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Abstract

This paper derives the dynamic properties of interest rates at the short end of the yield curve

using a model of central bank interest rate targeting. The model predicts that conditional

volatility is persistent and increasing in the spread between the market rate and the central

bank’s target rate, that there is excess kurtosis in high frequency interest rate movements,

and that market rates will revert towards the central bank’s target rate. We show these

effects are present in a sample of recent daily data on U.S. interest rates. The results suggest

that the spread between market rates and the central bank’s target rate should be considered

in empirical models of interest rate dynamics.
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Interest Rate Dynamics and Interest Rate Targeting

Understanding the dynamics of short-term interest rates is fundamental to much of theoretical

and empirical finance. Among other things, it is an important ingredient in pricing bonds and

bond derivatives, hedging interest rate risk, determining term structure behavior, and forecasting

interest rate movements. The main approach adopted by the voluminous literature in finance

that models the dynamics of interest rates is to try to estimate the parameters of a discrete

approximation to some continuous time stochastic process. Most such models, including those

used by Merton (1973), Vasicek (1977), and Cox et al. (1985) can be expressed as special cases

of the stochastic differential equation

drt = (α+ λrt)dt+ σrγ
t dξt, (1)

where rt is the level of the instantaneous interest rate, ξt is a Wiener process, and α, λ, σ, and

γ are parameters.

Most empirical studies focus on determining whether there is mean reversion (λ < 0), as

well as the nature of the level effect in conditional volatility (the size of γ). Chan et al. (1992)

survey models within the class above. Using GMM estimation on the U.S. one-month Treasury

bill yield from June 1964 to December 1989, they find that γ is 1.50 and highly significant, while

λ = −0.59 but not significant. Stronger evidence for mean reversion in interest rates is obtained
by Dahlquist (1996) who examines four OECD countries using an approach similar to Chan et

al., and by Wu and Zhang (1996) who use a panel approach with twelve OECD countries for

the period from January 1978 to September 1994.

Recent work has focused on nonparametric estimation of the drift function µ(rt) and the

diffusion function σ(rt) in the generalization

drt = µ(rt)dt+ σ(rt)dξt

of (1). Assuming affine drift, Ait-Sahalia (1996a) finds that a linear specification for σ2 is a

good approximation for interest rates from 0 to 9%, that σ2 increases faster than r for medium

values of interest rates (9% to 14%), and that it flattens and then decreases for higher rates.

Stanton (1997) estimates both the drift and the diffusion nonparametrically. He finds that,

while the estimated diffusion is similar to that estimated by Chan et al., there is evidence of

substantial non-linearity in the drift. In fact, mean reversion only starts to appear once interest

rates are well above 15%, but quickly becomes strong for higher interest rates.

In this paper, we explore interest rate dynamics from a new perspective. We consider how

central bank interest rate targeting affects interest rate dynamics. Thus, we do not start by

assuming some stochastic process which captures the features of drift and the level effect in

volatility. Rather we start by assuming the simplest possible specification for the underlying

interest rate — a simple Brownian motion. This interest rate, which we call the preferred rate,

is interpreted in our model as the instantaneous interest rate which would be preferred by the
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central bank, absent any costs of actually implementing it. We then characterize the nature of

the target rate, the rate the central bank actually sets, by giving a rule which specifies how the

preferred rate determines the central bank’s target rate. As Guthrie and Wright (1999) show,

this rule has three nice properties. Firstly, it is the optimal rule for the central bank to follow,

given costs that the central bank is assumed to face in adjusting its target rate. Secondly, it

generates properties of the target rate that closely match the dynamic properties of actual target

changes by the U.S. Federal Reserve. Finally, its simple structure allows the dynamic behavior

of market interest rates to be determined.

When combined with the expectations hypothesis, this framework implies a rich array of

dynamic properties for market rates at short horizons. Among other things, the model predicts

that conditional volatility is persistent and increasing in the spread between the market rate

and the central bank’s target rate, that there is excess kurtosis in high frequency interest rate

movements, and that market rates will revert towards the central bank’s target rate. These

results are surprising given our assumption of an underlying simple Brownian motion process.

However, not surpisingly given our assumptions, our model of interest rate targeting does not

explain the reversion to mean or the level effect in volatility that is discussed above. Thus we see

our framework as complementary to standard models of interest rates. By assuming the central

bank’s preferred rate incorporates mean reversion and a level effect in volatility, we suspect our

model will be able to capture these two features, in addition to the other features the model

currently explains.

To derive specific predictions, the model is calibrated to data on actual target changes by the

Federal Reserve from March 1984 to February 1994, the period of interest rate targeting that

most closely matches the assumptions of our model. The calibrated model is used to generate

simulated daily observations on the central bank’s target rate, as well as corresponding seven-

day, one-month and three-month market rates. Some dynamic properties of these rates are then

compared to those found using daily data on the Federal Reserve’s fed-funds target rate, and

the seven-day, one-month, and three-month Eurodollar rates for the same period.

The results are generally supportive of the predictions of our model, and suggest new empir-

ical models of interest rate dynamics should be considered. Our model predicts almost precisely

the degree to which the spread between the market rate and target rate declines through time.

This occurs not just because the target rate moves to offset large deviations between the market

rate and target rate, but more interestingly, absent target changes, market interest rates revert

towards the central bank’s target rate through time.

Similarly, our model explains persistence in conditional volatility. Volatility clusters natually

emerge around times when target changes are likely. According to our model, such times occur

when the spread between the target rate and market rates is large. Consistent with the model,

we find conditional volatility increases with the magnitude of the deviation between the target

rate and market rates. Compared to the size of the level-effect in conditional volatility, the

spread-effect is an order of magnitude more important in the actual data.

Because our model implies occasional discrete target changes, excess-kurtosis of interest rate
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changes is also predicted, especially for high frequency data. The same pattern in results is

apparent in the actual data, with daily changes in interest rates exhibiting higher levels of

Kurtosis than monthly changes. In fact, for daily interest rate changes, the excess-kurtosis in

the actual data is substantially larger than that predicted by our model, suggesting the model

is only able to partially explain the patterns in the actual data.

With this in mind, we consider an extension to our model incorporating the fact that the

market will not generally know the central bank’s preferred rate, but rather will have to infer

this from a publicly available variable that is correlated with the central bank’s preferred rate.

Using this information, as well as observed target changes, investors form rational expectations

about future target changes — expectations that determine current market rates. Introducing

learning does not change the basic qualitative predictions of the model, but does change some

quantitative results. In most cases, the quantitative predictions are closer to those observed

empirically. In particular, the extended model does a better job of explaining the high kurtosis

of interest rate changes in the actual data. The introduction of private information in the model

means that market rates will sometimes react by large amounts to a target change. This shows

up most prominently in the excess-kurtosis results for daily changes in market rates, where the

kurtosis in the actual data is also at its highest. Nevertheless, the model is still unable to explain

a large part of the high kurtosis of daily changes in seven-day and one-month rates.

The rest of paper proceeds as follows. Section 1 reviews our model of central bank interest

rate targeting and, in Section 1.1, demonstrates how it can be combined with the expectations

hypothesis to generate interest rate dynamics. Section 1.2 enriches the model by allowing the

central bank to have private information. The data used to test the model is detailed in Section 2,

while Section 3 presents the empirical results. Finally, Section 4 concludes.

