Hence, when interest rates are uncertain, a long-term project has greater value than a short-term

project with the same NPV. This contrasts with the Ingersoll and Ross (1992) finding that project

value can be a decreasing function of project duration. This difference occurs because, in their

model, a rise in duration is accompanied by a fall in NPV. This lowers project value and by more

than greater interest rate sensitivity increases it. Our model makes it clear that when NPV is held

constant, longer duration has an unambiguously positive effect on project value. However, as we

discuss in the next section, this outcome is partly dependent on the term structure assumptions

contained in both our model and that of Ingersoll and Ross.

IV Interest Rate Assumptions

The principal implication of our analysis is that, given assumptions (A1) and (A2), interest rate

uncertainty and cashflow immediacy interact to affect project value in a systematic way. This begs

the question of how this systematic relationship might be affected by the relaxation of the two

assumptions and, more generally, of the exact nature of their role in our analysis.

Consider first assumption (A1) which requires that all instantaneous forward rates, and therefore

bond yields, move in the same direction. This rules out “twists” in the yield curve that might

reverse Lemma 2. For example, if shocks to the state vector move short-term and long-term yields

in opposite directions, then long-term bond prices may be less sensitive to these shocks than short-

term prices. In this case, the value of decision reversibility is higher for the more immediate project.
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However, at least in single-factor models of the term structure, such “twists” are difficult to obtain;

for example, in Cox, Ingersoll and Ross (1985) and Vasicek (1977), instantaneous forward rates

are all increasing, affine functions of the single state variable (the instantaneous spot rate). In

multi-factor models, things are not so clear. For example, suppose there are two sorts of shocks:

one moves the short-term forward rate by more than the distant forward rate; the other results in

parallel shifts of the forward curve. If the shocks hit in opposite directions, it is possible that short-

term forward rates move in one direction, while distant forward rates move in the other direction.

Thus, assumption (A1) appears likely to be satisfied in a single-factor world, but it may not hold

in a multi- factor world, an outcome which can reverse Lemmas 2 and 3 and thus, if strong enough,

could also reverse Proposition 1.

Assumption (A2) implies that the time s yield curve expected at date 0 is no higher than the

curve prevailing at date 0. This restriction is implicit in the term structure models of Cox, Ingersoll

and Ross (1980), Dothan (1978), and Ingersoll and Ross (1992), but not in the models of Cox,

Ingersoll and Ross (1985) and Vasicek (1977) where a mean-reverting interest rate process can

induce a higher expected future yield curve. In the latter case, project cashflows are expected to

be more heavily discounted at date s and this effect is greater for less immediate projects because

the discounted values of their cashflows are more sensitive to discount rate changes. Thus, an

expected rise in interest rates reduces the size of the gap between δCD(z0) and δ̂CD(z0). If this

effect is strong enough, the inequality in Lemma 4 reverses. However, note that Lemma 4 can

accommodate a certain amount of expected yield curve increases. For example, because discount

bond prices are a convex function of yields, Jensen’s inequality implies that bond prices can have

the martingale property even when the yield curve is expected to rise. In this case, the value of

cashflow delay is independent of immediacy and the delay option value depends only on the value

of decision reversibility. Thus, for Proposition 1 to be reversed, the expected growth in interest

rates would have to be sufficiently high to offset the higher value of decision reversibility for the less

immediate project. But expected interest rate growth lowers the incentive to delay investment, so

any such reversal is likely to occur only when neither project has any significant delay option value.

Indeed, this leads naturally to the suspicion that expected interest rate growth can cause the less

immediate project to have a lower delay option value only in situations where both projects should
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be launched at date 0 and thus have equal value. Although we are unable to verify this conjecture

for the two-date investment option, it is indeed valid for a perpetual option. We provide a brief

outline of this latter case in the appendix.

