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Abstract

Regulators across many different jurisdictions and industries have recently
adopted the practice of setting access prices based on the current costs of
providing the relevant facilities. Though widely regarded as being efficient,
this practice has not been formally analyzed. Our analysis shows that
given stochastic costs, forward looking access prices retard investment
and are dominated by access prices determined by historic cost whenever
investment is desired, unless the cost of investment is trending upwards
with low volatility.

1 Introduction

There is a worldwide trend towards opening some parts of network industries to
competition as a way of enhancing the welfare derived from what were usually
state-owned monopolies. The price at which entrants can obtain access to the
networks (such as access to electricity distribution or origination and termina-
tion of calls in the case of telecommunications), is a key determinant of the
welfare gains secured by such pro-competitive policies. As a result, considerable
attention is devoted to the design and implementation of access pricing regimes.

There is general agreement that in most standard networks access prices
should be set based on the costs of the facilities provided,1 but the definition of
the relevant costs are a matter of some dispute. It has been argued, for example,
that access prices should reflect the opportunity cost to the incumbent, including
the lost profit, on the grounds that doing so prevents inefficient entry. This
approach, often referred to as the efficient component pricing rule is discussed
by Armstrong et al. (1996) and Laffont and Tirole (1994). This approach has
considerable merit when retail prices are either regulated directly or constrained
through effective competition. In all other cases it is only the direct cost of
access, including a contribution to fixed costs, that should be allowed to enter
the access price.

Recognising dynamic efficiency concerns, regulators typically set access prices
at the long-run incremental cost of the service provided, where these cost mea-
sures allow for a reasonable return on capital outlays. The fact that most ser-
vices depend on infrastructure that is common to the provision of other services
requires that a method for attributing common costs be found. This problem
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is generally approached by identifying the proportion of service life each asset
devotes to the access service. The resulting measures are often referred to as the
“total element (or service) long run incremental cost” (TELRIC or TSLRIC) of
access.

It should be emphasised, however, that the TELRIC type label is usually
also associated with a particular asset valuation methodology. This is by con-
vention rather than necessity: in fact, any valuation method can be reflected in
a TELRIC framework. Because our purpose is to study the effects of different
valuation methods, we will minimise confusion by avoiding the use of TELRIC
type labels.

Our analysis attempts to shed some light on the effect of different asset
valuation methods. Though there are many such methods, almost all are based
on one answer to a fundamental question: should assets be valued for regulatory
purposes at the cost of the initial investment, or at the cost of re-building the
facility at the present time?

Initially, regulators adopted the former approach, basing asset values on a
company’s historical accounts. For instance, in 1985 OFTEL, the UK telecom-
munications regulator, set access charges to British Telecom’s network based on
its historical costs (Melody, 2000, p. 274). We call the use of historical mea-
sures of asset values in calculating access prices “backward looking cost rules.”
This approach has been criticised by several authors, including Baumol and
Sidak (1995) and Gans and Williams (1999), and has now been abandoned by
many regulators.

The modern trend is towards the adoption of “forward looking cost rules,”
whereby the costs used to determine access prices are based on the current cost
of rebuilding facilities to provide the existing service, using the best available
technology. In 1994 OFTEL switched away from fully allocated costs based on
historical accounts to a system based upon the computation of forward looking
incremental costs reflecting current replacement costs of capital assets (Melody,
2000, p. 274). In fact, the regulatory authority in the U.S. (the FCC) proposed
in its 1996 Telecommunications Act that the term “cost” should mean forward
looking economic cost (Salinger, 1998, p. 150).

It is important to distinguish between the forward looking valuation of assets
and the use of “optimisation” in valuing assets. Optimisation is a process by
which assets are written out of the firm’s valuation by the regulator, on the
grounds that a new entrant would not require them. While frequently used
in conjunction with forward looking asset valuation, optimisation is neither
required in order to determine the current cost of the asset, nor restricted to
forward looking valuation problems.

