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Abstract

Most central banks currently implement monetary policy by targeting a short-term interest

rate. This paper asks: “What is the optimal form for such interest rate targeting, given the

objectives facing central banks?” We find the optimal rule is for the central bank to change

the target rate whenever the deviation between its preferred rate and the current target

rate reaches some critical level, and in this case the target rate is changed by a discrete

amount in the direction of its preferred rate. Despite the simplicity of this rule, we are able

to replicate a number of puzzling features of interest rate targeting observed in practice, as

well as explain some dynamic properties of market interest rates.

JEL classification: E43; E52; E58
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1 Introduction

Most central banks currently use interest rate targets as their operating objective in the im-

plementation of monetary policy. Central banks in Australia, Canada, Japan, and the United

States all target an overnight interbank interest rate, while in most other countries short-term

interest rates (tender rates) are targeted. This paper asks: “What is the optimal form for such

interest rate targeting, given the objectives facing central banks?” The question is motivated by

the practices of the Federal Reserve, which has long targeted the federal funds rate, either di-

rectly or indirectly. Goodfriend (1991) suggests the Fed targets the federal funds rate to achieve

its ultimate policy objectives, but in doing so it is careful not to “whipsaw the market” and waits

till sufficient information has been accumulated before changing the target rate. In particular,

he notes that adjustments to the target rate are made at irregular intervals in relatively small

steps. Some target changes occur in relatively rapid succession, but when this occurs the changes

are in the same direction; target changes are not soon reversed. He also suggests target changes
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for helpful comments, and Shirley Huang for research assistance. Any errors are ours.
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are essentially unpredictable at forecast horizons longer than a month or two. Rudebusch (1995)

has confirmed these features empirically for two periods of explicit funds rate targeting: from

September 1974 to September 1979 and from March 1984 to September 1992. He shows that

target changes are conducted in small standardized steps with an approximate equality in the

size of increases and decreases, that in the first few weeks after a target change the Fed is fairly

likely to change the target again in the same direction (but very unlikely to reverse its previous

change), while after five weeks without a change there is only a small (but equal) likelihood of

an increase or decrease in the target rate.

These practices are not unique to the Federal Reserve. The Bank for International Settle-

ments (1998, p. 68) examines twelve industrial countries that target interest rates and finds that

central banks generally move interest rates several times in the same direction before reversing

policy, and that the interval between policy adjustments is typically considerably longer when

the direction is changed. The Bank for International Settlements’ data ends in March 1998, but

starting dates vary across countries. Using consistent starting dates and longer sample periods

for five of these countries, Goodhart (1997) reports similar findings. Given the range of sample

periods and countries considered, these findings span a variety of institutional and macroeco-

nomic environments, suggesting a common explanation may be appropriate. Yet, despite the

prevalence of interest rate targeting and the important role that it plays in monetary policy

implementation, no model exists which explains this set of puzzling facts.1 This paper provides

such a model.

The model we develop is based on the following assumptions. The central bank at each point

in time has a preferred level of some short-term interest rate which is determined by its ultimate

objectives (such as inflation and output).2 We start by taking the simplest case and assume

this preferred rate evolves according to driftless Brownian motion. This assumption shows that

we do not need to assume mean-reversion in the preferred rate in order to generate positive
1Eijffinger et al. (1999) use a simpler version of our model in the context of a small macro model to derive

implications of discrete interest rate changes for the macro-economy. However, their model cannot explain most

of the interesting dynamics of target rates because it has the property that the inflation (or interest rate) gap from

the target is reset to zero once it reaches a critical level. A recent literature, surveyed by Sack and Wieland (1999),

explains why central banks may want to smooth interest rates. For instance, Woodford (1998) shows that with

precommitment, it is socially optimal to smooth interest rates due to the forward-looking behavior of market

participants. This allows the Fed to achieve a desired change in long-term rates, with lower fluctuations in short-

term rates. A more gradualist interest rate policy can also be the optimal response to various types of uncertainty

facing central banks. Sack (1998) shows that interest rate smoothing is optimal in the presence of uncertainty

about the parameters of the central bank’s model, while Orphanides (1998) shows that optimal policy involves

a less aggressive response to changes in macroeconomic variables when measurement error is taken into account.

In our view, while this literature provides a justification for interest rate smoothing, it does not explain the form

interest rate adjustments should take.
2In the recent inflation targeting literature, the overnight interbank interest rate is often considered the instru-

ment which is used to try to achieve the bank’s ultimate targets (or objectives). In this paper, the term ‘target’

refers to an operating target — the bank sets a target level of interest rates which it attempts to maintain through

the use of open market operations.
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autocorrelation in target rate changes. The central bank is assumed to suffer flow costs which

are quadratic in the difference between the actual interest rate and this preferred level. With

just this assumption, the central bank’s optimal policy would be to make the target rate exactly

track its preferred rate, thus adjusting its target rate by infinitesimal amounts at every point

in time. However, we do not observe this in practice. Instead, we observe infrequent discrete

changes which suggest the central bank faces some costs to changing its interest rate target.

We think of these adjustment costs as arising from the central bank’s additional role of

maintaining orderly financial markets. Target changes may induce adverse market reactions in

the form of difficulties in the banking sector (Goodfriend 1987 and Cukierman 1991), unwanted

fluctuations in long-term interest rates (Goodfriend 1991), or more general credit market diffi-

culties (for example, dramatic movements in foreign exchange and stock markets).3 The larger

the target change the greater the likelihood that financial market stress will arise. However,

even a very small target change can give rise to financial market disruptions, especially if mar-

kets are sensitive to merely the direction of a target change. Thus we assume both a fixed and

proportional adjustment cost.

Given the different types of costs that the central bank faces, we derive the optimal form

of the interest rate targeting rule when the central bank chooses the size and timing of target

changes to minimize the expected discounted value of its total costs. The optimal rule is for the

central bank to change the target rate whenever the deviation between its preferred rate and

the current target rate reaches some critical level, and in this case the target rate is changed

by a discrete amount in the direction of its preferred rate. Such a policy economizes on costly

adjustments by avoiding changes in target rates that are likely to soon be reversed. This accords

well with the observation by Goodfriend (1991) that the Fed waits till sufficient information has

been accumulated before changing the target rate, being careful not to whipsaw the market.

When the preferred rate is close to the target rate, the Fed will delay a target change, because

doing so preserves a valuable option, the option to wait and see what happens. Many times

small changes in the preferred rate will be undone by themselves.

Despite the simplicity of the optimal rule, the model has a number of predictions for the

dynamics of the central bank’s target rate and market interest rates. On the one hand, because

of fixed costs, the central bank will take advantage of economies of scale by changing the target

rate by discrete amounts. On the other hand, because of proportional adjustment costs and

quadratic flow costs, the central bank will respond to the diminishing returns to moving the

target rate towards the preferred rate by moving the target rate only part of the way towards

the preferred rate. The combination of these two features implies that successive target change

are likely to be in the same direction (persistence), the average time between reversals is greater
3In the same spirit, a literature on central bank secrecy suggests that the Fed’s desire to smooth interest rates

may explain secrecy over its policy direction; see, for example, Goodfriend (1986) and Dotsey (1987). The idea

is that the market overreacts when the Fed releases new information and, since the Fed dislikes wild swings in

interest rates, it finds it costly to reveal such information.
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than the average time between continuations and the most likely time for a target change in

the same direction as the last one is some short period after the last target change. However,

once some time has passed without a subsequent target change, the likelihood that the deviation

between the preferred rate and the target rate is still close to the critical level diminishes. Thus,

our model predicts reversals become more likely as the time elapsed since the last target change

becomes large. In the limit, reversals and continuations become equally likely, so that the

direction of the next target change becomes unpredictable.

When combined with the expectations hypothesis, the optimal targeting rule also has im-

plications for the dynamics of market interest rates. We show that our model implies market

rates will revert towards the central bank’s target rate as the time since the last target change

increases, and that the conditional volatility of market rates is increasing in the spread between

the market rate and the central bank’s target rate.

We test the different implications of the model using daily data on U.S. interest rates and

find considerable support for our model’s predictions. We also estimate hazard functions for

continuations and reversals, showing they share many of the properties of the hazard functions

predicted by our model.

Several extensions to our basic framework are considered. These involve allowing for pre-

dictable movements in the central bank’s preferred rate, so that there is a business cycle com-

ponent driving required interest rate adjustments, allowing for the fact that target changes

which are in the opposite direction to that anticipated may be especially costly, so that reversals

are more costly than continuations, and allowing for regular announcement dates on which the

central bank prefers to make its target rate changes, so that surprise announcements cost more.

The paper is organized as follows. Section 2 presents our model of interest rate targeting,

deriving the optimal targeting rule. A number of properties of the implied target rate, together

with market rates, are derived in Section 3. These implications are tested in Section 4, while

Section 5 considers a number of extensions to our basic framework. Conclusions are drawn in

Section 6.

2 A Model of Interest Rate Targeting

This section derives the optimal interest rate targeting rule in the context of our benchmark

model. Subsequent sections analyze and test the properties of this rule, as well as considering

changes to our basic model. Section 2.1 lays out our model of interest rate targeting, motivating

each of the assumptions, while Section 2.2 derives the optimal form of interest rate targeting.

2.1 The Model Set-up

Consider a central bank which targets a particular interest rate. We are interested in when

and by how much it changes its target rate. We start by supposing the central bank has a

preferred level of the target rate at each point in time, which takes into account all relevant
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factors, except any costs of changing the target rate itself. We assume the process for this

preferred level can be approximated by driftless Brownian motion. This assumption is made

primarily for mathematical tractability. Over the relatively short time between target changes,

the random walk assumption is probably a reasonable modelling approximation for working out

the optimal rule. An alternative to the random walk approach, motivated by the observation

that target changes themselves appear to be positively autocorrelated, would be to allow gradual

mean-reversion in the preferred rate. Our approach shows such mean-reversion is not needed

to explain the observed persistence in target changes. However, in Section 5.1 we also consider

how trends in the preferred rate affect the optimal rule.

We suppose that, by choosing the level of the target rate, the central bank ties down the

(instantaneous) market interest rate at this same level. In practice, the market rate will deviate

from the target level due to transitory liquidity shocks. However, to the extent these cannot be

affected by the central bank’s targeting policy, they will not alter the optimal form of interest

rate targeting. We denote by εt the difference between the central bank’s preferred level and

its target level. The central bank has the ability to change εt by changing the target rate; an

increase in the target rate lowers εt. Since we assume the preferred level evolves according to

driftless Brownian motion, it follows that as long as the target rate is not changed, εt evolves

according to the same process. That is, εt evolves according to dεt = σdzt, where dzt is the

increment of a Wiener process and σ measures the volatility (assumed constant) of the preferred

rate. The central bank is assumed to suffer flow costs F (εt)dt when its preferred level of the

interest rate deviates from its target level by εt for a period dt. We assume quadratic flow costs

F (εt) = ε2
t . These can be motivated by a standard loss function in which the central bank faces

quadratic loss from deviations from its ultimate objectives.