V Concluding Remarks

In this paper, we have analyzed the effect of cashflow immediacy on project value when interest

rates are uncertain and the timing of investment is flexible. We find that the option to delay

investment is more valuable for less immediate projects, a result that has two sources. First, if

the firm commits today to investment at some future date, then because investment payoffs are

a convex function of discount rates, the current value of this commitment is greater for projects

with less immediate cashflows. Second, the value of the ability to reverse this commitment is also

higher for projects with less immediate cashflows; such projects are more sensitive to discount rate

shocks, so the potential savings from being able to reverse the earlier commitment to invest are

higher. Combining these two effects implies that long-term projects are more valuable than short-

term projects with the same NPV. Thus, our results emphasize the importance of the interaction

between cashflow immediacy and interest rate uncertainty for the optimal investment policy.

Our analysis has been conducted in a setting where delaying investment does not affect expected

cashflows and thus has particular relevance to decisions involving investments of low cashflow risk

and varying duration.6 This raises the question of whether allowing expected cashflows to vary if

investment is delayed can induce similar results. To see how this might occur, recall the mechanism

that operates when interest rates are stochastic and expected cashflows are constant. In that case,

project value is a decreasing function of cashflow immediacy because shocks to interest rates have

a proportionately greater effect on the discount factors applied to more distant expected cashflows.

Thus, from the perspective of time 0, the potential gains from delaying investment until time s are

greater for projects with a relatively high proportion of more distant cashflows. Since the present

value of any expected cashflow is simply equal to the product of that expected cashflow and the

relevant discount factor, this suggests that greater cashflow immediacy should reduce the potential

6As pointed out to us by the referee, banks frequently face decisions of this type.
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gains from delaying investment even when interest rates are certain, so long as time s shocks to

the project’s expected cashflow stream have a proportionately greater effect on the more distant

expected cashflows. Suppose, for example, that the expected cashflow state variable is the realized

growth rate in the price of the good which the project will produce and that there is some persistence

in price growth realizations. Then a positive shock increases all expected future cashflows, but the

percentage increase is greatest for later cashflows because of the persistence effect. This suggests

that cashflow immediacy may have implications for project value even when interest rate risk is

low.
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Appendix

Proof of Lemma 1

Since v(t) ≤ v(b) for all t ∈ [a, b],∫ b

a

v(t)d(û(t)− u(t)) ≤ v(b)

∫ b

a

d(û(t)− u(t)) = v(b)

∫ b

a

dû(t)− v(b)

∫ b

a

du(t).

Since v(t) ≥ v(b) for all t ∈ [b, c],∫ c

b

v(t)d(u(t)− û(t)) ≥ v(b)

∫ c

b

d(u(t)− û(t)) = v(b)

∫ c

b

du(t)− v(b)

∫ c

b

dû(t).

The result of the lemma follows immediately.

Proof of Lemma 2

Let a = 0, b = t∗, c = T , u(t) =
∫ t

0
B(z0, t

′)dX(t′) and û(t) =
∫ t

0
B(z0, t

′)dX̂(t′).

First consider the case that f(zs, t) ≤ f(z0, t) for all t. Then clearly B(zs, t) ≥ B(z0, t) for all t,

which implies that π̂(zs) ≥ π̂(z0). Furthermore,

v(t) =
B(zs, t)

B(z0, t)
= exp

(∫ t

0

(f(z0, t
′)− f(zs, t

′))dt
)

is an increasing function of t. We see from Lemma 1 that

π̂(zs)− π(zs) =

∫ T

0

B(zs, t)dX̂(t)−
∫ T

0

B(zs, t)dX(t)

=

∫ T

0

v(t)dû(t)−
∫ T

0

v(t)du(t)

≤ v(t∗)
(∫ T

0

dû(t)−
∫ T

0

du(t)

)

=
B(zs, t

∗)
B(z0, t∗)

(π̂(z0)− π(z0))

= 0,

where we have used the fact that π(z0) = π̂(z0) in the final line.