It is sometimes argued that forward looking access charges are desirable
because they do not allow firms to recover inefficient investment. Clearly, how-
ever, this will only be so if optimisation is used, and since optimisation can also
be applied to backward looking access charges, there is nothing special about
forward looking charges in this regard. Moreover, because in practice optimisa-
tion requires numerous, often implausible, assumptions, its ability to eliminate
inefficient investment is in any case overstated.

In this paper, we put aside such issues and focus on a more controversial
argument in favour of forward looking cost rules. The proponents of forward
looking access charges claim that competitors should not be stuck with an in-
cumbent’s high cost structure just because it invested at a time when costs were
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high.2 In contestible markets, it is argued, a firm that tried to recover histor-
ical costs which are more than the current stand-alone cost of re-building the
network that it provides, will be unable to do so. Thus, to mirror contestible
markets, the costs included in access prices should be based on current best
practice.

However, this misses an important point. The reason these markets are
not contestable is firms need to sink large amounts of money into irreversible
investments. Given uncertainty over the future cost of such projects, it is critical
that they face the right incentives to do so in the first place. This paper addresses
this point by asking if a firm, in a world of cost uncertainties, will invest earlier
under a backward or forward looking cost rule and asking which rule leads to
higher overall welfare.

We provide a model in which a firm has a single irreversible investment
opportunity. The cost of carrying out the project varies stochastically through
time. To focus on the effects of cost uncertainty, the (flow) return to the project
is assumed constant for a given access price and there is no physical depreciation
in the asset.3 We assume the incumbent’s profit is increasing in the access price
charged at any time. Given an access pricing rule, the firm must decide when
to invest.

With a fixed access price unrelated to the asset value, the firm will delay
investment until the net present value of the project covers not only its costs, but
also the option value of delaying investment. In doing so the firm waits too long
from the regulator’s point of view, since the firm ignores the surplus that would
flow to competitors and consumers. What is needed is a means of encouraging
the incumbent to invest earlier. Higher access prices would provide such an
incentive, but higher access prices reduce the flow of surplus to competitors.
This suggests there is a trade-off. High access charges lead to a flow of surplus
that is low but starts sooner, while low access charges lead to a flow of surplus
that is high but starts later. The preferred access pricing scheme will match the
marginal cost of bringing investment further forward in time (the lower total
surplus resulting from raising access charges) and the marginal benefit (earlier
investment raises the present value of any given cashflow).

This trade-off can be improved by using either backward or forward looking
access charges where these charges are expressed as a rate of return on asset
values. Backward looking charges achieve this by making it more expensive for
the incumbent to delay investment — by waiting for the cost of the project to
fall, the incumbent ensures that the access charges will be lower as well. Thus,
not only does waiting to invest delay the receipt of the profit flow, but it also
reduces the level of the profit flow. Investment will therefore occur earlier under
a backward looking rule than it would with a fixed access charge of the same
size. This brings investment forward without raising the access charge, and
thus without lowering the flow of total surplus. Forward looking rules also link
access charges to the cost of the project, but to the project’s replacement cost,

2The controversy arises from the fact that with costs falling over time, historical costs tend
to be high and forward-looking costs low. This leads to an obvious conflict between access-
seekers and access-providers over the appropriate methodology. Laffont and Tirole (2000,
pp. 141–161) discuss the debate concerning backward versus forward looking cost-based pricing
of access. Temin (1997) notes that as early as the 1960s, AT&T argued in favour of forward-
looking cost approaches to justify low rates, while entrants supported historical cost measures
to justify high rates.

3These assumptions imply that economic depreciation is also zero.
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rather than its actual cost. Because the access charge under the forward looking
rule diverges from the cost of the investment over time, it subjects the firm to
unnecessary risk. To achieve the same investment decision with forward looking
rules requires that the rate of return on capital be increased to compensate for
the additional risk that forward looking rules impose. Since this is costly to
consumers and access-seekers, the backward looking rule generally dominates in
welfare comparisons.4