If the central bank changes the target rate by ∆, it incurs adjustment costs of C(∆), where

C(∆) = f+k|∆|. Thus, there are two types of adjustment cost — a fixed adjustment cost f that

is incurred whenever the target rate is changed, but which does not depend on the size of the

target change, and a proportional adjustment cost k|∆|, which reflects that large target changes

will be more costly than small ones. As suggested by Goodfriend (1987), these adjustment costs

might arise because of the central bank’s additional role of maintaining orderly financial markets.

Target changes may induce disproportionate reactions from financial markets, possibly because

financial markets are excessively sensitive to new information from the central bank or because

new information may be misinterpreted. The fixed adjustment cost, which reflects the fact that

even a small target change could unsettle markets, is likely to be relatively small. We assume the

marginal adjustment cost is constant at k. This ensures that the bank cannot reduce adjustment

costs simply by dividing a single target change into a series of smaller changes that immediately

follow one another; this could be the case with increasing marginal adjustment costs. Absent

fixed adjustment costs, it also ensures that the bank cannot reduce adjustment costs simply by

combining successive target changes into one; this would be the case with decreasing marginal

5



adjustment costs. However, an increase in the target rate which is immediately offset by a

reduction in the target rate (whipsawing the markets) will still be costly with this specification.

2.2 The Optimal Adjustment Rule

This section begins with a formal description of a general interest rate targeting rule and the

associated cost function. Rather than study such general policies, we proceed by concentrating

on a family of very simple adjustment rules. The expected total cost function associated with

such rules is easily calculated. We take advantage of this, and obtain necessary conditions which

the best rule from this family must satisfy. We then prove the existence of a unique solution to

these necessary conditions. We conclude the section with our main result: no rule for interest

rate targeting, even of the general type described at the beginning of the section, achieves a

lower total expected cost than a particular simple adjustment rule, which we describe.

The central bank continuously monitors the discrepancy ε and intervenes when necessary to

change the target rate. Any given policy will generate an increasing sequence of stopping times

T1 ≤ T2 ≤ · · · ≤ Ti ≤ · · · at which the target rate will be changed. At stopping time Ti, the

central bank will change the target rate by some (possibly random) amount, say ∆i, which can

depend only on information available at time Ti. If the central bank adopts the targeting policy

P characterized by the stopping times {Ti} and target changes {∆i}, the expected total cost is

J(ε;P ) = E


∫ ∞

0
e−ρtε2

t dt+
∑
i≥0

e−ρTi(f + k|∆i|)

 ,

where the deviation between the preferred rate and the target rate is initially ε and ρ > 0 is the

rate at which future costs are discounted by the central bank. The central bank will adjust the

target rate using a rule which minimizes this total cost.

We now describe a very simple adjustment rule and prove that a rule of this form is optimal.

The rule we consider is completely described by two constants, b and ∆, satisfying 0 < ∆ < b.

As long as −b < ε < b, the central bank leaves the target rate unchanged. If ε ≥ b, the central

bank immediately increases the target rate by the amount ∆ + ε− b, resetting the discrepancy

to b − ∆. Similarly, if ε ≤ −b, the central bank immediately reduces the target rate by the

amount ∆ − ε − b, resetting the discrepancy to −b + ∆. Notice that the discrepancy never

leaves the interval [−b, b]. The target rate behaves in a particularly simple fashion. It is held

constant, except for discrete changes, all of the same magnitude.4 When the preferred rate

moves sufficiently far away from the target rate, the target rate is adjusted an amount ∆ in the

direction of the preferred rate.

Let u(ε) denote the expected total cost for such a policy. Suppose that −b < εt < b, and the

central bank leaves the target rate unchanged for a period of time dt. Its expected total cost
4The only exception to this rule involves behavior at time 0. If ε is initially outside the interval [−b, b], the

target rate is immediately adjusted in order to bring the discrepancy back to ±(b −∆).
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equals

u(εt) = Et

[∫ t+dt

t
e−ρ(s−t)ε2

sds + e−ρdtu(εt+dt)
]
,

comprising the sum of the expected flow cost over the next period of time dt and the expected

total cost from time t+ dt onwards, appropriately discounted. Using Itô’s Lemma,

Et[u(εt+dt)] = u(εt) +
1
2
σ2u′′(εt)dt + o(dt).

Therefore, the expected total cost is

u(εt) = ε2
t dt + u(εt) +

1
2
σ2u′′(εt)dt − ρu(εt)dt + o(dt).

Taking the limit as dt → 0, and dropping the time subscript, shows that

ε2 +
1
2
σ2u′′(ε) − ρu(ε) = 0, −b < ε < b. (1)

Due to the symmetry of the adjustment policy and both the adjustment and flow cost functions,

together with the fact that ε evolves according to a driftless Brownian motion, a discrepancy of

−ε must be exactly as costly as one of ε; that is, u(ε) = u(−ε) for all ε. The general solution

to (1) having this property is easily found to be

u(ε) =
σ2

ρ2
+

ε2

ρ
+A cosh(λε),

where λ2 = 2ρ/σ2 and A is an arbitrary constant. The expected total cost if the discrepancy is

initially ε ≥ b is

u(ε) = u(b−∆) + f + k(∆ + ε− b),

since in this case the central bank immediately resets the discrepancy to b−∆ by increasing the

target rate by ∆ + ε− b. For similar reasons, the expected total cost if ε ≤ −b is

u(ε) = u(−b+∆) + f + k(∆ − ε− b).

Combining these three results, we see that

u(ε) =




u(−b+∆) + f + k(∆− ε− b), ε ≤ −b,
σ2

ρ2
+

ε2

ρ
+A cosh(λε), −b < ε < b,

u(b−∆) + f + k(∆ + ε− b), b ≤ ε.

(2)

The constant A is determined by the requirement that u is continuous at ε = ±b:

A =
f + k∆− b2/ρ+ (b−∆)2/ρ
cosh(λb)− cosh(λ(b−∆))

. (3)

As long as ε ∈ (−b, b), the policy parameters b and ∆ only influence u(ε) through A. Since

the coefficient on A, cosh(λε), is always positive, the expected total cost for all ε ∈ (−b, b) can
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Figure 1: Implementing the optimal adjustment rule

Proportional costs only Fixed costs only Fixed and proportional costs

be minimized by choosing the policy parameters which minimize A. Let the parameters b∗ and

∆∗ describe such a rule. As shown in Appendix A, necessary conditions for optimality are

u′(b∗ −∆∗) = u′(b∗) = k. (4)

These are the smooth-pasting conditions popularized by Dixit (1993). Theorem 1 proves the

existence of a unique solution to equations (3) and (4), and hence a unique optimal rule of this

simple type.5

Theorem 1 There exist constants b∗ and ∆∗, satisfying 0 < ∆∗ < b∗, such that equations (4)

are satisfied by the function u defined by (2) and (3). Moreover, this solution is unique.

We are now in a position to state our main result: No adjustment policy, no matter how

complicated, can achieve a lower expected total cost than the simple rule described in Theorem 1.

Theorem 2 There exists an optimal adjustment policy of the form: hold the target rate constant

if −b∗ < ε < b∗; reduce the target rate to reset the discrepancy to −b∗ +∆∗ whenever ε ≤ −b∗;
raise the target rate to reset the discrepancy to b∗ −∆∗ whenever ε ≥ b∗.

For brevity, we call this rule the (b∗,∆∗)-rule. Figure 1 illustrates this optimal rule with three

cases — with just a proportional adjustment cost; with just a fixed adjustment cost, and with

both types of adjustment costs. The thinner of the two lines represents a particular evolution

of the preferred rate through time; in each case we use the same path. The dark line represents

the optimal target rate for each case. The shaded region indicates the band around the target

rate, in which the preferred rate can move without provoking a target change.

To understand why the optimal rule has this form, consider first the situation in which

there is a proportional, but no fixed, adjustment cost. Suppose the preferred rate has moved

some small amount away from the current target level. Should the central bank eliminate this

deviation? Since the flow costs are quadratic in the deviation, the increase in flow costs caused

by a small deviation will be very small. Moreover, the deviation will get smaller with probability

one-half, in which case a costly adjustment will have been unnecessary. If the deviation does get
5Proofs of Theorems 1 and 2 can be found in Appendix A.
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larger, then the flow costs will rapidly increase, while the cost of adjusting the target rate by

a given amount remains the same. This suggests there is some critical point beyond which the

central bank will want to act. At such times, the target rate will be adjusted an infinitesimal

amount in the direction of the preferred rate. Such a policy economizes on costly adjustment

costs by avoiding increases in target rates that are likely to be soon followed by decreases. When

a fixed adjustment cost is added to the model, the target will be changed by a more substantial

amount to economize on this fixed cost.

3 Implications of Optimal Targeting

The simple nature of the optimal targeting rule allows us to derive properties for the dynamic

behavior of the target rate, as well as market rates. Section 3.1 derives a number of testable

properties of the target rate. In Section 3.2 the optimal rule is calibrated to recent data on

federal funds rate target changes for the United States and the hazard function for changes in

the target rate is derived. Making use of the expectations hypothesis, some implications for

market interest rates are derived in Section 3.3.6

3.1 Properties of the Target Rate

The simple targeting rule described above implies particularly simple behavior for the target rate.

Except possibly at time 0, ε never lies outside the interval [−b∗, b∗]. As long as −b∗ < ε < b∗,

the target rate is held constant by the central bank, while, as soon as ε = b∗, the central bank

raises the target rate by ∆∗. Similarly, the central bank cuts the target rate by ∆∗ as soon as

ε = −b∗. Therefore, the behavior of the target rate is completely determined by the behavior

of ε (and, of course, the initial level of the target rate). The behavior of regulated stochastic

processes, such as the one generating ε, is well understood.7 We highlight several properties of

the target rate which are implied by this model.

Due to the form of the stochastic process generating the preferred rate, combined with the

particular functional forms of the flow and adjustment cost functions, the optimal adjustment

policy features a great deal of symmetry — the target rate rises (falls) as soon as ε = b∗

(ε = −b∗). In either case, the target rate changes by ∆∗. Therefore, we have:

Property 1 The magnitude of a change in the target rate does not depend on the direction of

the change.

This symmetry extends to the analysis of a sequence of target changes. We refer to two possi-

bilities when we talk about a policy continuation: a tightening following a tightening and also a
6In an earlier version of this paper (Guthrie and Wright, 1999) we showed how the optimal targeting rule,

the probability of policy continuations, and the expected time between target changes varied with respect to the

underlying adjustment costs and volatility parameters.
7A standard reference is Karatzas and Shreve (1991, Section 2.8C).
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loosening following a loosening. One is the mirror-image of the other. Other than the directions

of the changes, the properties of the two types of continuations are identical. In particular

Property 2 The expected time taken for one type of continuation is the same as the expected

time taken for the other type.

Similarly, a policy reversal can take two forms — a tightening following a loosening and also a

loosening following a tightening. Again, they are mirror-images of one another. We have

Property 3 The expected time taken for one type of reversal is the same as the expected time

taken for the other type.