1 Modeling Interest Rate Dynamics

The starting point for our model of the term structure of interest rates is the specification of the

targeting rule followed by the central bank. We adopt a targeting rule which not only closely

matches the dynamic properties of target rates in practice, but is known to be optimal under

certain conditions. We first outline these conditions.

We suppose the central bank has a preferred level of the instantaneous rate at each point

in time, denoted r∗t , which evolves according to driftless Brownian motion dr∗t = σdξt, where ξt

is a Wiener process and σ is a constant. The preferred rate takes into account all the factors

that determine the central bank’s desired level of the instantaneous rate, except any cost of

changing the target rate itself. We suppose that, by choosing the level of the target rate r̂t, the

central bank ties down the instantaneous market rate at this same level. In practice, the market

rate will deviate from the target level due to transitory liquidity shocks. However, due to their

transitory nature, these shocks should have little, if any, impact on the rates we are interested

in.1 The central bank is assumed to suffer flow costs (r∗t − r̂t)2dt over a period of length dt

caused by deviations between its preferred rate and the actual instantaneous rate; deviations
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Figure 1: The interest rate targeting rule

The thin curve plots a particular path of the preferred rate, and the thick curve plots the path of

the target rate chosen by the central bank. The shaded region shows the band around the target

rate which determines when target changes occur.

are costly since they imply interest rates will be out of line with its objectives. The central bank

could eliminate these deviations by having its target rate track movements in its preferred rate.

However, doing so is costly. We assume the central bank faces two types of costs of adjusting

the target rate by an amount ∆: a fixed adjustment cost f that is incurred whenever the target

rate is changed, but which does not depend on the size of the target change, and a proportional

adjustment cost c|∆|, which reflects that large target changes will be more costly than small
ones. One motivation for these adjustment costs is that they reflect the risk that markets will

react adversely to target changes, even small ones. Other motivations are provided by Guthrie

and Wright (1999). Finally, it is assumed the central bank discounts future costs at a rate δ.

Under these assumptions, Guthrie and Wright (1999) derive the optimal targeting rule. The

optimal rule is particularly simple, and is completely described by two constants, b and ∆. As

long as the preferred rate lies within (r̂t − b, r̂t+ b), the central bank leaves the target rate fixed.

As soon as r∗t = r̂t + b, the central bank raises the target rate by an amount ∆. Similarly, as

soon as r∗t = r̂t − b, the central bank lowers the target rate by an amount ∆. Figure 1 illustrates

the targeting rule for a particular path of the preferred rate. The behavior of the target rate is

completely described by b, ∆, and σ. Moreover, these parameters can be calibrated so that the

average size of target changes, the probability of policy reversals, and the average time between

target changes match their empirical counterparts. Despite the simplicity of the adjustment rule,

Guthrie and Wright show that the model replicates a number of puzzling features of interest

rate targeting. In particular, the targeting rule leads to occasional discrete target changes which

more often than not are in the same direction as previous target changes (continuations) rather

than in the opposite direction (reversals). Moreover, the expected time between continuations

is shorter than the time between reversals.

To determine the implications of this targeting behavior for the yield curve, the simple
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targeting rule above is combined with the expectations hypothesis.2 Due to the continuous time

framework we consider, we use the local version of the expectations hypothesis. Thus, the price

at time t of any asset with a single payoff at time T equals

Et

[
exp

(
−

∫ T

t
r̂sds

)
× payoff

]
, t ≤ T, (2)

where the expectation is calculated using all information at time t.

We consider two cases. In the first, investors observe the central bank’s preferred rate.

1.1 Public Information Case

When the level of the preferred rate is public information, the expectation in (2) is conditional

on the level of the preferred rate at time t, as well as the level of the target rate at that time.

Denote by Bo(r̂, r∗, t;T ) the price at time t of a discount bond paying 1 at time T , where r̂

and r∗ are the prevailing levels of the target rate and preferred rate respectively. The ‘o’ is to

remind us that the preferred rate is observable. Then

Bo(r̂, r∗, t;T ) = E

[
exp

(
−

∫ T

t
r̂sds

) ∣∣∣r̂t = r̂, r∗t = r∗
]
. (3)

If r̂−b < r∗ < r̂+b, the probability of a target change over the next time increment of length

dt is negligible. Thus, r̂s is constant, while the preferred rate evolves according to dr∗s = σdξs.

By Itô’s Lemma, the change in the price of the bond over the next time increment is

dBo
t =

(
∂Bo

∂t
+
1
2
σ2 ∂

2Bo

∂r∗2

)
dt +

(
∂Bo

∂r∗

)
σdξt.

The rate of expected return from holding the discount bond must equal the prevailing target

rate. Therefore Bo must satisfy the partial differential equation

∂Bo

∂t
+
1
2
σ2∂

2Bo

∂r∗2 = r̂Bo, r̂ − b < r∗ < r̂ + b.

Boundary conditions are determined by the central bank’s targeting policy. If r∗ = r̂ + b, the

target rate is immediately raised by ∆. Since observability of the preferred rate makes this

change predictable, the bond price must not change. Therefore,

Bo(r̂, r̂ + b, t;T ) = Bo(r̂ +∆, r̂ + b, t;T ).

Consideration of target changes in the opposite direction shows that

Bo(r̂, r̂ − b, t;T ) = Bo(r̂ −∆, r̂ − b, t;T ).

The terminal condition Bo(r̂, r∗, T ;T ) = 1 reflects the fact that the discount bond pays 1 at

maturity.

We show in Appendix A.1 that the spread between the yield on a discount bond and the

target rate equals f(ε, τ) for some function f of maturity τ and the current discrepancy ε = r∗−r̂

between the central bank’s preferred rate and its target rate. Figure 2, which plots the spread
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Figure 2: Spreads when the preferred rate is observable
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Each curve gives the difference (measured in basis points) between the corresponding interest rate

and the target rate as a function of the difference ε (measured in basis points) between the preferred

rate and the target rate.

for the calibration described in Section 3, demonstrates how market interest rates incorporate

anticipated future behavior of the target rate. As ε → b (that is, as the preferred rate approaches

r̂+ b), all spreads grow larger, reflecting the increased probability of the target rate being raised

in the near future. Similarly, as ε → −b, all spreads become more negative, as the market

anticipates lower future levels of the target rate. The spread is most sensitive to changes in

ε when the preferred rate is close to either edge of the band around the target rate. In these

situations, a small change in the preferred rate greatly alters the likelihood of a target change,

leading to a significant revision of the market rate.

Three properties follow immediately from this behavior. Firstly, when the spread between

a market rate and the target rate is large, there is a strong tendency for the spread to narrow.

For example, suppose the preferred rate is near the top edge of the band. If the preferred rate

increases further, a target change will occur: the target rate will climb and, since much of the

effect of the target change has already been factored into bond prices, the market rate will

climb by a smaller amount, causing the spread to fall. On the other hand, if the preferred rate

falls, the market rate will fall with it. Since the target rate will be unchanged, the spread falls.

When the spread between the market rate and the target rate is small, the market rate tends to

remain close to the target rate because small changes in the preferred rate have little effect on

the likelihood of a target change. Thus, the model predicts that the spread will tend to revert

back to zero.