The advantages of backward looking rules over forward looking rules are
stronger when there is a downward drift in costs. Whether access charges are
backward looking or forward looking, the firm has an incentive to wait and
invest when the cost of doing so is lower. This incentive to delay is weakened
under a backward looking regime, because if the firm invests sooner it can lock-
in a higher access charge, and hence raise the present value of its profit flow.
In contrast, under a forward looking regime, investing when the cost is high
guarantees high access charges in the short-run, but that is all. Future access
charges are unaffected by the timing of investment. Investing early raises the
present value of its profit flow, but not to the same extent as under a backward
looking rule. With sufficient upward drift in costs this argument is reversed,
and firms will have a stronger incentive to invest early under a forward looking
rule. In this case, under both rules the firm is reluctant to wait, since the cost
of the project is expected to increase over time. However, under a backward
looking rule, waiting will allow the firm to lock-in a higher access charge. Under
a forward looking rule, investing early also raises the present value of the firm’s
profit flow, but not to the same extent.

One situation when forward looking rules could dominate in a welfare com-
parison would be if the incumbent firm operated in the downstream market
and was allowed through a backward looking cost rule to set such high access
prices so as to allow it to monopolise this market. In this case, an increase in
access price volatility can be socially beneficial. Higher access prices do not
affect profits or surplus, since the firm remains a monopoly in its downstream
market. However, lower access prices can increase surplus (by allowing for com-
petition) with little reduction in the incumbent’s profit.5 A forward looking rule
can deliver this increased volatility. (But note that the above case, and that
of strong upward drift in costs, are not the typical cases in industries where
forward looking costs rules are applied, such as in telecommunications.)

Our work is related to some recent research which takes a forward looking
rule as given and considers how the rental rate on capital should be determined.
Ergas and Small (2000) explore the relationship between economic depreciation
and the value of the delay option in the context of regulated access. They
establish conditions under which expected economic depreciation is identical
to the value of the option to delay investment, and show that as a general
matter the former (economic depreciation) is no less than the latter (the real
option value). Salinger (1998) shows that the potential for competition, asset life

4Moreover, other things equal, greater cost volatility raises the volatility induced by forward
looking rules. This strengthens the case against forward looking access rules.

5Essentially, the convexity of the regulator’s surplus function around very high access
charges more than offsets the corresponding concavity of the firm’s profit function. Where the
access provider does not compete with access-seekers, any convexity in the surplus function
is not likely to occur unless access prices are at such high levels that the downstream market
no longer exists (so surplus becomes zero). Such high access prices would never be allowed to
occur under regulation since they lower both profits and surplus to zero.
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uncertainty, and the installation of excess capacity for demand growth all raise
the foward looking access price. For instance, when firms build projects they
typically invest in excess capacity to meet potential future growth in demand,
thus avoiding having to come back and add small increments to the initial
infrastrucure (which would be inefficient). To the extent that forward looking
rules ignore these additional costs, competitors are getting a real option which
they are not paying for — the option to use the excess capacity if and when
needed. If the competitors do not pay for this option, then the incumbent
will invest too little in such excess capacity. Offsetting these effects he finds
that, the potential for technological change that enhances the future value of
an asset lowers forward looking costs. However, none of these papers addresses
how forward looking access charges perform under stochastic costs, the feature
which leads forward looking costs to give fundamentally different incentives to
backward looking cost rules. Moreover, none of the papers attempts to evaluate
the desirability of the forward looking approach.

The rest of the paper proceeds as follows. Section 2 sets up the firm’s invest-
ment problem. In Section 3 the optimal investment policy is characterized for
the constant, backward, and forward looking rules. The desirability of backward
and forward looking rules over a constant access price is explained in Section 4.
This section also provides the conditions under which the backward looking rule
leads to earlier investment than the forward looking rule. Section 5 contains a
welfare comparison of the two rules, while Section 6 concludes with a summary
of results, policy implications and directions for future research.

2 Setting up the Model

A project, which can be launched at any time, involves a single, large, irre-
versible investment. If the project is launched at time t, it costs Kt.

Assumption 1 The cost of launching the project evolves according to the geo-
metric Brownian motion dKt = νKtdt + σKtdξt, where ν and σ are constants
and dξt is the increment of a Wiener process.