Because ∆∗ < b∗, as shown in Theorem 1, after a target change the preferred rate is still

closer to that edge of the band (a distance of ∆∗) than it is to the other edge (a distance of

2b∗ − ∆∗ > ∆∗). It is therefore more likely to hit the same edge, and trigger another target

change in the same direction, than it is to hit the opposite edge. That is, the probability of a

policy continuation, which is 1−∆∗/2b∗ from Proposition B–1 in Appendix B, is greater than

one-half. Thus we have

Property 4 At the time of a target change, the next change, whenever it occurs, is more likely

to be in the same direction than it is to be in the opposite direction.

Furthermore, the expected time until the preferred rate moves outside the band, conditional

on reaching the closer boundary first, is less than the expected time until it moves outside the

band, conditional on reaching the more distant boundary.8 We have

Property 5 The expected time taken for reversals is greater than the expected time taken for

continuations.

3.2 The Calibrated Hazard Function

We can derive further properties of the dynamics of the target rate by calibrating the optimal

rule to data on federal funds rate target changes for the United States. The information used to

calibrate the process for the target level of the federal funds rate is the average absolute value

of the change in the target rate (∆̂), the proportion of policy reversals (π̂) and the average time

between target changes (T̂ ). These three quantities completely determine the three parameters

(∆∗, b∗, and σ) which govern the behavior of the target rate. We set ∆∗ equal to ∆̂ and choose

b∗ and σ so that π̂ and T̂ equal their theoretical counterparts given in Propositions B–1 and B–2

in Appendix B, respectively. This calibration is easily shown to be described by

∆∗ = ∆̂, b∗ =
∆̂
2π̂

, σ = ∆̂
√

1− π̂

π̂T̂
.

8From Proposition B–2, the expected time between continuations is ∆∗(4b∗ −∆∗)/3σ2 days and the expected

time between reversals is (2b∗ −∆∗)(2b∗ +∆∗)/3σ2 days.
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We calibrate the model to data on federal funds rate target changes for the United States from

the Federal Reserve from March 1, 1984 to December 31, 1994. This period best matches the

assumptions underlying our model. From 1995 onwards, the Federal Reserve adopted a formal

policy of announcing at every FOMC meeting its decision concerning interest rates, whether it

changed rates or not. As we argue in Section 5.3, this affects the optimal targeting rule, causing

most target changes to fall on FOMC meeting dates. Moreover, for several years up to March

1, 1984, the Federal Reserve did not have an interest rate target, but rather targeted monetary

aggregates. For this reason, like Rudebusch (1995), we adopt March 1, 1984 as our start date

in the 1980s.9

During our sample period, the target rate was changed 105 times, with the average change

being ∆̂ = 23.6 basis points. A proportion π̂ = 0.13 of the changes are reversals and the average

time between changes is T̂ = 25.7 business days. Therefore, we have ∆∗ = 23.6 basis points,

b∗ = 88.4 basis points and σ = 11.9 basis points, where the unit of time is one business day.10

Using this calibrated targeting rule we can back out the underlying costs which give rise to

it. This can be achieved by solving equations (4) for k and f . We obtain

k =
2
ρ

(
b∗ −∆∗ sinh(λb∗)

sinh(λb∗)− sinh(λ(b∗ −∆∗))

)
(5)

and

f =
∆∗

ρ

(
∆∗ · sinh(λb

∗) + sinh(λ(b∗ −∆∗))
sinh(λb∗)− sinh(λ(b∗ −∆∗))

(6)
− 2

λ
· cosh(λb

∗)− cosh(λ(b∗ −∆∗))
sinh(λb∗)− sinh(λ(b∗ −∆∗))

)
,

where λ2 = 2ρ/σ2. Substituting b∗ = 88.4, ∆∗ = 23.6 and σ = 11.9 into these equations, we find

that k = 4160 and f = 2378, where we have assumed that the discount rate is ρ = 0.01/250,

corresponding to an annual rate of 0.01. Costs implied by the model seem reasonable. For

instance, fixed costs represent only 2.37% of the total adjustment costs associated with changing

the target rate by its average amount (23.6 basis points). The average target change incurs total

adjustment costs equivalent to a discrepancy of 40.6 basis points between the preferred and target

rates lasting three months.
9Our data on the target rate is from Rudebusch until July 12, 1990, and then from the Federal Reserve Board’s

website www.federalreserve.gov/fomc/fundsrate.htm
10If we take the longer period, March 1, 1984 till March 31, 2001, the calibrated optimal rule does not appear

much different: we find ∆∗ = 24.6 basis points, b∗ = 78.3 basis points and σ = 9.6 basis points. However, the

results for this longer period are heavily influenced by the period up till 1995, when 105 out of the 121 target

changes occur. When the optimal rule is calibrated separately to the period January 1, 1995 till March 31,

2001, the optimal rule is quite different. Because the remaining 16 target changes have an average magnitude

of 31.3 basis points, with 31.3% of the changes being reversals, and an average time between changes of 95.8

business days, the optimal rule for this period is ∆∗ = 31.3 basis points, b∗ = 50.0 basis points and σ = 4.7 basis

points. Despite the different optimal rule, the model still implies the same qualitative properties derived below.

Section 5.3 extends our model to capture features of the more recent period.
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Figure 2: Hazard functions for changes in the federal funds target rate
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The following parameter values were adopted in constructing this figure: b∗ = 88.4 basis points,

∆∗ = 23.6 basis points and σ = 11.9 basis points. Time is measured in business days.

The dynamic behavior of the target rate predicted by our calibrated model can be described

by hazard functions. Suppose that the Fed raises the target rate at time 0. Define the function

hc(t) such that, conditional on no target changes occurring in the interval (0, t], the Fed will

further raise the target rate (a policy continuation) in the interval (t, t + dt] with probability

hc(t)dt. Similarly, define the function hr(t) such that, conditional on no target changes occurring

in the interval (0, t], the Fed will reduce the target rate (a policy reversal) in the interval (t, t+dt]

with probability hr(t)dt. We plot these hazard functions in Figure 2, using the series expansions

given in Appendix B. The bottom curve, which describes hr(t), shows that in the first few

weeks after an increase in the target rate, the Fed is unlikely to reverse its policy. However, the

Fed is much more likely to further raise the target rate in the first few weeks after an increase

in the target rate, as shown by the behavior of the top curve, which plots hc(t). After two

months, however, the two hazard functions are almost indistinguishable. Therefore, once the

time elapsed since the most recent target change becomes large, the direction of the next change

is unpredictable.

Assuming the preferred rate is unobservable, these properties are likely to be quite general.

The likelihood of a target change at any particular time depends on the position of the preferred

rate in the band around the target rate at that time. Immediately following a target change,

the preferred rate is a distance ∆∗ from one boundary and 2b∗ −∆∗ > ∆∗ from the other one.

If the preferred rate hits the near boundary before it hits the distant one, there will be another

target change in the same direction. At all times following a target change, the distribution of

the preferred rate will continue to have greater mass close to the near boundary than close to

the distant one. Therefore,

Property 6 The probability of an immediate continuation is greater than the probability of an

immediate reversal, regardless of how long it has been since the last target change.

As the time since the most recent target change grows, two things happen to the distribution of

the preferred rate. Firstly, the distribution spreads out, reflecting the fact that, until it reaches

12



one or the other edge of the band around the target rate, the preferred rate evolves according to

a Brownian motion. Secondly, conditional on not hitting the edge of the band, the distribution

shifts back towards the middle of the band. This is because it is more likely that the preferred

rate is in the middle of the band, rather than near the edges, when neither edge has been hit

for a long time. The increased dispersion increases the likelihood of a target change, either a

continuation or a reversal, occurring. The shift towards the middle of the band increases the

likelihood of a reversal, but reduces the likelihood of a continuation. This explains

Property 7 The probability of an immediate continuation first increases, then decreases, as the

time since the last target change increases.

and

Property 8 The probability of an immediate reversal increases as the time since the last target

change increases.

In the limit when the time since the last target change is infinite, the nature of that change (a

reduction or increase in the target rate) is irrelevant, and the distribution of the preferred rate

is symmetric about the target rate. Therefore,

Property 9 An immediate continuation and an immediate reversal are equally likely when the

time since the most recent target change grows infinitely large.

3.3 Behavior of Market Rates

To determine the implications of optimal targeting behavior for market interest rates, the simple

targeting rule above is combined with the expectations hypothesis.11 Due to the continuous time

framework we consider, we use the local version of the expectations hypothesis. Thus, the price

at time t of a discount bond paying 1 at time T equals

B(r̂t, r
∗
t , t;T ) = Et

[
exp

(
−

∫ T

t
r̂sds

)]
. (7)

Assuming the level of the central bank’s preferred rate is public information, the expectation

in (7) is conditional on the level of the preferred rate at time t, as well as the level of the target

rate at that time.

If r̂−b < r∗ < r̂+b, the probability of a target change over the next time increment of length

dt is negligible. Thus, r̂s is constant, while the preferred rate evolves according to dr∗s = σdξs.
11Although there is considerable empirical evidence suggesting the expectations hypothesis does not hold for the

U.S., recent evidence suggests that for short-maturity interest rates the hypothesis holds up reasonably well. For

instance, Hsu and Kugler (1997) find the short-version of the expectations hypothesis cannot be rejected for one-

and three-month Eurodollar rates over a period similar to the one we use to test the implications of our model.

Their result is robust across different frequencies of interest rates, including the shortest frequency available —

daily observations.
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Figure 3: Spreads between market rates and the target rate
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Each curve gives the difference (measured in basis points) between the corresponding interest rate

and the target rate as a function of the difference ε (measured in basis points) between the preferred

rate and the target rate.

By Itô’s Lemma, the change in the price of the bond over the next time increment is

dBt =
(
∂B

∂t
+

1
2
σ2 ∂

2B

∂r∗2

)
dt+

(
∂B

∂r∗

)
σdξt.

The rate of expected return from holding the discount bond must equal the prevailing target

rate. Therefore B must satisfy the partial differential equation

∂B

∂t
+

1
2
σ2 ∂

2B

∂r∗2 = r̂B, r̂ − b < r∗ < r̂ + b.

Boundary conditions are determined by the central bank’s targeting policy. If r∗ = r̂ + b, the

target rate is immediately raised by ∆. Since observability of the preferred rate makes this

change predictable, the bond price must not change. Therefore,

B(r̂, r̂ + b, t;T ) = B(r̂ +∆, r̂ + b, t;T ).

Consideration of target changes in the opposite direction shows that

B(r̂, r̂ − b, t;T ) = B(r̂ −∆, r̂ − b, t;T ).

The terminal condition B(r̂, r∗, T ;T ) = 1 reflects the fact that the discount bond pays 1 at

maturity.

We show in Appendix C that the spread between the yield on a discount bond and the target

rate is a function of maturity and the current discrepancy ε = r∗− r̂ between the central bank’s

preferred rate and its target rate. Figure 3, which plots the spread for the calibration described

in Section 3.2, demonstrates how market interest rates incorporate anticipated future behavior

of the target rate. As ε → b (that is, as the preferred rate approaches r̂ + b), all spreads grow

larger, reflecting the increased probability of the target rate being raised in the near future.