Since the preferred rate is assumed to follow a simple Brownian motion, the daily change

in this variable is normally distributed. The non-linear relationship between the preferred rate

and the market rate evident in Figure 2 means that when the preferred rate is close to the edge
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of the band around the target rate, even a small change in the preferred rate will lead to a large

change in the market rate. When the preferred rate is close to the target rate, market rates are

relatively insensitive to changes in the preferred rate. Thus, the model predicts frequent small

daily changes, and occasional large daily changes, in market rates. Kurtosis will be greater for

market rates with shorter maturity since, as is clear from Figure 2, the relationship between the

preferred rate and such market rates is most non-linear.

The third property also results from the non-linear relationship between the preferred rate

and the market rate: the model predicts the volatility of market rates will be high when the

spread is large. A large spread between the market rate and the target rate indicates that the

preferred rate is near the edge of the band around the target rate. From the discussion in the

previous paragraph, this is when market rates are most volatile. Furthermore, the magnitude of

the spread between the market rate and the target rate will have a greater impact on conditional

volatility for very short term interest rates, since the relationship between the preferred rate and

these interest rates is highly non-linear.

The quantitative implications of these predictions are determined, and tested, in Section 3.

1.2 Private Information Case

Market participants will not generally know the exact level of the instantaneous rate preferred by

the central bank. The best they can do is to use publicly available information to draw inferences

about the preferred rate. Interest rates of all maturities will move as more information becomes

publicly available, altering the market’s beliefs about the central bank’s preferred rate. Target

changes will lead to discrete jumps in interest rates of all maturities; changes in market rates

will be smaller when there are no target changes.

As before, the preferred rate evolves according to dr∗t = σdξt. Now, however, we suppose

that the value of r∗ is only ever known to the central bank; it cannot be observed by the market.

The market can observe the variable yt, which evolves according to

dyt = dr∗t + φdηt,

where φ is a constant and dηt is the increment of a Wiener process uncorrelated with dξt. That

is, the market observes the sum of the actual change in the preferred rate and a noise term. The

correlation coefficient of changes in r∗ and y,

ρ =
σ√

σ2 + φ2
,

is a measure of the central bank’s openness — when ρ = 0 no useful information about the

preferred rate is publicly available, whereas if ρ = 1 the central bank’s preferred rate is public

information and the yield curve behaves in the manner described in Section 1.1.

The exact level of the preferred rate is revealed at the time of a target change: if the target

rate is raised at time t, the preferred rate must equal r∗t = r̂t + b − ∆, where r̂t is the new

target rate; if the target rate is lowered at time t, the preferred rate must equal r∗t = r̂t − b+∆.

Between target changes, the market must rely on public information to update its beliefs. For
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example, suppose a target change occurs at time t0. If the market ignores any subsequent public

information, its time t1 estimate of the preferred rate at time t1 equals r∗t0 ; the prediction error

is normally distributed with variance σ2(t1 − t0). (This follows immediately from the process

generating the preferred rate.) However, this prediction does not use the information contained

in the observable variable y. The change observed in this variable, since the date when the

target rate was adjusted, equals

yt1 − yt0 = r∗t1 − r∗t0 + φ(ηt1 − ηt0).

Rearranging this expression gives

r∗t0 + (yt1 − yt0) = r∗t1 + φ(ηt1 − ηt0),

where the left hand side is observable at time t1 and the term in brackets on the right hand side

is normally distributed with mean zero and variance t1−t0. The market can use this information

to refine its beliefs regarding the current level of the preferred rate. Its posterior estimate of the

preferred rate equals

φ2

σ2 + φ2
r∗t0 +

σ2

σ2 + φ2
(r∗t0 + yt1 − yt0) = r∗t0 +

σ2

σ2 + φ2
(yt1 − yt0)

and the prediction error is normally distributed with variance

σ2φ2(t1 − t0)
σ2 + φ2

= σ2(1− ρ2)(t1 − t0). (4)

We will use this result to calibrate the model in Section 3.

The path of the target rate contains information which the market can use to further refine

its beliefs. For each time t, let θ(t) denote the date of the most recent target change, measured

from time t. If the target rate equals r̂ at time t, the market knows that the preferred rate has

remained inside the interval [r̂ − b, r̂ + b] throughout the period [θ(t), t]. If the target rate was

raised at time θ(t), the distribution of r∗t has density function

g+(r∗, t; r̂) =
ψ+(r∗, t; r̂)∫ r̂+b

r̂−b
ψ+(r′, t; r̂)dr′

, r̂ − b < r∗ < r̂ + b, (5)

where ψ+(v, t; r̂) is the density function for the variable vt which evolves according to

dvt′ = σdξt′ , θ(t) ≤ t′ ≤ t, vθ(t) = r̂ + b−∆,

with absorbing barriers at v = r̂ ± b. The function g+(v, t; r̂) describes the distribution of

vt, conditional on neither barrier having been reached during [θ(t), t]. As demonstrated in

Appendix A.2, ψ+ must satisfy

ψ+(v, t′; r̂) = ψ+(v, θ(t); r̂) +
1
2
σ2

∫ t′

θ(t)

∂2ψ+(v, s; r̂)
∂v2

ds

(6)

− ρ2

∫ t′

θ(t)

∂ψ+(v, s; r̂)
∂v

dys, r̂ − b < v < r̂ + b, θ(t) ≤ t′ ≤ t,
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together with the boundary conditions

lim
v→r̂±b

ψ+(v, t′; r̂) = 0, θ(t) ≤ t′ ≤ t. (7)

and the initial condition

ψ+(v, θ(t); r̂) = δ(v − (r̂ + b−∆)), r̂ − b < v < r̂ + b, (8)

where δ(·) is the Dirac delta function.
If the target was lowered at time θ(t), we would use ψ−(v, t; r̂), the density function for the

variable vt, but with the initial condition vθ(t) = r̂ − b+∆, rather than vθ(t) = r̂ + b−∆. This

function also satisfies equations (6) and (7), but the initial condition (8) is replaced with

ψ−(v, θ(t); r̂) = δ(v − (r̂ − b+∆)), r̂ − b < v < r̂ + b.

Let B(r̂, t;T ) denote the price at time t of a discount bond paying 1 at time T (≥ t), where

r̂ is the prevailing target rate. Using the law of iterated expectations, the local expectations

hypothesis implies that

B(r̂, t;T ) = E
[
Bo(r̂, r∗, t;T )

∣∣∣information available at time t
]
.

This equals

B(r̂, t;T ) =
∫ r̂+b

r̂−b
g+(r∗, t; r̂)Bo(r̂, r∗, t;T )dr∗ (9)

if the last target change was a tightening, and

B(r̂, t;T ) =
∫ r̂+b

r̂−b
g−(r∗, t; r̂)Bo(r̂, r∗, t;T )dr∗ (10)

if it was a loosening.

Through equations (9) and (10), any new information which changes the market’s view of

the current level of the preferred rate will change market interest rates. In particular, market

rates of all maturities will jump at the time of a target change, reflecting the fact that target

changes reveal the true level of the preferred rate to the market. These discrete interest rate

movements will further increase the kurtosis predicted in Section 1.1.

In the period following a target change, market beliefs are determined by the nature of

the most recent target change (through the initial condition (8)), and the entire path of the

observable variable since that target change (through the dys term in (6)). Therefore, the model

predicts path dependence in interest rate changes.