We value all cashflows using contingent claims analysis. This is made possible
by assuming that capital markets are sufficiently complete that we can construct
a portfolio of traded assets whose value is perfectly correlated with the cost of
launching the project.6

Assumption 2 There exists an asset, or a portfolio of traded assets, whose
price Xt evolves according to

dXt = µXtdt+ σXtdξt,

where µ > ν is a constant. We assume that this portfolio pays no dividend.

The principal advantage of this assumption is that it eliminates the need to
model the appropriate risk-adjusted discount rate. Cashflow streams can instead

6If the cost Kt is not spanned by traded assets, we can use dynamic programming in place
of contingent claims analysis. The form of our results will be the same, but they will involve
a subjective discount rate. The disadvantage of such an approach is that, without making
restrictive assumptions regarding investors’ preferences, there is no way of determining the
correct discount rate.
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be valued by simply assuming that there are no arbitrage opportunities. The
following result shows the consequence of this no-arbitrage assumption.7

Lemma 1 Suppose an asset generates a continuous cashflow at rate ft+s =
f(Kt+s) for all s ≥ 0, for some function f . Then the value of this cashflow at
time t is F (Kt), for some function F satisfying the ordinary differential equation

0 =
1
2
σ2K2F ′′(K) + (r − η)KF ′(K)− rF (K) + f(K),

where η = µ− ν > 0 and r is the riskless interest rate.

The regulator wants a private firm, which we call the incumbent, to construct
the project. It will impose a regulatory framework specifying the access price
which the regulator can charge a competitor for use of the facility. We suppose
that launching the project initiates an indefinite flow of profit πt = π(at) to the
incumbent, the level of which depends on the access price at.

Assumption 3 The incumbent’s profit flow π(a) is positive, bounded above,
increasing and concave in a, and π′(0) is finite.

When the access charge is zero, the competitor is able to use the incumbent’s
facility without charge. Higher access charges increase the incumbent’s profit
flow, but at a decreasing rate.8 In the limit when the access charge is infinite,
the competitor will choose not to participate, leading to the monopoly outcome.
Thus, lima→∞ π(a) = πm is the monopoly level of the incumbent’s profit flow.

Once the project has been launched, the regulator observes a flow of total
surplus θt = θ(at) which also depends on the access charge.

Assumption 4 The regulator’s flow of total surplus θ(a) is decreasing in a,
with θ(a) > π(a) for all a.

The regulator chooses the charging regime, while the incumbent takes this
charging regime as given and chooses its investment policy. The regulator’s aim
is to select the charging regime which, given the incumbent’s response, leads to
the greatest possible present value of all future surpluses.

3 Optimal Investment Policy

This section explores the investment behavior of an incumbent faced with var-
ious access charging regimes. We begin by describing the optimal investment
policy for a very general investment payoff function, before concentrating on
three specific charging regimes.

We denote the payoff to the incumbent at the time of investment by P (K),
where K is the cost of launching the project. The payoff will equal the present
value of the profit flow initiated by investment, less the cost of launching the
project. The precise form of P (K) will depend on the access charging regime
in place.

7The proof of Lemma 1, together with the proofs of all other results, is contained in the
appendix.

8A rationale for concave profits is that the incumbent does not get to optimise volume in
this model; quite the reverse, entrants will use a lot when times are good. This reverses the
usual (Jorgenson) assumption that maximum profit flows are convex in prices.
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Suppose that the incumbent decides to invest whenever the cost of doing so
is less than some critical level K̂.

Lemma 2 If the project has not already been launched at time t, the value of
the incumbent’s entitlement to the project at that time is

V (Kt; K̂) =



P (K̂)

(
K̂

Kt

)γ

if Kt ≥ K̂,

P (Kt) if Kt < K̂,

where

γ =
r − η
σ2

− 1
2
+

√
2r
σ2

+
(
r − η
σ2

− 1
2

)2

> 0.

The incumbent’s optimal investment policy is therefore to choose the invest-
ment threshold K̂ which maximizes P (K̂)K̂γ . The following result describes
the optimal investment threshold.

Lemma 3 The optimal investment policy is to invest whenever the cost of doing
so is less than the threshold K̂ given implicitly by

K̂

P (K̂)
· dP (K̂)
dK̂

= −γ.