Similarly, as ε → −b, all spreads become more negative, as the market anticipates lower future
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levels of the target rate. The spread is most sensitive to changes in ε when the preferred rate is

close to either edge of the band around the target rate. In these situations, a small change in the

preferred rate greatly alters the likelihood of a target change, leading to a significant revision of

the market rate.

Two properties follow from this behavior. Firstly, Figure 3 implies the spread between any

market rate and the target rate is an increasing function of the spread between the preferred rate

and the target rate. When this is combined with Properties 6–9 it suggests that the magnitude

of the spread between any market rate and the target rate will decrease as the time since the last

target change increases. Immediately after a target change, the preferred rate is still far away

from the target rate, since the target rate only moves part of the way towards the preferred rate.

If a long time has passed since the last target change, then the distribution of the preferred rate

will be centered around the target rate. Thus, the spread between the preferred rate and the

target rate will on average be close to zero, reflecting the fact a continuation and a reversal are

equally likely. Figure 3 then translates these properties of the spread between the preferred rate

and the target rate into spreads between the market rates and the target rate. This implies

Property 10 The greater the time since a target change has occurred, the smaller is the expected

spread between market rates and the target rate.

Since the preferred rate is assumed to follow a simple Brownian motion, the daily change in

this variable is normally distributed. The nonlinear relationship between the preferred rate and

the market rate evident in Figure 3 means that when the preferred rate is close to the edge of

the band around the target rate, even a small change in the preferred rate will lead to a large

change in the market rate. When the preferred rate is close to the target rate, market rates

are relatively insensitive to changes in the preferred rate. Because of this nonlinear relationship

between the preferred rate and the market rate, the model predicts the volatility of market rates

will be high when the spread is large. A large spread between the market rate and the target

rate indicates that the preferred rate is near the edge of the band around the target rate and

this is when market rates are most volatile. In summary,

Property 11 The greater the spread between market and target rates, the higher the conditional

volatility of market rates.

4 Testing the Model

In this section we test the properties of target rates and market rates, which were derived in

Section 3. We use data for March 1, 1984 to December 31, 1994, for the reasons outlined

in Section 3.2. Section 4.1 tests properties on the target rate, while Section 4.2 tests some

implications of our model for market rates using data on Eurodollar rates.

15



4.1 Testing Properties of the Target Rate

Using nonparametric methods, Rudebusch (1995) provides an extensive empirical examination

of the properties of changes in the federal funds target rate for the periods September 1974 to

September 1979 and March 1984 to September 1992. Rudebusch concludes that “target changes

were conducted in small, standardized steps with a rough equality in the size of target increases

and decreases” (p. 10), suggesting our Property 1 held for his sample period. Using data on

the 105 target changes over the period March 1, 1984 to December 31, 1994 we regress the

magnitude of target changes on a constant and a dummy variable for increases in the target

rate. The coefficient on the dummy variable is −0.045 with a standard error of 0.027, suggesting

that target rate increases are 4.5 basis points smaller on average than decreases. This difference

is small, and statistically we cannot reject that target rate increases are the same size as decreases

at the 5% significance level (the p-value for the hypothesis in Property 1 is 0.098).

Similarly, Properties 2 and 3 are supported by empirical observation. Using two nonpara-

metric tests, Rudebusch cannot reject the hypothesis that the duration between two consecutive

positive target changes has the same distribution as the duration between two consecutive neg-

ative changes (with p-values averaging 0.50), and that the duration between a positive change

followed by a negative change has the same distribution as a negative change followed by a pos-

itive change (with p-values around 0.08). We test Properties 2 and 3 directly by regressing the

number of business days between target changes that are continuations (this regression has 91

observations) on a constant and a dummy variable that takes the value one when the continuation

refers to two consecutive positive target changes changes and zero when the continuation refers

to two consecutive negative target changes. The coefficient on the dummy variable is −4.731
with a standard error of 4.993, suggesting a small and statistically insignificant difference in the

duration for the two types of continuations (the p-value for this test is 0.346). The coefficient

on the dummy variable in the equivalent regression for reversals is 52.286 with a standard error

of 47.798. This implies, the number of business days between target rate decreases which are

followed by target rate increases is around 52 days longer than between target rate increases

which are followed by target rate decreases. Although this appears to be a large difference, due

to the fact there are only 14 such reversals in our sample, and that reversals have durations

that vary a great deal, this difference is not statistically significant. Thus, we cannot reject that

Property 3 holds (the p-value is 0.295 for this hypothesis test).

A similar method can be used to test Property 5. We regress the number of business days

since the last target change on a constant and a dummy variable which takes the value one

for continuations and zero for reversals. We find that the duration between target changes

is 31.000 days less when they are continuations, with a standard error of 11.180 (the p-value

on the hypothesis that the time between two consecutive target changes in the same direction

equals the time between two consecutive target changes in opposite directions is 0.007). Further

support for Property 5 is the finding by Rudebusch that the p-value on the hypothesis that
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Figure 4: Estimated hazard functions
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the distribution of durations between consecutive same-sign target changes is the same as the

distribution of durations between consecutive different-sign target changes is only 0.015.

Rudebusch also provides evidence which supports Properties 6–9. He estimates the hazard

functions for changes in the target rate from the nonparametric hazard rate estimator using

kernel functions and quasi-likelihoods, as described in Tanner and Wong (1994). As Figure 3 in

his paper demonstrates, the estimated probability of continuations is higher than the probability

of reversals, at least for durations up to the 35 business days plotted, (consistent with our

Property 6), and the probability of a continuation first increases and then tends to decrease as

the time since the last target change increases (consistent with our Property 7). He also finds

that the probability of a reversal increases as the time since the last target change increases,

for durations up to 25 business days. When this is combined with his finding that after 25

business days the distributions of durations between continuations and reversals are identical

(the p-values on two different tests of this hypothesis average 0.15), his results lend support to

our Properties 8 and 9. These results also imply we cannot reject Property 4.

We estimate hazard functions for our sample period using two approaches. First, using the

same nonparametric kernel estimator as Rudebusch, we obtain the estimated hazard functions

in Figure 4.12 This approach generates an estimated hazard function for continuations which

initially increases sharply, suggesting the most likely time for a target change is a short time

after the last target change. Apart from a second smaller peak, which is found after a further

eleven business days, the probability of a continuation monotonically decreases as the time since

the last target change increases. Moreover, for durations without target changes of up to 135

business days, the probability of a target change is more likely to be in the same direction as the

last change than in the reverse direction, with the two probabilities converging as the time since

the last target change increases. Thus, like Rudebusch, we find some support for Properties 6

and 7. The properties of the hazard functions for very long durations, as well as the properties

of the hazard function for reversals, are likely to be dominated by the fact that for our sample

period there was one reversal which lasted 349 days. This occurred between September 4, 1992,
12We first estimate the optimal smoothing parameters using the HAZRD procedure in IMSL, and then estimate

the hazard function using HAZST in IMSL.
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Table 1: Estimated hazard functions

Continuations Reversals

Parameter Estimate Std error p-value Estimate Std error p-value

α 1.194 0.127 0.000 1.356 0.354 0.000

γ 0.026 0.011 0.019 0.001 0.002 0.471

θ −0.007 0.003 0.027 −0.0003 0.002 0.868

when the target rate was lowered to 3% from 3.25% and February 4, 1994, when the target

rate was raised from 3% back up to 3.25%. As a result, our estimates of the hazard function

for reversals, unlike Rudebusch’s estimates, suggest the hazard function is essentially a flat line,

showing almost no duration dependence.

Similar results arise when we parametrically estimate the hazard functions for continuations

and reversals using the expo-power hazard function. This function is general enough to capture

constant, monotonically increasing or decreasing, U-shaped, and inverted U-shaped forms, and

nests the Weibull and exponential forms as special cases (see Saha and Hilton, 1997). The

hazard function is given by

λ(t) = γαtα−1eθtα .

The estimated hazard function for continuations is first increasing and then decreasing, with

a peak after 14 days. The estimates are shown in Table 1. We test the hypothesis of no duration

dependence (which corresponds to the joint hypothesis that α = 1 and θ = 0). The Wald χ2 test

statistic is 30.115 with a p-value of 0.000, suggesting we can clearly reject the null of no duration

dependence. Moreover, because α > 1, the test of whether the hazard function for continuations

has an inverted-U shape or is monotonically increasing is whether θ ≥ 0 or θ < 0. If θ is negative

then the hazard function is first increasing and then decreasing. Based on the results above, we

can reject θ ≥ 0 in favour of θ < 0 at the 5% level (the p-value for this one-sided test is 0.013).

Thus, our results lend statistical support to Property 7.

For reversals the estimated hazard function is monotonically increasing up to 123 days,

consistent with Property 8. Estimates of the parameters are reported in Table 1. The results

show that the positive duration dependence is not statistically significant. The test of no duration

dependence for reversals, cannot be rejected. The test statistic for H0 : α = 1 and θ = 0 is

1.021, with a p-value of 0.600. This statistical result is likely to be a function of the low number

of reversals in our sample period (14 in total) together with the fact one reversal has a duration

of 349 days, much larger than the duration of any other target change. Moreover, similar to our

nonparametric estimates, the finding that the probability of a continuation is greater than the

probability of a reversal, and that as the time since the most recent target change grows large

continuations and reversals become equally likely, holds for durations up to 127 days.
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4.2 Testing Properties of Market Rates

To test Properties 10 and 11 we use daily observations on seven-day, one-month and three-month

Eurodollar rates, together with the federal funds target rate, from March 1, 1984 to December

31, 1994. The one- and three-month Eurodollar spot rates are bid-side rates quoted in London,

collected around 9:30 a.m. Eastern time, and supplied by the Federal Reserve. The seven-day

Eurodollar spot rates are midpoint between bid and ask rates, used previously by Ait-Sahalia

(1996a, b), and described in detail in his papers. Because of their different sources, the data on

the seven-day rates has to be matched to the data on target rates and one- and three-month

Eurodollar rates. After eliminating weekends and missing data, the resulting series are available

for a common 2,694 observations over our sample.

We use Eurodollar rates since they are comparable to the federal funds target rate. The

federal funds target rate refers to a target for the overnight interbank U.S. rate. Eurodollar

rates are also private inter-bank U.S. dollar rates from a relatively liquid market. In contrast,

Treasury bill rates are for government risk-free securities and so are not directly comparable to

the target rate.

According to Property 10, the magnitude of the spread between each of the market rates

and the central bank’s target rate should be declining as the time since the last target change

increases. To test this hypothesis we run the regression

|rt − r̂t| = α+
β

Dt
+ εt,

where rt is a market rate and r̂t is the target rate at time t, and Dt is the number of days,

measured at time t, since the last target change. If the estimate of β is positive, this suggests

the magnitude of the spread is declining in the time since the last target change, while a negative

value of β implies the magnitude of the spread is increasing in the time since the last target

change.13 We find that β equals 0.044 (0.015), 0.049 (0.018), and 0.016 (0.018) for the seven-

day, one-month, and three-month market rates respectively.14 The reversion of the market rate

to the target rate as the number of days since the last target change increases is statistically

significant for the seven-day and one-month rates. The results are virtually unchanged when

observations where there were target changes are deleted from the sample — these represent

only a small fraction of all observations.