Moreover, because the change in the preferred rate is unobservable, there is a tendency for

the distribution of possible preferred rates to shift back towards the target rate as the time since

the last target change grows — if the target rate is unchanged, the preferred rate is more likely

to have moved towards the target rate (that is, towards the center of the band) than away from

it. Market rates respond by moving closer to the target rate. This general trend compounds the

reversion of market rates toward the target rate predicted in Section 1.1.
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2 Data

Our data set consists of daily observations on seven-day, one-month and three-month Eurodollar

rates, together with the fed-funds target rate, from March 1, 1984 to January 31, 1994. The

fed-funds target rate data we use was provided by Brian Sack at the Board of Governors of the

Federal Reserve. The one- and three-month Eurodollar spot rates are bid-side rates quoted in

London which are collected around 9.30am Eastern time, and which were also provided courtesy

of the Federal Reserve. The seven-day Eurodollar spot rates are midpoint between bid and ask

rates, used previously by Ait-Sahalia (1996a,b), and described in detail in his papers. Because of

their different sources, the data on the seven-day rates has to be matched to the data on target

rates and one- and three-month Eurodollar rates. After eliminating weekends and missing data,

the resulting series are available for a common 2,463 observations over our sample.

We use Eurodollar rates since they are comparable to the fed-funds target rate. The fed-

funds target rate refers to a target for the overnight interbank U.S. rate. Eurodollar rates are

also private inter-bank U.S. dollar rates from a relatively liquid market. In contrast, Treasury

bill rates are for government risk-free securities and so are not directly comparable with the

market target rate.

The period we use is chosen since it matches the assumptions of our model best. From

February 1994 onwards, the Federal Reserve adopted a policy of announcing at every FOMC

meeting its decision concerning interest rates.3 This had the effect of shifting target changes

to fall primarily on FOMC meeting dates, the timing of which is announced in advance. Our

model does not incorporate this feature, and so only strictly applies to the period up to February

1994.4 Moreover, for several years up to March 1, 1984, the Federal Reserve did not have an

interest rate target, but rather targeted monetary aggregates. For this reason, March 1, 1984 is

used as our start date.5

3 Results

To obtain precise predictions from our theoretical model, we first calibrate it to data on fed-funds

target changes. During our sample period, the average size of target changes was 22.48 basis

points. Thus we set ∆ from our optimal targeting rule discussed in Section 1 to be equal 22.48.

For the same rule, Guthrie and Wright (1999) show that the average time between a target

change equals ∆(2b−∆)/σ2, and the probability of a continuation is 1−∆/2b. For our sample

period, these quantities are 21.43 days and 0.8586 respectively, implying the parameterization

b = 79.47 basis points and σ = 189.1 basis points (annualized). The remaining parameter ρ

determines how well the market can predict changes in the central bank’s preferred rate. We

calibrate the model by supposing that the prediction error one month after a target change,

assuming that the prediction uses only the path of the observable variable y, equals 25 basis

points. Using equation (4), we find that ρ = 0.8890.

Using this calibrated model, we generate a series of paths for the preferred rate r∗ and

the observable variable y using an Euler approximation with each day divided into 24 discrete
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steps. For each step, we solve equation (6) to obtain the market’s beliefs about the level of

the preferred rate. We then calculate start of day target rates and corresponding seven-day,

one-month, and three-month market rates. We do this for two different assumptions on the

observability of the preferred rate (ρ = 1 and ρ = 0.8890). In each case, we simulate data for

2.463 million days, which corresponds to one-thousand replications of 2,463 observations (the

number of observations of actual data from March 1, 1984 to January 31, 1994).

We focus on the three properties of the model discussed in Section 1.1. These are: (1) the

excess-kurtosis in high frequency interest rate changes; (2) the reversion of the spread between

market rates and the central bank’s target rate to zero; and (3) the greater interest rate volatility

during times when market rates are far away from the central bank’s target rate. In each case,

we compare the results using the model-generated data with the result using our actual data.

For each property considered, we also consider three hypothesis tests on the model using actual

data — the first tests the qualitative predictions of the model discussed in Section 1.1; the

second tests the precise predictions of the public information version of the calibrated model;

while the third tests the precise predictions of the private information version of the calibrated

model. The p-values from these tests are given in the last set of columns of each of the tables

below.

Before testing the dynamic properties implied by our model, we first present results on the

stationarity, or otherwise, of the variables we use in these tests. Table 1 reports the results on

λ from the standard augmented Dickey-Fuller regression,

Xt = α+ λXt−1 +
q∑

j=1

θt−j∆Xt−j + εt, (11)

where Xt represents the variable examined. The parameter q is chosen by the AIC2 information

criterion, as described in Pantula et al. (1994). We hold q fixed at the level chosen based on the

actual data set. The first four rows of Table 1 give results on the level of interest rates. Given

the Brownian motion assumption we make, the model implies a unit root in the level of the

seven-day, one-month and three-month interest rates, as well as the target rate. The coefficient

λ from regressing (11) using 2.463 million observations is equal to 1.0000 (to four decimal places)

in both the public information (λ1) and private information (λ3) cases. Taking the average of

results from 1000 replications, each using 2,463 observations, implies a slightly lower level of λ in

both cases (compare λ2 and λ4 with λ1 and λ3 respectively), suggesting there is some downward

bias caused by using a smaller sample. Given this degree of bias, the estimates of λ arising from

the actual data (λ5) are consistent with a unit root in the level of the market and target interest

rates. Statistically, this is confirmed by tests of a unit root null (λ equals one) using actual data.

The p-values from this test, reported in the last column of the table, are 0.890 for the seven-day

rate, 0.798 for the one-month rate, 0.859 for the three-month rate, and 0.556 for the target rate.

Thus we cannot reject a unit root for any of the level variables over our sample.6

*** Table 1 about here ***

The remaining nine rows of Table 1 present estimates of λ for spreads between market rates
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and the central bank target rate, and for differenced interest rates.7 Clearly, even with the full

sample of model-generated data, the value of λ is well below unity.8 The results using actual

data paint a similar picture. The highest value of λ is 0.967. In all cases we can easily reject

a unit root null, even at the 1% level. This suggests non-stationarity is not a problem for our

specifications below, in which we use differenced interest rates and spreads between market and

target rates.

3.1 The Kurtosis of Interest Rate Changes

A clear prediction of our model is that there should be excess-kurtosis in daily changes in interest

rates. In particular, the model predicts frequent small daily changes, and occasional large daily

changes, in market rates. These predictions are strongest when we allow for private information.

For lower frequency changes and for longer maturity rates, the excess-kurtosis should become

less pronounced. These predictions are evident from Table 2 which presents the kurtosis for the

change in interest rates at various frequencies (daily, weekly, and monthly) for both the public

and private information versions of the model.

*** Table 2 about here ***

The first column of results in Table 2 reports the kurtosis calculated from the full 2.463

million observations generated from the public information model. Comparing column one with

column two confirms there is little bias in calculating kurtosis from a sample of the same size

as that available for the actual data. The kurtosis of daily changes in the seven-day rate is

more than fifteen, suggesting substantial excess-kurtosis. In contrast, monthly changes in the

seven-day rate exhibit a kurtosis of less than six, suggesting excess-kurtosis arises primarily from

high frequency changes in rates. Using the private information model, columns three and four

show that the kurtosis of daily changes in interest rates is substantially greater compared to the

level implied by the public information model.