Now we are ready to start analyzing the relationship between the access charging
regime imposed by the regulator and the investment behavior of the incumbent.

Under the simplest regime, the regulator sets a fixed access charge a. Since
this leads to a constant profit flow π(a), the present value of future profits, mea-
sured at the time the project is launched, is π(a)/r. In this case the incumbent’s
payoff from investment is

Pc(K̂) =
π(a)
r

− K̂.

Under backward looking (BL) access charges, the level of the access charge
depends on the amount paid by the incumbent to launch the project: if the
incumbent launches the project at time t, paying Kt, then the competitor must
pay the incumbent at+s = ρKt for all subsequent times t+ s, for some constant
ρ chosen by the regulator. Like the constant access charge, the access charge
is still constant through time, but now it is not completely determined by the
regulator. In fact, by relaxing the investment threshold (that is, raising K̂),
the incumbent can increase the access charge paid by the competitor, and thus
increase its own profit flow. Suppose the incumbent chooses the investment
threshold K̂ when faced with the BL rule parameterized by ρ. Since the access
charge equals ρK̂ throughout the life of the project, the present value of the
profit flow equals π(ρK̂)/r, and the payoff to investment is

Pb(K̂) =
π(ρK̂)
r

− K̂.

Under a forward looking (FL) regime, if the project is launched at time t,
the competitor pays at+s = ρKt+s at time t+ s for all s > 0. It is easy to show,
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using Lemma 1, that the value of this cashflow at time t is ρKt/η.9 However,
when evaluating the project, the incumbent focuses on the value of the resulting
profit flow, not the value of the flow of access charges.

Lemma 4 Under a FL access charge, the present value of the incumbent’s fu-
ture profit flow equals Πf (ρKt), where

Πf (a) =
1
r
· γδ

γ + δ

(∫ 1

0

yγ−1π(ay)dy +
∫ 1

0

yδ−1π(a/y)dy
)

and

δ = −r − η
σ2

+
1
2
+

√
2r
σ2

+
(
r − η
σ2

− 1
2

)2

> 1.

If the incumbent chooses the investment threshold K̂, the payoff to investment
equals

Pf (K̂) = Πf (ρK̂)− K̂,
where Πf is the function described in Lemma 4.

The precise optimal threshold for each regime can be found by substituting
the appropriate payoff function into Lemma 3.

Proposition 1

1. When faced with the regime with constant access charges a, the incumbent
chooses the investment threshold K̂c = Rc(a), where

Rc(a) =
γ

γ + 1
· π(a)
r
.

2. When faced with the BL regime with implicit rental rate ρ, the incumbent
chooses the investment threshold K̂b given implicitly by K̂b = Rb(ρK̂b),
where

Rb(a) =
γ

γ + 1
· π(a)
r

+
1

γ + 1
· aπ

′(a)
r

.

3. When faced with the FL regime with implicit rental rate ρ, the incumbent
chooses the investment threshold K̂f given implicitly by K̂f = Rf (ρK̂f ),
where

Rf (a) =
γ

γ + 1
· π(a)
r

+
γ

γ + 1
· a
r

∫ 1

0

yδ−2π′(a/y)dy.

4 Investment Behavior

In this section, we focus attention on the timing of investment under the three
regimes introduced in the preceding section. The first result is familiar from
real option theory. Since the incumbent has the option to delay investment,
investing as soon as net present value is nonnegative is not optimal. Instead,
the incumbent should wait until the investment payoff exceeds the value of the
delay option destroyed by investment.

9The access charges start at the level ρKt, are expected to grow at rate ν, and are dis-
counted at rate µ. The value of all future access charges is therefore ρKt/(µ − ν) = ρKt/η.
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Proposition 2 Under all three access pricing regimes, the incumbent delays
investment past the break-even point. That is, Pc(K̂c), Pb(K̂b) and Pf (K̂f ) are
all strictly positive.