It is well known that the conditional volatility of interest rates is persistent and heteroskedas-

tic. Because periods around target changes are times when there is an increased likelihood of

large interest rate changes, our model predicts that conditional volatility will be higher during

such episodes. These periods are identified as times when the spread between the target rate
13A linear specification is not reasonable since a declining spread will eventually imply a negative magnitude

of the spread, which is not possible. An exponential specification is also not appropriate, as it suggests the

alternative to a geometrically decaying spread is an exponentially exploding spread. Our specification does not

suffer from either of these problems.
14Standard errors in brackets.
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and market rates is high (Property 11). To test this hypothesis we estimate a simple model of

interest rate volatility, allowing for the magnitude of the spread between the target and market

rates as a determinant of volatility, in addition to the normal level of interest rates. Thus we

estimate the following model using FGLS, following the approach of Ait-Sahalia (1996b, p. 409):

rt − rt−1 = α+ κrt−1 + εt,

Et−1εt = 0,

Et−1ε
2
t ≡ σ2

t = σ2
1 |rt−1 − r̂t−1|2γ1 + σ2

2r
2γ2
t−1.

To test Property 11 we estimate these equations using actual data on market and target

rates. We find that with seven-day rates, σ̂1 = 0.438 (0.022) and γ̂1 = 1.281 (0.080); with one-

month rates, σ̂1 = 0.358 (0.012) and γ̂1 = 1.154 (0.035); and with three-month rates, σ̂1 = 0.175

(0.007) and γ̂1 = 1.619 (0.114). On the other hand, the level-effect is only apparent for three-

month rates: with seven-day rates, σ̂2 = 0.065 (0.043) and γ̂2 = 0.237 (0.327); with one-month

rates, σ̂2 = 0.054 (0.063) and γ̂2 = 0.029 (0.620); with three-month rates, σ̂2 = 0.027 (0.007) and

γ̂2 = 0.512 (0.130). These results demonstrate that the spread term in the conditional volatility

equations is highly significant. We call this effect the spread-effect (as opposed to the normal

level-effect).

To gauge the economic strength of the spread-effect versus the level-effect, we report the

proportion of the total variation in volatility captured by the above explanatory variables, and

consider how this R2 changes when the spread term is eliminated from the estimation. The R2

from the estimation including both spread- and level-effects is 0.170 for the seven-day Eurodollar

rate, 0.259 for the one-month Eurodollar rate, and 0.105 for the three-month Eurodollar rate.

When the spread-effect is eliminated, the R2 drops to just 0.004 with the seven-day rate, just

0.003 with the one-month rate, and 0.025 with the three-month rate. In contrast, when the level-

effect is eliminated, the remaining spread-effect implies an R2 of 0.169 for the seven-day rate,

0.259 for the one-month rate, and 0.081 with the three-month rate. In short, the spread-effect

dominates the level-effect on both statistical and economic grounds.

5 Extensions

In this section we present three extensions to our standard model. The first addresses the fact

that the central bank will sometimes be able to predict future movements in the preferred rate,

and therefore anticipate future target changes. The other two extensions focus on the market’s

ability to anticipate target changes, both the direction of target changes (Section 5.2), and their

timing (Section 5.3).

5.1 Tightening and Loosening Cycles

There are times when there is some deterministic component to economic conditions, so that

underlying conditions will call for tighter monetary policy over the medium term, or the reverse.
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Table 2: Optimal adjustment rules during a tightening cycle

Annual drift b∗1 b∗2 ∆∗
1 ∆∗

2

(basis pts)

0 88.4 88.4 23.6 23.6

50 93.8 83.2 23.0 24.2

100 99.3 78.2 22.5 24.8

150 104.9 73.5 22.0 25.5

200 110.6 69.1 21.6 26.2

The preferred rate has drift µ and volatility σ = 11.9. Adjustment cost parameters are f = 2378

and k = 4160. The central bank discounts future costs at the rate ρ = 0.01/250.

We model this by introducing a trend into the process for the preferred rate. To be precise, we

take the model of Section 2 and change the process for the preferred rate to dr∗t = µdt+σdzt, for

constants µ and σ. Thus, the preferred rate is expected to grow by µ basis points each business

day. Of course, such a process is unrealistic over long time horizons, but over the sorts of time

intervals considered here (25.7 business days between target changes on average), it adequately

captures the effects of predictable changes in the preferred rate.

We consider adjustment rules which are natural extensions to the (b,∆)-rules considered in

Section 2.2. The adjustment rule is determined by four parameters (b1, b2,∆1,∆2): the target

rate is lowered by ∆1 as soon as ε falls below the threshold −b1; it is raised by ∆2 as soon as ε

climbs above the threshold b2. We show in Appendix D.1 that the central bank’s loss function

under such a targeting policy is

u(ε) =




u(−b1 +∆1) + f + k(−b1 +∆1 − ε) ε ≤ −b1,
σ2

ρ2 + 2µ2

ρ3 + 2µε
ρ2 + ε2

ρ +A1e
λ1ε +A2e

λ2ε −b1 < ε < b2,

u(b2 −∆2) + f + k(ε − b2 +∆2) ε ≥ b2,

where

λ1 =
−µ
σ2

+

√( µ

σ2

)2
+

2ρ
σ2

, λ2 =
−µ
σ2

−
√( µ

σ2

)2
+

2ρ
σ2

,

and the constants A1 and A2 are chosen so that u is continuous at −b1 and b2. A necessary

condition for the adjustment policy to be optimal is that (b∗1, b
∗
2,∆

∗
1,∆

∗
2) satisfy the smooth-

pasting conditions

lim
ε↓−b∗1

u′(ε) = u′(−b∗1 +∆∗
1) = k = u′(b∗2 −∆∗

2) = lim
ε↑b∗2

u′(ε).

This system of equations is straightforward to solve numerically. Results for various levels of

drift are reported in Table 2.

The numbers in Table 2 show that the central bank behaves in quite different ways depending

on whether it expects the preferred rate to move towards, or away from, the current level of the

target rate. Compared to the case considered in Section 2, the central bank will act much more
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aggressively when it expects the preferred rate to move further away from the current level of

the target rate — it tolerates much smaller deviations before acting, and adjusts the target rate

by more when it does act. The greater movement in the target rate is needed to ‘catch up’ to

the preferred rate. Assuming µ > 0, this situation occurs when ε > 0. As soon as ε reaches b∗2,

the central bank raises the target rate by ∆∗
2. Table 2 shows that b∗2 is decreasing, and ∆∗

2 is

increasing, in drift, so that the bank becomes more aggressive as the trend in the preferred rate

becomes stronger. However, the central bank still finds it optimal to act ‘too little, too late.’

That is, after the target rate is changed, the preferred rate is still expected to move away from

the target rate. It is not optimal for the central bank to overshoot by setting the target rate at

a level it expects the preferred rate to reach at some point in the future.

The central bank can afford to act more cautiously when it expects the preferred rate to

move back towards the current level of the target rate — it tolerates relatively large deviations

before acting, and when it does act, adjusts the target rate by a relatively small amount. Again

assuming µ > 0, this situation occurs when ε < 0, so that the preferred rate is below the current

level of the target rate but is expected to move closer in the future. Table 2 indicates that b∗1 is

increasing, and ∆∗
1 is decreasing, in drift, so that the central bank is more reluctant to change

the target rate, and will change it by a smaller amount, the greater the speed with which the

preferred rate is expected to move back towards the target rate.

In summary, target rate changes are relatively large when they are in the same direction as

the expected movement of the preferred rate, and relatively small when they are in the opposite

direction. It is straightforward to show that the introduction of a trend into the preferred rate

also increases the persistence in target changes in the same direction as the trend, and reduces

the persistence of changes which move against the trend.

5.2 Anticipated and Unanticipated Target Changes

Given our motivation for adjustment costs, it seems likely that target changes will be more costly

when they are in the opposite direction to that expected by the market. We incorporate this

possibility by taking the model of Section 2 and setting the fixed and marginal cost parameters

at a higher level when the direction of the target change takes the market by surprise. We will

find that, provided they cannot observe the central bank’s preferred rate, investors will always

believe that the next target change is more likely to be a continuation that a reversal. Thus, we

set the cost of a target change of magnitude ∆ equal to fc + kc∆ if the change is in the same

direction as the previous one, and equal to fr + kr∆ if it is in the opposite direction, where

fr ≥ fc and kr ≥ kc. As in the model of Section 2, we suppose that the preferred rate r∗ evolves

according to the driftless Brownian motion dr∗t = σdzt.

The analog of the (b,∆)-rule studied in Section 2 is completely described by four parameters:

(bc, br,∆c,∆r).

• Suppose the last target change was a loosening. The central bank leaves the target rate
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unchanged as long as −bc < ε < br; if ε ≤ −bc, the target rate is lowered (a continuation

of the earlier policy) so that ε is reset to −bc +∆c; if ε ≥ br, the target rate is raised (a

reversal of the earlier policy) so that ε is reset to br −∆r.

• Suppose the last target change was a tightening. The central bank leaves the target rate

unchanged as long as −br < ε < bc; if ε ≤ −br, the target rate is lowered (a reversal of

the earlier policy) so that ε is reset to −br + ∆r; if ε ≥ bc, the target rate is raised (a

continuation of the earlier policy) so that ε is reset to bc −∆c.

We show in Appendix D.2 that the central bank’s loss function under such a targeting policy is

uL(ε) = u(ε) if the last target change was a loosening, and uT (ε) = u(−ε) if it was a tightening,

where

u(ε) =




u(−bc +∆c) + fc + kc(−bc +∆c − ε) ε ≤ −bc,
σ2

ρ2 + ε2

ρ −Aeλε −Be−λε −bc < ε < br,

u(−br +∆r) + fr + kr(ε− br +∆r) ε ≥ br,

where λ2 = 2ρ/σ2. The constants A and B are chosen so that u is continuous at −bc and br. A

necessary condition for the adjustment policy to be optimal is that (b∗c , b∗r ,∆∗
c ,∆

∗
r) satisfy the

smooth-pasting conditions

lim
ε↓−b∗c

u′(ε) = u′(−b∗c +∆∗
c) = −kc,

and

lim
ε↑b∗r

u′(ε) = −u′(−b∗r +∆∗
r) = kr.

We have found numerical solutions to this system for a range of cost scenarios, and in each case

a plot of the hazard function shows that the probability of a continuation is greater than that of

a reversal at any time.15 That is, our assumption that the market always expects a continuation

rather than a reversal holds, and the model is internally consistent.