Column five presents the results on kurtosis using the actual data. The results are consistent

with the pattern of results predicted by the private information model. Kurtosis is highest for

daily changes in short maturity rates.9

The p-values from tests of no excess-kurtosis using actual data are given in the seventh

column of results. The standard errors used to construct these p-values are formed using the

standard delta method (that is, without assuming normality), and are reported in column six

of Table 2. For all three interest rates we can reject that there is no excess-kurtosis at the

5% significance level. At the 1% significance level, we can no longer reject no excess-kurtosis

for monthly changes in the one-month and three-month rates. These results seem consistent

with the basic qualitative prediction of the model, that excess-kurtosis arises in high frequency

interest rate movements.10 A more exacting test of the model’s implications is that the kurtosis

in the actual data is equal to the precise value of kurtosis predicted by the model. Columns eight

and nine give p-values from tests of the kurtosis values predicted by two versions of the model —

the public information version and the private information version. Using a 1% significance level
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for these tests, we cannot reject the model’s implications for ten out of the eighteen cases tested.

The model with private information gives a generally better fit of the actual data, although even

this version of the model is unable to fully capture the very high levels of kurtosis observed for

daily changes in the seven-day and one-month Eurodollar rates.

3.2 Target Rate Reversion

The finding that the spread between each of the market rates and the central bank’s target rate

is stationary suggests that these market rates might revert back to the target rate over time.

Table 3 presents results which test this idea. We first regress the spread on a constant and its

own lag, showing that indeed the spread between these two variables exhibits reversion to zero.

That is, we regress

rt − r̂t = α+ β(rt−1 − r̂t−1) + εt,

where rt is a market rate and r̂t is the target rate in period t. For both the model-generated

and actual data, the estimated value of α is essentially zero. The first, fourth, and seventh

rows of results in Table 3 provide information on estimates of β for seven-day, one-month and

three-month rates respectively. The public information model predicts β will be approximately

0.72 for seven-day rates, 0.91 for one-month rates and 0.95 for three-month rates, while the

private information model predicts β will be 0.82 for seven-day rates, 0.93 for one-month rates

and 0.95 for three-month rates.

*** Table 3 about here ***

These implications are borne out by the empirical results. Using actual data, the value of

β is 0.80 for seven-day rates, 0.91 for one-month rates and 0.95 for three-month rates. Column

seven shows we can easily reject that estimates of β from the actual data are equal to one,

confirming statistically there is a tendency for the spread to revert towards zero. Moreover, as

columns nine and ten show, we cannot reject that the precise value of β estimated from the

actual data is identical to the model-generated data (at the 1% level).

There are two reasons why any spread may be eliminated through time. The market rate

might move back towards the target rate or the target rate may be changed in the direction of

the existing market rate. Our model of interest rate targeting suggests both types of movements

are important. While the movement of target rates to reduce the existing spread between market

and target rates simply reflects the fact that market rates anticipate target changes, the reversion

of market rates to the target rate is not a well known property of interest rates. To show the

latter result arises in our model, we restrict our sample to dates when the target rate was not

changed, and run the following regression:

rt − rt−1 = α+ β(rt−1 − r̂t−1) + εt.

As rows two, five and eight of Table 3 show, β is less than zero for both public and private

information versions of the model, indicating the market rate reverts towards the target rate

in all cases. The private information model implies a substantially higher rate of target-rate

13



reversion compared to the public information model (0.063 compared to 0.026 for one-month

rates). With full public information, investors have a better idea of future target changes, and so

there is less tendency for market rates to revert to the current target rate, absent target changes,

even though the spread reverts to zero more quickly in this case. The model also predicts target

rate reversion is much stronger for short maturity rates.

These predictions are again borne out by the actual data. We find significant target rate

reversion for each of the Eurodollar rates tested, with the degree of target rate reversion nega-

tively related to the maturity of rates. The hypothesis that H0 : β5 = 0 can be rejected at the

5% significance level, while the precise predictions of the public and private information models

cannot be rejected at the 1% level.

An alternative approach to measuring the degree of target rate reversion, based on the

cointegration between the market rates and the target rate, is to estimate an Error Correction

Model (ECM). If we allow for contemporaneous target changes in the regression, the coefficient

on the error correction term will correspond to the rate of reversion of the market rate to the

target rate. The model estimated is

rt − rt−1 = α+ β(rt−1 − r̂t−1) +
p∑

i=0

ψi(r̂t−i − r̂t−i−1) +
q∑

j=1

θj(rt−j − rt−j−1) + εt,

where the parameters p and q are chosen using BIC based on the actual sample and held

constant across all other specifications.11 The results from this specification are very similar to

those obtained from dropping target rate observations and not accounting for higher order lag

terms. This suggests any autocorrelation in the error terms in the simpler regression does not

account for the strong reversion to the target rate observed.

3.3 Conditional Volatility and the Spread-Effect

It is well known that the conditional volatility of interest rates is persistent and heteroskedastic.

Because periods around target changes are times when there is an increased likelihood of large

interest rate changes, our model predicts that conditional volatility will be higher during such

episodes. These periods are identified as times when the spread between the target rate and

market rates is high. To test this hypothesis we estimate a standard model of interest rate

volatility, replacing the level of interest rates with the magnitude of the spread between the

target and market rates. Thus we estimate the following model using FGLS, following the

approach of Ait-Sahalia (1996b, p. 409):12

rt − rt−1 = α+ κrt−1 + εt, (12)

Et−1εt = 0, (13)

Et−1ε
2
t ≡ σ2

t = σ2|rt−1 − r̂t−1|2γ . (14)

The first four columns of Table 4 confirm the predictions from Section 1.1 — the higher is the

magnitude of the spread between market and target rates, the higher is the volatility of market

interest rates. Columns five, six and seven of Table 4 confirm that the spread is a significant
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determinant of conditional volatility in actual practice; in all cases, σ̂ and γ̂ are statistically

different from zero, even at the 1% significance level. We call this effect the spread-effect.

*** Table 4 about here ***

Although the spread-effect is clearly important regardless of whether model-generated or

actual data is used, the estimate of γ from the actual data is substantially larger than estimates

from our model-generated data. The implication of these differences is that the functional

form which captures the spread-effect has greater curvature using actual data. Put differently,

volatility is even more sensitive to the spread in reality than in our model.

It is interesting to compare the estimated spread-effect with the level-effect which arises for

the same data set.13 Using rt−1 in place of |rt−1 − r̂t−1| in (14), we find that for the seven-
day Eurodollar rate, σ̂ = 0.022 (0.016) and γ̂ = 0.907 (0.340), where the standard errors of the

estimates are given in parentheses. For one-month and three-month Eurodollar rates, the results

are similar: using one-month rates, σ̂ = 0.033 (0.021) and γ̂ = 0.628 (0.310); using three-month

rates, σ̂ = 0.020 (0.005) and γ̂ = 0.744 (0.122). Thus, there is some evidence of a level-effect

in the data, although the t-statistics from tests that the coefficients are zero are considerably

smaller than for the spread regressions. To contrast the spread-effect with the level-effect, we

allow both to affect conditional volatility at the same time. Thus, we replace (14) with the

equation

σ2
t = σ2

1|rt−1 − r̂t−1|2γ1 + σ2
2r

2γ2
t−1.