In all three regimes, the advantage of bringing investment forward in time is
that any given investment payoff will be discounted less, and as a result will be
more valuable. However, the only way to invest earlier is to raise the investment
threshold, leading to a greater investment outlay, and therefore a lower payoff
to investment. This disadvantage is shared by all three regimes. However,
its effects are reduced somewhat in the case of BL and FL regimes. Under
the constant access charging rule, the present value of future profit flows is
fixed; relaxing the investment threshold only increases the cost of launching the
project. However, under BL and FL rules, relaxing the investment threshold also
increases the access charges received by the incumbent, increasing the present
value of the profit flow, and thereby offsetting the increased cost of launching the
project.10 Thus, under BL and FL costs, the incumbent finds it less expensive
to bring investment forward in time; that is, BL and FL rules motivate the
incumbent to invest sooner.

Proposition 3 BL and FL regimes lead to earlier investment than constant
access charging regimes generating profit flows having the same present value.
That is, for any implicit rental rate ρ,

1. If the constant access charge is such that π(a)/r = π(ρK̂b(ρ))/r, then
K̂c ≤ K̂b(ρ).

2. If the constant access charge is such that π(a)/r = Πf (ρK̂b(ρ)), then
K̂c ≤ K̂f(ρ).

FL costs share the most important of the BL rule’s features — by investing
earlier, the incumbent receives a higher access charge — but the two regimes
differ in one important respect. With BL costs, a high access charge is locked
in. Under FL costs, if the replacement cost of the project falls, so does the
access charge. As the next result shows, provided the drift in cost is not too
large, investment occurs sooner under a BL rule than under a FL rule with the
same implicit rental rate.

Proposition 4 If ν ≤ µ − r, any BL rule leads to earlier investment than the
FL rule with the same rental rate.

That is, if the project’s replacement cost is expected to grow at a rate ν no higher
than the risk-premium µ− r, investment occurs sooner under a BL regime than
under a FL regime with the same rental rate. In particular, if the cost has
nonnegative systematic risk, BL costs will lead to earlier investment whenever
the cost of launching the project is expected to fall over time.

If ν ≤ µ− r and the incumbent chose the same investment threshold for FL
charges as for BL ones with the same implicit rental rate, the present value of
the FL charges would be lower than for the BL ones.11 The payoff to investment

10This is obvious in the case of BL costs, since there the access charges are constant through
time, but not so obvious in the case of FL costs, where access charges fluctuate over time.
However, it is clear from Lemma 4 that Πf (ρK̂) is an increasing function of K̂.

11If the common investment threshold is K̂, the present value of access charges under BL
costs is ρK̂/r, and under FL costs is ρK̂/η.
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Figure 1: Profit and total surplus flows
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The bottom curve plots the profit flow π(a) = 9 − 7 × 2−0.15a, while the top

curves plot the total surplus flow θ(a) = 13.5 + 4.5(1 + a/8)e−a/8.

would be lower under FL costs than under BL costs with the same investment
threshold. This encourages the incumbent to choose a lower threshold, spending
less on launching the project, under the FL regime than under the BL regime.

However, the trend in the project’s replacement cost is just part of the story
behind Proposition 4, for the result also holds when ν = µ− r. In this case, the
volatility of FL access charges, combined with the concavity of the incumbent’s
profit flow function, means that the investment payoff will still be lower under
the FL regime, when a common investment threshold is chosen under both rules.
Once more, under FL costs the incumbent is motivated to wait until launching
the project is cheaper.

The issue of volatility remains when ν > µ− r. Although FL access charges
will have greater value than BL ones (for the same investment threshold), the
concavity of the incumbent’s profit flow function lowers the value of the FL
access charges to the incumbent. The effect will be greater for high values of
σ. Thus, when the drift in replacement cost is high, which of the two rules
leads to earlier investment will depend on both the drift and volatility of the
replacement cost.

Proposition 5 There exists a function M(·, ρ), bounded above by 1, such that
the BL rule with rental rate ρ leads to earlier investment than the FL rule with
the same rental rate if and only if

ν ≤ µ− rM
(
σ2

r
, ρ

)
.