In all the cases we have examined, ∆∗
c > ∆∗

r, indicating that when the central bank reverses

policy, we should see a small reversal, which is usually followed by larger changes in the same

direction. The central bank uses a small reversal to advise the market that it is reversing its

recent policy. Once the market’s expectations have been revised, the central bank can implement

a larger target change at relatively low cost. The pattern of small reversals, followed by larger

continuations is consistent with those found in the data — over our sample, the average size of

a continuation is 24.38 basis points, whereas the average size of a reversal is only 16.64 basis

points. Keeping the calibration from Section 3.2 for the volatility of the preferred rate and the

adjustment costs of a continuation, while scaling up the fixed and marginal costs of a reversal
15This occurs because b∗c > b∗r . Consider the case where the last target change was a tightening, at which point

ε was reset to b∗c −∆∗
c > 0. At all times prior to the next target change, the market believes that ε is more likely

to be positive than negative. This is the case even when the time since the last target change grows infinitely

large, as then the preferred rate is symmetrically distributed around the midpoint of the band, (b∗c − b∗r)/2 > 0.
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by a common factor of 1.02, results in the following optimal adjustment rule:

b∗c = 88.4, b∗r = 85.8, ∆∗
c = 23.6, ∆∗

r = 16.9.

As in our sample, reversals are approximately two-thirds the size of continuations.16

Another consequence of the additional costs of surprise changes is that a continuation is

more likely to occur after a reversal than after another continuation. For example, suppose

the last two target changes have been loosenings. At the time of the second target change,

ε = −b∗c + ∆∗
c . The next target change will be another loosening if ε reaches −b∗c before it

reaches b∗r. It is straightforward to show that this occurs with probability 1−∆∗
c/(b∗c + b∗r). It is

the probability that one continuation follows another. When the cost parameters for reversals

exceed their counterparts for continuations by a factor of 1.02, this probability equals 0.865.

Now suppose that the last two target changes have been a tightening followed by a loosening.

At the time of the second target change, ε = −b∗r +∆∗
r. The next target change will be another

loosening if ε reaches −b∗c before it reaches b∗r. This occurs with probability (2b∗r −∆∗
r)/(b∗c + b∗r).

It is the probability that a continuation follows a reversal. When adjustment costs of reversals

are scaled up by a factor of 1.02, this probability equals 0.888. Thus, continuations are somewhat

more likely when the last target change was a reversal.17

5.3 Announcement Dates

In this section we examine the possibility that by specifying regular announcement dates a central

bank can lower adjustment costs when target changes are made on these dates. Since the timing

of these announcements is known in advance, the likelihood of an adverse market reaction on

these dates should be less than from an equivalent target change made at an unexpected time.

We model this as a reduction in the adjustment costs of target changes on these dates, which

we suppose occur at times 0, T , 2T , and so on. The cost of changing the target rate an amount

∆ at time t equals

C(∆, t) = f(t) + k(t)|∆|,

for some functions k(t) and f(t).18 As in the model of Section 2, we suppose that the preferred

rate r∗ evolves according to the driftless Brownian motion dr∗t = σdzt.

The adjustment rules we consider, which are the obvious extensions of those considered in

Section 2.2, are described by two functions, b(t) and ∆(t). The central bank will only change
16Recall that in our model we are assuming that the market cannot observe the central bank’s preferred rate.

In practice, much of this information will actually be public, so that we are overstating the market’s uncertainty

regarding the direction of future target changes. This is one reason why such a small additional cost of reversals

in our model can have a significant effect on the optimal size of reversals.
17Consistent with these predictions, out of the 14 reversals in our sample, 13 (or 0.929) were followed by a

continuation; out of the 91 continuations, 78 (or 0.857) were followed by another continuation.
18We assume that f(t + T ) = f(t) and k(t + T ) = k(t) for all t, so that the cost of a target change depends

only on the size of the target change and the time during the announcement cycle when the change occurs. The

adjustment rules and loss function will share this periodicity.
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Figure 5: The optimal adjustment rule with regular announcement dates
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The preferred rate has volatility σ = 11.9. Adjustment cost parameters are f = 2378 and k = 4160

between announcement dates, and 0.8f and 0.8k on announcement dates. The central bank discounts

future costs at the rate ρ = 0.01/250.

the target rate at time t if εt ≤ −b(t), in which case it will lower the target rate in order to reset

the discrepancy between the target rate and the preferred rate to −b(t) + ∆(t), or if εt ≥ b(t),

in which case it will raise the target rate in order to reset the discrepancy to b(t) −∆(t). We

show in Appendix D.3 that the central bank’s loss function u(ε, t) satisfies the partial differential

equation

0 =
∂u

∂t
+

1
2
σ2∂

2u

∂ε2
− ρu+ ε2

whenever −b(t) < ε < b(t). For a given (b(t),∆(t))-rule, the loss function can be calculated by

solving the partial differential equation together with the value-matching conditions

u(b(t), t) = u(b(t)−∆(t), t) + C(∆(t), t) u(−b(t), t) = u(−b(t) + ∆(t), t) + C(∆(t), t),

and the requirement that u(ε, T ) = u(ε, 0). The smooth-pasting conditions

∂u

∂ε
(b∗(t), t) =

∂u

∂ε
(b∗(t)−∆∗(t), t) = k(t)

are necessary for the rule (b∗(t),∆∗(t)) to be optimal.

Figure 5 shows the optimal adjustment rule in the case where the cost of a target change on

an announcement date is 80% of the cost of the same target change at any other time. The outer

two curves plot ±b∗(t) as functions of the time in the announcement cycle, while the inner two

curves plot ±(b∗(t) −∆∗(t)). Thus, the central bank will only change the target rate between

announcement dates when εt moves outside one of the outer two curves. It then changes the

target rate so that εt is brought back to the associated inner curve. The size of the target change

equals the distance between the two curves. The situation is slightly different on announcement

dates, as the central bank then changes the target rate whenever εt lies outside one of the two
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outer points shown in the figure.19 When this happens, the target is changed so that εt is

brought back to the associated inner point. Clearly, the size of such a target change varies with

the level of εt on the announcement date.20 The simple targeting rule derived in Section 2.2 is

no longer optimal. Instead, the optimal rule involves the band around the target rate becoming

wider as the date of each announcement approaches (so that a target change is very unlikely

when an announcement date is near), and narrowing on the date of the announcement (so that

a target change on an announcement date is much more likely).21

Although there is not enough data yet to characterize the properties of targeting under

announcement dates with confidence, there does seem to be some evidence that the Fed has a

strong preference for changing the target rate only on such dates. In fact, only two of the sixteen

target changes over the period January 1, 1995 to March 31, 2001, have been made outside of

the FOMC’s regular meeting dates. Perhaps the most telling testimony to the Fed’s preference

for making changes on such dates are comments from the Fed itself, which indicate it has a

strong (but not lexiographic) preference towards making changes on FOMC meeting dates. For

instance, the following is from the minutes of the FOMC telephone conference on April 11, 2001:

“In the circumstances, the members could see the need for a further easing of policy

at some point, though some had a strong preference for taking such actions at regu-

larly scheduled meetings. They all agreed that an easing on this date would not be

advisable, inasmuch as the attendant surprise to most outside observers risked un-

predictable reactions in financial markets that had been especially volatile in recent

days, and additional important data would become available over the near term.”

6 Conclusion

This paper was motivated by the observation that interest rate target changes are highly persis-

tent and seldom quickly reversed. According to Goodfriend, this behavior represents a deliberate

attempt by the Fed to smooth interest rates and avoid “whipsawing” the market. Using a simple

model of optimal central bank policy, we showed that given modest costs to adjusting target

rates, the persistent behavior of target changes could be rationalized, as could a number of other

puzzling properties of target rates which we observed. We did not need to assume persistence

in the underlying shock in our model to get these results; nor did we have to assume that re-

versals were especially costly. Instead, in our model the optimal rule follows from uncertainty

over future movements in the underlying preferred rate, together with the costs of adjusting the

target rate. When the preferred rate is close to the target rate, the Fed is better off to delay a
19This discontinuity in the width of the band is a consequence of the discontinuity in the adjustment cost

functions f(t) and k(t).
20Note also that the size of a target change which takes place between announcement dates will generally depend

on the time during the announcement cycle at which it occurs.
21Filimon (2000) studies the behavior of our model for a large number of different parameter values, and obtains

qualitatively similar results for all cases.
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target change, rather than risk unsettling the market, especially since many times small changes

in the preferred rate will be undone by themselves.

Using data on the Federal Reserve’s target rate changes, we tested the dynamics of target

changes predicted by our model. Consistent with our model, we found that the magnitude of a

change in the target rate does not depend on the direction of the change, that the average time

between consecutive target rate increases is the same as the average time between consecutive

decreases, that the average time between a target rate increase that is followed by a decrease

is the same as the average time between a target rate decrease that is followed by an increase,

and that the average time between consecutive changes in the opposite direction is greater than

the average time between consecutive changes in the same direction. We estimated parametric

and nonparametric hazard functions for our sample of target changes, and found that (except

for long durations) they were broadly consistent with the hazard function predicted by our

model. Consecutive changes in the same direction are especially likely a short time after the last

target change, but for long durations between target changes reversals become almost as likely

as continuations.

Because our model characterizes the properties of the central bank’s target rate through

time, it also has implications for market interest rates at the short-end of the yield curve.

Using the expectations hypothesis, we derived the implications of our calibrated optimal rule

for daily observations on seven-day, one-month, and three-month market rates. Despite the

simplicity of our assumptions, we found that, consistent with daily observations on Eurodollar

rates, conditional volatility is increasing in the magnitude of the spread between the market

rate and the central bank’s target rate (which we call the spread-effect), and that market rates

revert towards the central bank’s target rate the longer the time since the last target change.

Clearly, our assumption that the preferred rate evolves according to driftless Brownian mo-

tion is a special case of more general stochastic processes for the preferred rate. However,

we believe it is the most interesting case to start with, both because it is difficult to reject a

unit root in short-term interest rates and because it shows that one does not need to assume

mean-reversion in the central bank’s preferred rate to generate persistence in target changes.

Nevertheless, it is still interesting to extend the analysis to consider other stochastic processes

for the preferred rate.

We considered one such extension by introducing a deterministic component to the central

bank’s preferred rate. This captured the idea that there can be predictable tightening and

loosening cycles to monetary policy. We found that when monetary conditions are expected

to move desired interest rates closer to the bank’s current target rate, optimal policy requires

that the central bank act more cautiously, tolerating relatively large deviations before acting,

and only changing the target rate by a small amount if it does act. Conversely, when monetary

conditions are expected to move desired interest rates further away from the bank’s current

target rate, optimal policy requires that the central bank act more aggressively, moving the
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target rate sooner and by more than would otherwise be the case. Despite the possible need for

a ‘catching-up’ policy, the central bank will still optimally avoid any overshooting of policy, so

that the target interest rate is never moved from being considered ‘too high’ to being ‘too low’

just because the central bank expects interest rates will need to fall in the future.

Given our motivation for adjustment costs, it seems likely that target changes will be more

costly when they are not anticipated by the markets. In a world in which the market does

not observe the central bank’s preferred rate, we considered two reasons why target changes

may be more or less anticipated by investors. We showed that if target changes in the opposite

direction to that anticipated by investors are more expensive than target changes in the same

direction, a target change which reverses the direction of the previous target change will be more

expensive than one which is in the same direction. The central bank’s optimal response is to

make reversals smaller than continuations. Following a reversal, once the market’s expectations

have been revised, the central bank can implement a larger target change at relatively low cost.