For each of the three interest rates, the spread-effect remains highly significant: with seven-day

rates, σ̂1 = 0.439 (0.023) and γ̂1 = 1.288 (0.085); with one-month rates, σ̂1 = 0.360 (0.012)

and γ̂1 = 1.151 (0.037); with three-month rates, σ̂1 = 0.179 (0.007) and γ̂1 = 1.490 (0.111).

On the other hand, the level effect is now only apparent for three-month rates: with seven-day

rates, σ̂2 = 0.066 (0.048) and γ̂2 = 0.236 (0.364); with one-month rates, σ̂2 = 0.063 (0.073) and

γ̂1 = −0.032 (0.622); with three-month rates, σ̂1 = 0.031 (0.009) and γ̂1 = 0.454 (0.143).

To gauge the economic strength of the spread-effect versus the level-effect, we report the

proportion of the total variation in volatility captured by the above explanatory variables, and

consider how this R2 changes when the spread term is eliminated from the estimation. The R2

from the estimation including both spread- and level-effects is 0.171 for the seven-day Eurodollar

rate, 0.260 for the one-month Eurodollar rate, and 0.111 for the three-month Eurodollar rate.

When the spread-effect is eliminated, the R2 drops to just 0.004 with the seven-day rate, just

0.003 with the one-month rate, and 0.024 with the three-month rate. In contrast, when the level-

effect is eliminated, the remaining spread-effect implies an R2 of 0.170 for the seven-day rate,

0.258 for the one-month rate, and 0.091 with the three-month rate. In short, the spread-effect

dominates the level-effect on both statistical and economic grounds.14

15



4 Conclusion

In this paper we used a simple structural model of interest rate targeting derived from optimal

central bank behavior to develop predictions for market interest rate dynamics. To do this

we combined the expectations hypothesis with a model of optimal central bank interest rate

targeting. We also explicitly accounted for private sector learning about the central bank’s

intentions regarding target changes, although we find with a few exceptions this plays a relatively

minor role in explaining interest rate dynamics. The model captures three particularly prominent

features of observed interest rate dynamics.

All three features arise because the magnitude of the response of market interest rates to

new information regarding the central bank’s preferred level of the target rate varies with the

spread between market rates and the target rate. When this spread is large, the market believes

a target change is imminent. Any information which delays an imminent target change will

have a large effect on short-term rates, since it makes it more likely that the instantaneous

rate will remain at its current level over the life of the corresponding bond. Market rates thus

respond to the new information by moving rapidly towards the target rate. However, if no target

change is believed to be imminent, as will be the case if the spread between market rates and

the target rate is small, the effect of the new information on the path of the instantaneous rate

over the life of the bond is small, so there is no reason for short-term rates to respond to the

new information. In contrast, long-term rates are less sensitive to the exact timing of the next

target change; instead, they depend primarily on the long-run behaviour of the target rate. The

spread between market rates and the target rate therefore has little effect on the dynamics of

long-term interest rates.

This combination of very sensitive short-term rates during some periods, and much more

stable short-term rates during other periods, manifests itself as excess-kurtosis in interest rate

changes. Since the magnitude of the response of long-term interest rates to new information

is less sensitive to the spread, the behaviour of changes in long-term interest rates will be

more uniform over time, so that excess-kurtosis is most prominent in short-term interest rate

movements. Excess-kurtosis is particularly prominent in high frequency data since over the

course of a day the system is unlikely to change from the high-volatility to low-volatility modes,

or vice versa. Thus, the periods of high-volatility can easily be distinguished from the low-

volatility periods in the data — excess-kurtosis is prominent, especially for short-term rates.

However, when observations are made at weekly or monthly intervals, the system will often

be in both modes during the course of a single period. This blurs the distinction between the

high-volatility and low-volatility interest rate movements. Not surprisingly, excess-kurtosis is

not (so) evident.

In addition, the model does a good job of accounting for the target rate reversion which we

find in the data. As market rates partially anticipate target changes, when changes do occur,

market rates generally jump by a smaller amount than the target rate, narrowing the spread.

When target changes are averted, market rates respond by moving back towards the target rate,
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again narrowing the spread. We find target rate reversion is considerably stronger for short-term

rates than for long-term rates, with the movement of the seven-day Eurodollar rate back towards

the current fed-funds target, in the absence of target changes, being as much as ten percent of

the previous day’s spread between the Eurodollar and the target rate.

Finally, the model explains why conditional volatility increases with the magnitude of the

spread between the target rate and market rates. This spread is large precisely when the market

believes a target change is imminent. In turn, this occurs when market interest rates are most

responsive to new information, and hence exhibit the greatest volatility. For our data set, this

spread-effect in conditional volatility is found to be an order of magnitude more important than

the much studied level-effect.

Despite the success of our model in explaining these features of the data, there remains much

that can be done to extend the model, as well as to apply it in new ways. It would be interesting

to take a model which allowed for a slow rate of mean reversion in the underlying preferred

rate, and see whether this alters the relatively high frequency interest rate dynamics studied in

this paper. More generally, does interest rate targeting induce similar interest rate dynamics to

those found here when other processes are considered for the central bank’s preferred rate?

An interesting implication of our model is that it generates path dependence in interest rate

movements between target changes. Path dependence arises from the learning that takes place

when market participants have imperfect information about the central bank’s preferred interest

rate. Our model could thus prove useful in understanding path dependence in interest rates, as

well as the non-diffusion nature of interest rates which Ait-Sahalia (1997) has documented. More

obviously, the use of our structural model allows us to examine the implications of changes such

as increased macroeconomic volatility, increased costs of adjusting target rates, and increased

transparency of central bank intentions. These three changes, which are captured by different

parameters of our model, are particularly relevant for comparing interest rate targeting in the

1990s with the 1970s, as well as comparing the implications of interest rate targeting across

countries.

Perhaps the most important extension of our model is to incorporate the fact that since Feb-

ruary 1994 target changes are most likely to coincide with FOMC meeting dates. Filimon (2000)

looks at the case that announcements of target changes on dates other than those associated

with FOMC meetings are considered more costly by central banks. The optimal rule in this

case implies most announcements will be made at the same time as FOMC meeting dates. Fu-

ture work could model the implications of this change in interest rate targeting for interest rate

dynamics. An interesting possibility is then that the time remaining before an FOMC meeting

date could become an important determinant of conditional volatility.15 In our view, empirical

modeling of interest rate processes that incorporate the implications of central bank interest

rate targeting will prove to be a fruitful area for further research.
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Appendix

A.1 Bond Prices With Public Information

The process for the target rate features symmetry which we are able to exploit in simplifying

the bond pricing problem. Imagine the target rate and the preferred rate both increase by the

same amount, say δ. Then the distribution of all future levels of the target rate shifts to the

right by the same amount. (The assumptions crucial to this result are the form of the process

generating the preferred rate and the particular adjustment rule adopted by the central bank.)

From (3), the effect is to scale the time t price of a discount bond maturing at time T by the

factor exp(−δ(T − t)). That is, the bond price function satisfies

Bo(r̂ + δ, r∗ + δ, t;T ) = e−δ(T−t)Bo(r̂, r∗, t;T ) for all δ. (A.1)

We can exploit a second symmetry. Assuming the current level of the target rate and the

preferred rate are unchanged, the price of a discount bond will not change if the current date

and the maturity date of the bond both increase by the same amount, say δ. That is, the bond

price function satisfies

Bo(r̂, r∗, t+ δ;T + δ) = Bo(r̂, r∗, t;T ) for all δ. (A.2)

The most general function satisfying (A.1) and (A.2) has the form.