The only other possibility is that f(zs, t) ≥ f(z0, t) for all t. Then clearly B(zs, t) ≤ B(z0, t) for

all t, which implies that π̂(zs) ≤ π̂(z0). Furthermore,

v(t) =
−B(zs, t)

B(z0, t)
= − exp

(∫ t

0

(f(z0, t
′)− f(zs, t

′))dt
)
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is therefore an increasing function of t. We see from Lemma 1 that

−π̂(zs) + π(zs) = −
∫ T

0

B(zs, t)dX̂(t) +

∫ T

0

B(zs, t)dX(t)

=

∫ T

0

v(t)dû(t)−
∫ T

0

v(t)du(t)

≤ v(t∗)
(∫ T

0

dû(t)−
∫ T

0

du(t)

)

=
−B(zs, t

∗)
B(z0, t∗)

(π̂(z0)− π(z0))

= 0.

Proof of Lemma 3

Let A = {z ∈ R
n : π(z) ≤ 0} and Â = {z ∈ R

n : π̂(z) ≤ 0}. For any z ∈ Â, π̂(z) ≤ π̂(z0), so that

Lemma 2 implies π(z) ≤ π̂(z) ≤ 0, and z ∈ A. That is, Â ⊆ A, and hence

∫∫
A

g(z)(−π(z))dz ≥
∫∫

Â

g(z)(−π(z))dz,

where g is the probability density function for zs. Also, we must have −π(z) ≥ −π̂(z) for all z ∈ Â.

Therefore ∫∫
Â

g(z)(−π(z))dz ≥
∫∫

Â

g(z)(−π̂(z))dz.

Combining these two results, we see that

E0[max{0,−π(zs)}] =
∫∫

A

g(z)(−π(z))dz

≥
∫∫

Â

g(z)(−π̂(z))dz

= E0[max{0,−π̂(zs)}].

Proof of Lemma 4

Our first task is to show that the function E0[B(zs, t)/B(z0, t)] is increasing in t. To begin, note

that

d

dt

(
E0

[
B(zs, t)

B(z0, t)

])
= E0

[
B(zs, t)

B(z0, t)

(
∂
∂t
B(zs, t)

B(zs, t)
−

∂
∂t
B(z0, t)

B(z0, t)

)]

15



= E0

[
B(zs, t)

B(z0, t)
(f(z0, t)− f(zs, t))

]

=

∫∫
Rn

g(z)
B(z, t)

B(z0, t)
(f(z0, t)− f(z, t))dz.

Now let B = {z ∈ R
n : f(z0, t) ≥ f(z, t) ∀t ≥ 0} and C = {z ∈ R

n : f(z0, t) ≤ f(z, t) ∀t ≥ 0}.
Then

d

dt

(
E0

[
B(zs, t)

B(z0, t)

])
=

∫∫
B

g(z)
B(z, t)

B(z0, t)
(f(z0, t)− f(z, t))dz

+

∫∫
C

g(z)
B(z, t)

B(z0, t)
(f(z0, t)− f(z, t))dz (4)

For all z ∈ B, B(z, t)/B(z0, t) ≥ 1 for all t > 0. Therefore∫∫
B

g(z)
B(z, t)

B(z0, t)
(f(z0, t)− f(z, t))dz ≥

∫∫
B

g(z)(f(z0, t)− f(z, t))dz.

Similarly, for all z ∈ B, B(z, t)/B(z0, t) ≤ 1 for all t > 0, so that∫∫
C

g(z)
B(z, t)

B(z0, t)
(f(z0, t)− f(z, t))dz ≥

∫∫
C

g(z)(f(z0, t)− f(z, t))dz.

Substituting these two inequalities into (4) shows that

d

dt

(
E0

[
B(zs, t)

B(z0, t)

])
≥

∫∫
B

g(z)(f(z0, t)− f(z, t))dz

+

∫∫
C

g(z)(f(z0, t)− f(z, t))dz

=

∫∫
Rn

g(z)(f(z0, t)− f(z, t))dz

= E0[f(z0, t)− f(zs, t)]

= f(z0, t)− E0[f(zs, t)]

≥ 0,

where we have used (A2) to complete the final step.