Moreover, this behavior means continuations are somewhat more likely when the last target

change was a reversal.

Another reason why target changes may be more or less of a surprise to the markets is the

use of regular announcement dates. By specifying regular announcement dates a central bank

can reduce the surprise element of target changes that are made on these dates, thus lowering the

associated adjustment costs. In this case the optimal rule involves the band around the target

rate becoming wider as the date of each announcement approaches (so a target change is very

unlikely when an announcement date is near), and narrowing on the date of the announcement

(so a target change on an announcement date is much more likely). We believe that when

combined with a reduction in underlying volatility, this extension of the model may be capable

of explaining the changes in dynamics of target rates observed since the Federal Reserve shifted to

formal announcements on FOMC meeting dates. Future research, armed with more observations

on target changes outside of meeting dates, could test the implications of our model in this new

regime.

The starting point for this paper was a simple exogenous stochastic process for the central

bank’s preferred rate. In practice, the preferred level of interest rates could itself depend on

the target rate policy chosen. Presumably, different interest rate targeting policies will affect

the fundamentals of the economy and so feed back into the preferred level of interest rates.

We have assumed away any such feedback effect to make our model tractable. Future work

could incorporate such a feedback effect for a specific macroeconomic model of the economy and

examine numerically the extent to which the new optimal rule would differ.
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A Proofs for Optimal Adjustment Rule

Necessary Conditions for an Optimal Policy

We seek values of b and ∆ which minimize A, where A is related to the two choice variables by

the requirement that u is continuous at b:

u(b) = u(b−∆) + f + k∆

or

0 =
b2

ρ
+A cosh(λb)− (b−∆)2

ρ
−A cosh(λ(b−∆))− f − k∆.

The Lagrangian for this problem is

L = A− µ

(
b2

ρ
+A cosh(λb)− (b−∆)2

ρ
−A cosh(λ(b−∆))− f − k∆

)
,

where µ is the Lagrange multiplier, and the appropriate first order conditions are

0 = 1− µ (cosh(λb∗)− cosh(λ(b∗ −∆∗))) ,

0 = −µ
(
2b∗

ρ
+ λA sinh(λb∗)− 2(b∗ −∆∗)

ρ
− λA sinh(λ(b∗ −∆∗))

)
,

0 = −µ
(
2(b∗ −∆∗)

ρ
+ λA sinh(λ(b∗ −∆∗))− k

)
.

The second and third conditions become u′(b∗) = u′(b∗ −∆∗) and u′(b∗ −∆∗) = k, respectively.

Proof of Theorem 122

Let ε̂ be an arbitrary positive constant and define the function

v(ε; ε̂) =
σ2

ρ2
+

ε2

ρ
+A(ε̂) cosh(λε),

of ε, where

A(ε̂) =
−σ2

ρ2 cosh(λε̂)
.

Notice that, for a particular value of the integration constant A, v equals the function u, given

in (2), on the interval (−b, b), but extends its functional form to the whole real line. The function

v′(ε; ε̂) =
2ε
ρ

+ λA(ε̂) sinh(λε)

has turning points at ε = ±ε̂. It is drawn in Figure 6. The value of this function at the turning

point ε = ε̂ is

Γ(ε̂) = v′(ε̂, ε̂) =
2ε̂
ρ

+ λA(ε̂) sinh(λε̂).

It is easily shown that Γ is an increasing function of ε̂, with Γ(0) = 0 and Γ(ε̂) → ∞ as ε̂ → ∞.

In fact,

Γ′(ε̂) =
2
ρ

(
1− 1

cosh2(λε̂)

)
> 0.

22The proof of this and the following theorem is based on Constantinides and Richard (1978), who consider a

similar problem, with different cost functions, in the context of inventory management.
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Figure 6: The function v′(ε; ε̂)
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Now, for any value of the parameter ε̂ such that Γ(ε̂) > k, the numbers b(ε̂) and ∆(ε̂) are

uniquely determined by the analogs of equations (4),

v′(b(ε̂)) = k and v′(b(ε̂)−∆(ε̂)) = k,

together with the requirement that ∆(ε̂) > 0. The function u is continuous at ε = b∗ if

v(b∗) = v(b∗ −∆∗) + f + k∆∗.

Thus, in order to prove existence, we must show that there exists a number ε̂∗ such that Ψ(ε̂∗) =

f , where

Ψ(ε̂) = v(b(ε̂))− v(b(ε̂)−∆(ε̂))− k∆(ε̂).

That is, the shaded region in Figure 6 must have area f . Now, if ε → Γ−1(k), then b(ε̂) → ε̂

and ∆(ε̂) → 0, so that Ψ(ε̂) → 0 and the shaded region vanishes. On the other hand, as ε̂ → ∞,

we see that b(ε̂) → ∞ and b(ε̂)−∆(ε̂) → ρk/2. Since Γ(ε̂) → ∞, the area of the shaded region

becomes infinitely large. Appealing to the Intermediate Value Theorem, we see that there must

exist some value of ε̂, call it ε̂∗, for which the shaded region has area f . The required policy

parameters are b∗ = b(ε̂∗) and ∆∗ = ∆(ε̂∗). It is easy to prove that Ψ is a strictly increasing

function of ε̂. These parameters are therefore unique, and the proof is complete.

Proof of Theorem 2

Our proof of the optimality of this simple rule uses the following lemma, which gives sufficient

conditions for a policy to be optimal. A proof can be found in Harrison, et al. (1983).

Lemma 1 Suppose that u is continuously differentiable, has a bounded derivative, and has a

continuous second derivative at all but a finite number of points. If

u(ε) ≤ C(ε′ − ε) + u(ε′), for all ε and ε′,

0 ≤ F (ε) +
1
2
σ2u′′(ε)− ρu(ε), for almost all ε,
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Figure 7: The function u′(ε)
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then u(ε) ≤ J(P ; ε) for all adjustment policies P and all ε ∈ R.

We show that the expected total cost function u(ε) associated with the adjustment policy

constructed in the proof of Theorem 1 satisfies the conditions of Lemma 1. Notice that u(ε) =

v(ε; ε̂∗) whenever −b∗ < ε < b∗. For other values of ε, u(ε) is given by the expressions in (2).

Figure 7 plots u′(ε) for the adjustment policy constructed in the proof of Theorem 1.

The function u has a continuous first derivative, which is bounded. Furthermore, it has a

continuous second derivative everywhere, except at the points ε = ±b∗. The regularity conditions
of Lemma 1 are therefore satisfied.

If ε ≤ −b∗ (respectively ε ≥ b∗), it is optimal to change the target in order to bring the

discrepancy back to −b∗ +∆∗ (respectively b∗ −∆∗). Therefore, for all ε′,

u(ε′) + C(ε′ − ε) ≥ u(−b∗ +∆∗) + C(−b∗ +∆∗ − ε) = u(ε), ε ≤ −b∗,

and

u(ε′) + C(ε′ − ε) ≥ u(b∗ −∆∗) + C(b∗ −∆∗ − ε) = u(ε), ε ≥ b∗.

If −b∗ < ε ≤ −b∗ + ∆∗ (respectively b∗ − ∆∗ ≤ ε < b∗), and the central bank decided to

change the target rate, it would do so in such a way that the discrepancy is reset to −b∗ +∆∗

(respectively b∗ −∆∗), since this minimizes the total expected cost after the change. Therefore,

for all ε′,

u(ε′) + C(ε′ − ε) ≥ u(−b∗ +∆∗) + C(−b∗ +∆∗ − ε) > u(ε), −b∗ < ε ≤ −b∗ +∆∗,

and

u(ε′) + C(ε′ − ε) ≥ u(b∗ −∆∗) + C(b∗ −∆∗ − ε) > u(ε), b∗ −∆∗ ≤ ε < b∗.

The remaining case to consider is where −b∗ +∆∗ < ε < b∗ −∆∗. If the central bank decided

to change the target rate, the cost-minimizing action would be to change it by zero, since
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the marginal cost of changing the target rate exceeds the marginal benefit of reducing the

discrepancy. Therefore, for all ε′,

u(ε′) + C(ε′ − ε) ≥ u(ε) + C(0) > u(ε), −b∗ +∆∗ < ε < b∗ −∆∗.

Combining these results, we see that u satisfies the first inequality in Lemma 1. Notice, also,

that the central bank should only ever change the target rate when the discrepancy is outside

the interval (−b∗, b∗).
Let

θ(ε) = ε2 +
1
2
σ2u′′(ε) − ρu(ε).

It is easily confirmed that θ(ε) = 0 whenever −b∗ < ε < b∗. Thus

(b∗)2 − ρu(b∗−) = −1
2
σ2u′′(b∗−) > 0,

since u′′(b∗−) < 0, and, since u′′(b∗+) = 0, it follows that

θ(b∗+) = (b∗)2 − ρu(b∗+) = (b∗)2 − ρu(b∗−) > 0.

By a similar argument, θ(−b∗−) > 0. Next, notice that whenever ε > b∗ (respectively ε < −b∗),
θ′(ε) = 2ε − ρk > 2b∗ − ρk > 0 (respectively θ′(ε) < 0). It follows that θ(ε) > θ(b∗+) > 0

whenever ε > b∗ and that θ(ε) > θ(−b∗−) > 0 whenever ε < −b∗. Combining these results, we

see that u satisfies the second inequality in Lemma 1 and the proof is complete.

B Proofs for Behavior of the Target Rate

Proposition B–1 The probability that the next target change, whenever it occurs, is in the

same direction equals 1−∆∗/(2b∗).

Proof Without loss of generality, suppose that the central bank increases the target rate at

time 0; that is, set ε0 = b∗ −∆∗. The next target change, whenever it occurs, will be another

increase if ε hits b∗ before it hits −b∗. From Karatzas and Shreve (1991, p. 100), this occurs

with probability (2b∗ −∆∗)/(2b∗) = 1−∆∗/(2b∗). �

Proposition B–2 Consider successive target changes.

1. Conditional on successive target changes being in the same direction, the expected time

between them equals ∆∗(4b∗ −∆∗)/3σ2 days.

2. Conditional on them being in opposite directions, the expected time is (2b∗ − ∆∗)(2b∗ +

∆∗)/3σ2 days.