Bo(r̂, r∗, t;T ) = exp(−rτ)u(ε, τ), (A.3)

where τ = T − t is the time remaining until the bond matures and ε = r∗ − r̂ is the discrepancy

between the preferred rate and the target rate.

If the function Bo given by (A.3) is to solve the boundary value problem, the function u

must solve the simpler boundary value problem comprising the partial differential equation

∂u

∂τ
=
1
2
σ2 ∂

2u

∂ε2
, −b < ε < b,

together with the boundary conditions

u(b, τ) = e−∆τu(b−∆, τ), u(−b, τ) = e∆τu(−b+∆, τ),

and the initial condition

u(ε, 0) = 1.

This problem is readily solved using the Crank-Nicholson finite difference method.

This functional form has a natural economic interpretation involving the yield on the discount

bond:
−1

T − t
logBo(r̂, r∗, t;T ) = r̂ +

−1
τ
log u(ε, τ).

The yield on a discount bond with time τ until maturity equals the target rate plus an amount

which depends on the bond’s maturity and the extent to which the target rate deviates from the

preferred rate. Thus, the current target rate determines the level of the yield curve, while the

discrepancy between the target rate and the preferred rate determines the spread, and hence

the shape of the yield curve.
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A.2 Formulating Market Beliefs

We consider the variable which evolves according to dvt = ρ2dyt + dzt, where zt is a driftless

Brownian motion satisfying (dyt)(dzt) = 0 and (dzt)2 = (1 − ρ2)σ2dt. We approximate the

Brownian motions yt and zt by dividing time into discrete periods each of length ∆t, and

supposing that each period y changes by ±∆y (with each possibility equally likely) and z changes

by ±∆z (again, with each possibility equally likely). The magnitudes of these changes are chosen

such that (∆y)2 = (σ2 + φ2)∆t and (∆z)2 = (1− ρ2)σ2∆t.

Suppose that between times t−∆t and t, the public variable changes by ∆y. Consequently,

if vt = v, then either vt−∆t = v−(ρ2∆y+∆z) or vt−∆t = v−(ρ2∆y−∆z), each with probability

1/2. Let ψ(v, t) denote the density function of vt. Then

ψ(v, t) =
1
2
ψ(v − (ρ2∆y +∆z), t−∆t) +

1
2
ψ(v − (ρ2∆y −∆z), t−∆t)

=
1
2

(
ψ(v, t)− (ρ2∆y +∆z)ψ1(v, t)−∆tψ2(v, t) +

1
2
(ρ2∆y +∆z)2ψ11(v, t)

)

+
1
2

(
ψ(v, t) − (ρ2∆y −∆z)ψ1(v, t)−∆tψ2(v, t) +

1
2
(ρ2∆y −∆z)2ψ11(v, t)

)

= ψ(v, t) − ρ2∆yψ1(v, t)−∆tψ2(v, t) +
1
2
((ρ2∆y)2 + (∆z)2)ψ11(v, t)

Since (ρ2∆y)2 = ρ4(σ2 + φ2)∆t = ρ2σ2∆t and (∆z)2 = (1− ρ2)σ2∆t, this equation reduces to

ψ2(v, t)∆t =
1
2
σ2ψ11(v, t)∆t− ρ2ψ1(v, t)∆y.

In the limit as ∆t → 0, we have

ψ2(v, t)dt =
1
2
σ2ψ11(v, t)dt − ρ2ψ1(v, t)dyt.

Integrating with respect to t results in equation (6).

A.3 Bond Prices With Private Information

It is obvious from the symmetry of the problem that the density function has the following

symmetry:

g+(r∗, t; r̂) = g+(r∗ + δ, t; r̂ + δ) for all δ.

Therefore,

g+(r∗, t; r̂) = g+(r∗ − r̂, t; 0).

Combining this result with equation (A.3) shows that

B(r̂, t;T ) =
∫ r̂+b

r̂−b
g+(r∗, t; r̂)Bo(r̂, r∗, t;T )dr∗

can be rewritten as

B(r̂, t;T ) = e−r̂(T−t)

∫ b

−b
g+(ε, t, 0)u(ε, T − t)dε.

That is,

B(r̂, t;T ) = e−r̂(T−t)v(t, T − t),
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where

v+(t1, t2) =
∫ b

−b
g+(ε, t1; 0)u(ε, t2)dε.

This functional form has the same advantages as that given in equation (A.3). In particular,

the yield on a bond with time τ until maturity equals

r̂ +
−1
τ
log v+(t, τ),

so that the current target rate determines the level of the yield curve, while the market’s beliefs

regarding the discrepancy between the target rate and the preferred rate determine the spread,

and hence the shape of the yield curve.
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Table 1: Unit root tests

Description Model with ρ = 1 Model with ρ = 0.889 Actual data p-value

Full sample 2463 obs Full sample 2463 obs Estimate H0 : λ5 = 1

λ1 λ2 λ3 λ4 λ5

r7d
t 1.000 0.999 1.000 0.999 0.999 0.890

r1m
t 1.000 0.999 1.000 0.999 0.999 0.798

r3m
t 1.000 0.999 1.000 0.999 1.000 0.859

r̂t 1.000 0.999 1.000 0.999 0.999 0.556

r7d
t − r7d

t−1 0.460 0.449 0.408 0.396 −0.697 0.000

r7d
t − r̂t 0.865 0.861 0.908 0.905 0.862 0.000

|r7d
t − r̂t| 0.711 0.692 0.767 0.758 0.737 0.000

r1m
t − r1m

t−1 0.415 0.397 0.369 0.351 −0.178 0.000

r1m
t − r̂t 0.940 0.938 0.949 0.947 0.921 0.000

|r1m
t − r̂t| 0.822 0.817 0.850 0.845 0.869 0.000

r3m
t − r3m

t−1 0.061 0.057 0.056 0.052 −0.013 0.000

r3m
t − r̂t 0.956 0.954 0.958 0.956 0.967 0.000

|r3m
t − r̂t| 0.846 0.845 0.866 0.865 0.926 0.000

Notes: The columns labeled ‘Full sample’ give results using all 2.463 million simulated observations. The columns labeled ‘2463 obs’ report the average of 1000 estimates each

based on 2463 simulated observations. The columns labeled ‘Actual data’ use 2463 daily observations from March 1, 1984 to January 31, 1994.
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Table 2: Kurtosis

Frequency Model with ρ = 1 Model with ρ = 0.889 Actual data p-values

Full sample 2463 obs Full sample 2463 obs Estimate Std error H0 : K5 ≤ 3 H0 : K5 = K2 H0 : K5 = K4