The remainder of the proof is easy. By setting a = 0, b = t∗, c = T , u(t) =
∫ t

0
B(z0, t

′)dX(t′),

û(t) =
∫ t

0
B(z0, t

′)dX̂(t′) and v(t) = E0[B(zs, t)/B(z0, t)], we see from Lemma 1 that

E0[π̂(zs)]− E0[π(zs)] =

∫ T

0

v(t)dû(t)−
∫ T

0

v(t)du(t)

≤ v(t∗)
(∫ T

0

dû(t)−
∫ T

0

du(t)

)
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= E0

[
B(zs, t

∗)
B(z0, t∗)

]
(π̂(z0)− π(z0))

= 0.

Perpetual Options

We consider the effects of allowing (i) the investment option to be perpetual and (ii) positive

expected interest rate growth. Let R(rt) denote the value of perpetual one-time rights to the

project introduced in Section II where the state variable rt is the instantaneous spot interest rate.

We suppose that rt follows the (risk-adjusted) process

drt = µ(rt)dt+ σ(rt)dξt

for some functions µ and σ, where ξt is a Wiener process.

Denote the price at time τ of a discount bond paying $1 at time τ + t by B(rτ , t).
7 As before,

investing in the project at time τ yields the payoff given in equation (1):

π(rτ ) =

∫ T

0

B(rτ , t)dX(t)− I.

Assuming that the project is launched as soon as the instantaneous rate takes the value r∗, R must

satisfy the ordinary differential equation

0 =
1

2
σ(r)2

d2R

dr2
+ µ(r)

dR

dr
− rR, r > r∗,

together with the boundary conditions

lim
r→∞

R(r) = 0, R(r∗) = π(r∗).

The first condition says that the rights to the project have zero value when the instantaneous rate is

extremely high, the second condition reflects the fact that the investment payoff is π(r∗). Following

the approach in Section IV of Ingersoll and Ross (1992), we can write

R(r) =
φ(r)π(r∗)
φ(r∗)

,

7The function B can be found by solving a partial differential equation analagous to equation (5) in Ingersoll and

Ross.
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where the function φ satisfies the ordinary differential equation

0 =
1

2
σ(r)2

d2φ

dr2
+ µ(r)

dφ

dr
− rφ,

together with the boundary condition limr→∞ φ(r) = 0.8 The optimal investment threshold is the

interest rate r′ which maximizes π(r′)/φ(r′), and the value of the rights to the project is therefore

R(r) = sup
r′

φ(r)π(r′)
φ(r′)

= φ(r) sup
r′

π(r′)
φ(r′)

.

Now consider the more immediate project with investment payoff function π̂(r). If r̂∗ is the

optimal threshold for the project with more immediate cashflows, the value of the rights to this

project is

R̂(r0) =
φ(r0)π̂(r̂

∗)
φ(r̂∗)

.

Provided that all forward rates are increasing functions of the instantaneous spot rate, (A1) holds,

and Lemma 2 implies that

π(r) ≥ π̂(r) ∀ r ≤ r0.

If it is initially optimal to delay investment on the second project (that is, r̂∗ ≤ r0), then Lemma 2

implies that π(r̂∗) ≥ π̂(r̂∗). Therefore,

φ(r0)π̂(r̂
∗)

φ(r̂∗)
≤ φ(r0)π(r̂

∗)
φ(r̂∗)

.

Finally, r̂∗ is not necessarily the optimal threshold for the project with payoff function π, so that

φ(r0)π(r̂
∗)

φ(r̂∗)
. ≤ φ(r0) sup

r′

π(r′)
φ(r′)

= R(r0).

Combining the last three results shows that

R̂(r0) ≤ R(r0).

So long as any expected increase in r (and therefore in yields) is not too great, the strict inequality

holds, i.e., the rights to the more immediate project are less valuable. For large expected increases

in r, delay is not optimal and the two projects are equivalent.

8Examples of φs for popular models from the term structure literature are given in Table 5 of Ingersoll and

Ross (1992).
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