3. The unconditional mean is ∆∗(2b∗ −∆∗)/σ2 days.
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Proof Denote by g−(t|ε0) the probability density of ε reaching −b∗ at time t before having

reached b∗, conditional on the discrepancy having the value ε0 at time 0. Similarly, denote by

g+(t|ε0) the probability density of passing into b∗ at time t before having reached −b∗, conditional
on the same initial value. From Karatzas and Shreve (1991, p. 100),

g∗−(s|ε0) ≡
∫ ∞

0
e−stg−(t|ε0)dt =

sinh(β(b∗ − ε0))
sinh(2βb∗)

and

g∗+(s|ε0) ≡
∫ ∞

0
e−stg+(t|ε0)dt =

sinh(β(b∗ + ε0))
sinh(2βb∗)

,

where β =
√
2s/σ. It follows that∫ ∞

0
tg−(t|ε0)dt = − d

ds
g∗−(s|ε0)

∣∣∣∣
s=0

=
(b∗ − ε0)(b∗ + ε0)(3b∗ − ε0)

6b∗σ2
,

∫ ∞

0
tg+(t|ε0)dt = − d

ds
g∗+(s|ε0)

∣∣∣∣
s=0

=
(b∗ − ε0)(b∗ + ε0)(3b∗ + ε0)

6b∗σ2
.

Without loss of generality, suppose that the central bank increases the target rate at time 0;

that is, set ε0 = b∗ −∆∗. Then:

1. The expected time until the next target change, conditional on that change being another

increase in the target rate, equals∫ ∞
0 tg+(t|b∗ −∆∗)dt∫ ∞
0 g+(t|b∗ −∆∗)dt

=
∆∗(4b∗ −∆∗)

3σ2

days.

2. The expected time until the next target change, conditional on that change being a reduc-

tion in the target rate, equals∫ ∞
0 tg−(t|b∗ −∆∗)dt∫ ∞
0 g−(t|b∗ −∆∗)dt

=
(2b∗ −∆∗)(2b∗ +∆∗)

3σ2

days.

3. The unconditional mean time between target changes equals∫ ∞

0
t(g−(t|b∗ −∆∗) + g+(t|b∗ −∆∗))dt =

∆∗(2b∗ −∆∗)
σ2

days. �

Suppose that the central bank raises the target rate at time 0. Define the function hc(t)

such that, conditional on no target changes occurring in the interval (0, t], the central bank will

further raise the target rate (a policy continuation) in the interval (t, t + dt] with probability

hc(t)dt. Similarly, define the function hr(t) such that, conditional on no target changes occurring

in the interval (0, t], the central bank will reduce the target rate (a policy reversal) in the interval

(t, t+ dt] with probability hr(t)dt. These so-called hazard functions are

hc(t) =
g+(t|b∗ −∆∗)

1− ∫ t
0 (g−(t

′|b∗ −∆∗) + g+(t′|b∗ −∆∗))dt′
,
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hr(t) =
g−(t|b∗ −∆∗)

1− ∫ t
0 (g−(t

′|b∗ −∆∗) + g+(t′|b∗ −∆∗))dt′
.

When plotting the hazard functions, we use the following series expansions from Karatzas and

Shreve (1991, p. 100):

g−(t|ε0) =
1√

2πσ2t3

∞∑
n=−∞

(4nb∗ + b∗ + ε0) exp
{
−(4nb∗ + b∗ + ε0)2

2σ2t

}

and

g+(t|ε0) =
1√

2πσ2t3

∞∑
n=−∞

(4nb∗ + b∗ − ε0) exp
{
−(4nb∗ + b∗ − ε0)2

2σ2t

}
.

C Determining Market Rates

The bond pricing problem is greatly simplified by noting two particular properties of bond prices

in our model. If the target rate and the preferred rate both increase by δ, the distribution of all

future levels of the target rate shifts to the right by the same amount. From (7), the effect is

to scale the time t price of a discount bond maturing at time T by the factor exp(−δ(T − t)).

That is, the bond price function satisfies

B(r̂ + δ, r∗ + δ, t;T ) = e−δ(T−t)B(r̂, r∗, t;T ) for all δ. (C-1)

If the current date and the maturity date of the bond both increase by s, the price of a discount

bond will not change. That is, the bond price function satisfies

B(r̂, r∗, t+ s;T + s) = B(r̂, r∗, t;T ) for all s. (C-2)

The most general function satisfying (C-1) and (C-2) has the form

B(r̂, r∗, t;T ) = exp(−rτ)u(ε, τ), (C-3)

where τ = T − t is the time remaining until the bond matures and ε = r∗ − r̂ is the discrepancy

between the preferred rate and the target rate.

If the function B given by (C-3) is to solve the boundary value problem, the function u must

solve the simpler boundary value problem comprising the partial differential equation

∂u

∂τ
=

1
2
σ2∂

2u

∂ε2
, −b < ε < b,

together with the boundary conditions

u(b, τ) = e−∆τu(b−∆, τ), u(−b, τ) = e∆τu(−b+∆, τ),

and the initial condition u(ε, 0) = 1. This problem is readily solved using the Crank-Nicholson

finite difference method.

This functional form has a natural interpretation involving the yield on the discount bond:

−1
T − t

logB(r̂, r∗, t;T ) = r̂ +
−1
τ

log u(ε, τ).
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The yield on a discount bond with time τ until maturity equals the target rate plus an amount

which depends on the bond’s maturity and the extent to which the target rate deviates from the

preferred rate. Thus, the current target rate determines the level of the yield curve, while the

discrepancy between the target rate and the preferred rate determines the spread, and hence

the shape of the yield curve.

D Appendix for Section 5

D.1 Tightening and Loosening Cycles

It is easily shown, by mimicking the derivation of equation (1), that whenever −b1 < ε < b2, the

central bank’s loss function satisfies the differential equation

0 = ε2 +
1
2
σ2u′′(ε) + µu′(ε)− ρu(ε).

The solution is

u(ε) =
σ2

ρ2
+

2µ2

ρ3
+

2µε
ρ2

+
ε2

ρ
+A1e

λ1ε +A2e
λ2ε,

where

λ1 =
−µ
σ2

+

√( µ

σ2

)2
+

2ρ
σ2

, λ2 =
−µ
σ2

−
√( µ

σ2

)2
+

2ρ
σ2

,

and A1 and A2 are constants to be determined. If ε ≤ −b1, the central bank lowers the target

rate, resetting the discrepancy to −b1 +∆1, so that

u(ε) = u(−b1 +∆1) + f + k(−b1 +∆1 − ε).

If ε ≥ b2, the central bank raises the target rate, resetting the discrepancy to b2 −∆2, so that

u(ε) = u(b2 −∆2) + f + k(ε− b2 +∆2).

The constants A1 and A2 are determined by the condition that u is continuous at −b1 and b2.

D.2 Anticipated and Unanticipated Target Changes

The problem is simplified by noting its inherent symmetry: the situation when the last target

change was a loosening and the preferred rate currently exceeds the target rate by ε is equivalent

to the situation when the last target change was a tightening and the target rate currently exceeds

the preferred rate by ε. If the optimal policy in the first situation is to raise the target rate by ∆,

the optimal policy in the second situation must be to lower the target rate by ∆. It follows that

uL(ε), the central bank’s loss function when the last target change was a loosening, and uT (ε),

the loss function when the last target change was a tightening, are related by uL(ε) = uT (−ε).
We consider the situation in which the last target change was a loosening in more detail.
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• If −bc < ε < br, the target rate will not be changed. As in the standard model, the loss

function must satisfy the ordinary differential equation

ε2 +
1
2
σ2u′′(ε)− ρu(ε) = 0.

The general solution is

u(ε) =
σ2

ρ2
+

ε2

ρ
−Aeλε −Be−λε,

where A and B are arbitrary integration constants and λ2 = 2ρ/σ2.

• If ε ≤ −bc, a further loosening will be triggered. The central bank will lower the target

rate, resetting ε to −bc +∆c. The loss function must satisfy

u(ε) = u(−bc +∆c) + fc + kc(−bc +∆c − ε).

• If ε ≥ br, a tightening will be triggered. The central bank will raise the target rate,

resetting ε to br − ∆r. Since this constitutes a reversal of the central bank’s previous

policy, the loss function must satisfy

u(ε) = uT (br −∆r) + fr + kr(ε− br +∆r)

= u(−br +∆r) + fr + kr(ε− br +∆r).

Now, the requirement that limε↓−bc u(ε) = u(−bc) implies that

(bc)2

ρ
−Ae−λbc −Beλbc =

(bc −∆c)2

ρ
(D-1)

−Ae−λ(bc−∆c) −Beλ(bc−∆c) + fc + kc∆c.

Similarly, the requirement that limε↑br u(ε) = u(br) implies that

(br)2

ρ
−Aeλbr −Be−λbr =

(br −∆r)2

ρ
(D-2)

−Ae−λ(br−∆r) −Beλ(br−∆r) + fr + kr∆r.

These two equations give A and B implicitly as functions of (bc, br,∆c,∆r).

Differentiating equation (D-1) with respect to br and rearranging shows that

∂A

∂br
e−λbc(eλ∆c − 1) +

∂B

∂br
eλb∗c (e−λ∆c − 1) = 0.

Since the coefficients of the two partial derivatives have opposite signs, it must be the case that

the two partial derivatives share the same sign. Differentiating equation (D-1) with respect

to ∆r shows that the ∆r-derivatives of A and B also have the same sign. If we differentiate

equation (D-2) with respect to bc, a similar argument shows that ∂A/∂bc and ∂B/∂bc have the

same sign. Likewise, differentiating that equation with respect to ∆c, a similar argument shows

that ∂A/∂Ac and ∂B/∂∆c have the same sign. It follows that for any change in (bc, br,∆c,∆r),
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A and B will either both increase in value, or they will both fall in value. They must both have

(local) maxima at the same points.

If we differentiate equation (D-1) with respect to bc, and set ∂A/∂bc = ∂B/∂bc = 0, we

obtain an equation which can be written in the form

u′(−bc) = u′(−bc +∆c).

If we differentiate with respect to ∆c, instead, and set ∂A/∂∆c = ∂B/∂∆c = 0, we obtain an

equation which can be written in the form

0 = u′(−bc +∆c) + kc.

Now we turn to equation (D-2). Differentiating it with respect to br, and setting ∂A/∂br =

∂B/∂br = 0, leads to the condition

u′(br) = −u′(−br +∆r).

If, instead, we differentiate with respect to ∆r, and set ∂A/∂∆r = ∂B/∂∆r = 0, we obtain

0 = u′(−br +∆r) + k.r

These four equations comprise the smooth-pasting conditions for this problem.

D.3 Announcement Dates

If −b(t) < εt < b(t) and the central bank leaves the target rate unchanged for a period of time

dt, then Itô’s Lemma implies that

Et[u(εt+dt, t+ dt)] = u(εt, t) +
(
1
2
σ2 ∂

2u

∂ε2
(εt, t) +

∂u

∂t
(εt, t)

)
dt+ o(dt).

Since the central bank discounts future costs at rate ρ,

u(εt, t) = ε2
t dt+ e−ρ dtEt[u(εt+dt, t+ dt)] + o(dt)

= u(εt, t) +
(
ε2
t +

1
2
σ2∂

2u

∂ε2
(εt, t) +

∂u

∂t
(εt, t)− ρu(εt, t)

)
dt+ o(dt).

Taking the limit as dt → 0, and rearranging, gives us the following partial differential equation

for the loss function:

0 =
∂u

∂t
+

1
2
σ2∂

2u

∂ε2
− ρu+ ε2, −b(t) < ε < b(t).
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