K1 K2 K3 K4 K5

r7d
t − r7d

t−1

daily 15.135 15.163 21.752 21.858 59.800 10.859 0.000 0.000 0.000

weekly 10.084 9.898 10.355 10.233 23.688 7.959 0.005 0.083 0.091

monthly 5.584 5.310 5.575 5.294 11.477 1.931 0.000 0.001 0.001

r1m
t − r1m

t−1

daily 7.376 7.340 15.903 15.871 64.672 9.895 0.000 0.000 0.000

weekly 6.913 6.740 8.034 7.932 17.883 5.337 0.003 0.037 0.062

monthly 4.992 4.735 5.026 4.782 5.076 0.949 0.015 0.719 0.757

r3m
t − r3m

t−1

daily 3.734 3.720 10.887 10.797 10.899 1.566 0.000 0.000 0.948

weekly 3.920 3.840 5.657 5.583 8.134 1.588 0.001 0.007 0.108

monthly 3.810 3.642 4.125 3.955 3.764 0.421 0.036 0.772 0.650
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Table 3: Target rate reversion

Description Model with ρ = 1 Model with ρ = 0.889 Actual data p-values

Full sample 2463 obs Full sample 2463 obs Estimate Std error H0 : β5 = 1 H0 : β5 = 0 H0 : β5 = β2 H0 : β5 = β4

y x β1 β2 β3 β4 β5

7-day rate

all obs rt − r̂t rt−1 − r̂t−1 0.716 0.712 0.823 0.820 0.799 0.040 0.000 0.029 0.599

∆r̂t = 0 ∆rt rt−1 − r̂t−1 −0.091 −0.094 −0.121 −0.124 −0.183 0.044 0.000 0.043 0.183

all obs (ECM) ∆rt x1
t −0.121 −0.124 −0.163 −0.166 −0.169 0.038 0.000 0.235 0.934

1-month rate

all obs rt − r̂t rt−1 − r̂t−1 0.908 0.906 0.930 0.928 0.907 0.031 0.003 0.980 0.499

∆r̂t = 0 ∆rt rt−1 − r̂t−1 −0.024 −0.026 −0.061 −0.063 −0.074 0.034 0.028 0.156 0.746

all obs (ECM) ∆rt x2
t −0.026 −0.027 −0.077 −0.079 −0.075 0.035 0.031 0.171 0.900

3-month rate

all obs rt − r̂t rt−1 − r̂t−1 0.946 0.945 0.951 0.950 0.951 0.010 0.000 0.585 0.929

∆r̂t = 0 ∆rt rt−1 − r̂t−1 −0.023 −0.024 −0.050 −0.052 −0.026 0.010 0.012 0.832 0.013

all obs (ECM) ∆rt x3
t −0.020 −0.022 −0.058 −0.060 −0.026 0.010 0.010 0.638 0.001

Notes:

1. x1
t is the vector containing rt−1 − r̂t−1, ∆r̂t, ∆r̂t−1, ∆rt−1.

2. x2
t is the vector containing rt−1 − r̂t−1, ∆r̂t, ∆r̂t−1, ∆r̂t−2, ∆rt−1.

3. x3
t is the vector containing rt−1 − r̂t−1, ∆r̂t, ∆r̂t−1, ∆r̂t−2, ∆rt−1, ∆rt−2.

4. All regressions include a constant.
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Table 4: Heteroskedasticity in volatility

Description Model with ρ = 1 Model with ρ = 0.889 Actual data p-values

Full sample 2463 obs Full sample 2463 obs Estimate Std error H0 : e5 = 0 H0 : e5 = e2 H0 : e5 = e4

e1 e2 e3 e4 e5

7-day rate

σ 0.241 0.252 0.281 0.351 0.477 0.018 0.000 0.000 0.000

γ 0.410 0.430 0.455 0.460 1.160 0.064 0.000 0.000 0.000

1-month rate

σ 0.222 0.221 0.198 0.195 0.367 0.011 0.000 0.000 0.000

γ 0.565 0.561 0.458 0.444 1.132 0.033 0.000 0.000 0.000

3-month rate

σ 0.135 0.133 0.123 0.122 0.200 0.005 0.000 0.000 0.000

γ 0.286 0.272 0.177 0.171 0.728 0.045 0.000 0.000 0.000
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Notes

1This is consistent with the findings of Rudebusch (1995), who finds these liquidity shocks

are quickly eliminated, and Balduzzi et al. (1997), who show that spreads between short-term

rates and the overnight target rate are mainly driven by expectations of changes in the target

and not by the transitory dynamics of the overnight rate around the target rate.

2Although there is considerable empirical evidence suggesting the expectations hypothesis

does not hold for the U.S., recent evidence suggests that for short-maturity interest rates the

hypothesis holds up reasonably well. For instance, Hsu and Kugler (1997) find the short-version

of the expectations hypothesis cannot be rejected for one- and three-month Eurodollar rates

over a period similar to the one we use to calibrate our model. Their result is robust across

different frequencies of interest rates, including the frequency we focus on — daily observations.

3We have also estimated the models discussed below using actual data on one-month and

three-month Eurodollar rates for the longer period March 1984 to June 1999, and obtained very

similar results to those reported. Seven-day Eurodollar rates are not available for this later

period.

4Filimon (2000) derives the optimal target rate adjustment rule when announcements on

dates other than those associated with FOMC meetings are more costly. The optimal rule

implies almost all announcements will be made on FOMC meeting dates. Future work could

model the implications of this form of interest rate targeting for interest rate dynamics.

5This corresponds to the start date used by Rudebusch (1995) to model the Federal Reserve’s

interest rate targeting regime.

6Of course, whether one finds evidence of a unit root in interest rates, or not, very much

depends on the sample chosen. We interpret the results in the first four rows of Table 1 as saying

that over our relatively short sample period, interest rates behave as if they have a unit root.

7Before taking the absolute value of the spread between a market rate and a target rate, we

first subtract the mean level of this spread over the sample, so that on average the level of the

spread is zero. This ensures that a positive number for the absolute value of the spread is not

simply capturing a difference in the definition of the Eurodollar rates compared to the target

rate such that the two differ on average, or any constant term-premium between the Eurodollar

rates and the fed-funds target rate. The absolute value of the spread is used only in Section 3.3

below.

8Note, a value of λ of 0.95 with daily data is equivalent to a λ of 0.77 when using weekly

data and 0.36 when using monthly data.

9The difference between kurtosis for daily changes and monthly changes in interest rates is

not driven by autocorrelation in the interest rate changes. For both the model-generated data
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and the actual data, we regressed interest rate changes on the optimal number of own lags

implied using the Akaike information criterion, calculating the kurtosis of the residual. Similar

results emerge to those presented in Table 2, although the differences in kurtosis between daily

and monthly interest rate changes was in some cases fractionally reduced.

10We also tested the null of no-skewness in the actual data, and could not reject this hypothesis

in interest rate changes, even at the 10% level. This is consistent with the symmetry assumed

in our model.

11For the seven-day interest rate, p = 1 and q = 1, for the one-month interest rate, p = 2 and

q = 1, while for the three-month interest rate, p = 2 and q = 2.

12We use the lagged level of interest rates in equation (12) to maintain consistency with the

rest of the literature. We have also re-estimated the model, setting κ to zero in equation (12),

as well as using rt−1 − r̂t−1 in place of rt−1 in equation (12). Neither of these changes alters the

results on σ̂ and γ̂ in any appreciable way.

13Because of the underlying simple Brownian motion assumption, the model does not imply

any level-effect.

14These results also confirm the greater impact of the spread-effect with seven-day and one-

month rates, relative to three-month rates, as suggested by the analysis in Section 1.1.

15Along the same lines, the time remaining before an impending economic data release could

also be useful in predicting heightened interest rate volatility.
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