Further investigation of the incumbent’s response to BL and FL rules re-
quires the use of numerical analysis. For our analysis, we adopt the profit flow
function

π(a) = 9− 7× 2−0.15a.

It is drawn as the upward-sloping function in Figure 1. (The downward-sloping
curve, which plots the regulator’s total surplus flow, will be used in Section 5.)
Consistent with Assumption 3, profit flow is increasing and concave in the access
charge. Profit flow ranges from the free-access level π(0) = 2 to the monopoly

10



Figure 2: Investment timing under rules with ρ = µ
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its value under BL costs as a function of the drift in costs. The dotted curve

corresponds to low volatility (σ = 0.1), the solid curve to moderate volatility

(σ = 0.3), and the dashed curve to high volatility (σ = 0.5).

level lima→∞ π(a) = 9. The average of these two extremes occurs when the
access charge equals 6.67. In all the cases we consider, the risk-adjusted discount
rate is µ = 0.10, and the riskless interest rate is r = 0.05.

Figure 2 compares the incumbent’s investment behavior under BL and FL
rules in the benchmark case where the regulator sets the implicit rental rates
equal to the risk-adjusted discount rate µ. The graph plots the value of the
investment threshold under FL costs as a proportion of its value under BL costs
(that is, K̂f(µ)/K̂b(µ)) as a function of the drift in costs. Wherever the function
is less than 1, the BL rule leads to earlier investment than the FL rule; wherever
the function is greater than 1, the BL rule leads to later investment than the
FL rule. The dotted curve corresponds to low volatility (σ = 0.1) in the cost of
launching the project, the solid curve to moderate volatility (σ = 0.3), and the
dashed curve to high volatility (σ = 0.5). With moderate to high volatility in
costs, the BL regime leads to earlier investment than the FL regime, regardless
of the drift in costs. However, when volatility is low, the drift in costs is a
crucial determinant of the relative performance of the two rules: when drift is
negative, FL costs retard investment, while when drift is large and positive, FL
costs actually lead to earlier investment than the benchmark BL rule.

When volatility is low, the main difference between the two regimes is that
the access charge is constant under BL costs, and changing over time under
FL costs. If drift is negative, then the present value of FL access charges will
be lower, relative to the cost of launching the project, than BL access charges,
and the incumbent will delay investment longer under FL costs than under BL
costs. However, when the trend in FL access charges is positive, the resulting
high present value will encourage the incumbent to invest earlier under FL costs
than under BL costs.

We investigate this further by neutralizing the drift factor. Figure 3 com-
pares the performance of BL and FL rules when the regulator sets the implicit
rental rates such that the present value of the access charges equals the cost of
launching the project. In effect, the rental rate is adjusted for the risk of the
access charges, as well as any trend. This is achieved by setting ρb = r and
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Figure 3: Investment timing under rules with ρb = r and ρf = η
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corresponds to low volatility (σ = 0.1), the solid curve to moderate volatility

(σ = 0.3), and the dashed curve to high volatility (σ = 0.5).

ρf = η. In all situations considered, the BL leads to earlier investment. Once
we take away the advantage to FL costs offered by the positive trend in access
charges, BL costs again dominate in all the situations considered.

Why do FL costs retard investment here? With the rental rates used in
Figure 3, the competitors effectively pay for the entire project through the
access charges. The principal difference between the two regimes is that under
FL costs, the flow of access charges, and hence the incumbent’s profit flow, is
stochastic. This key difference explains why investment occurs sooner under
BL costs. As is familiar from real option theory, greater uncertainty in the
cost of launching the project will make the incumbent delay investment longer.
Here, however, the effect of higher volatility is more severe when the regulator
imposes FL costs than when it imposes BL costs. This is evident in both
Figures 2 and 3, where higher volatility causes the ratio K̂f/K̂b to fall; that is,
the investment threshold under the FL regime falls more than the investment
threshold under the BL regime. This situation arises because the incumbent’s
profit flow is concave in access charges. Even though the present value of access
charges equals the cost of the project under both rules, the volatility in FL access
charges means that the present value of the profit flow will be lower under FL
costs. The incumbent must wait longer, in order to pay less for the project, to
compensate for this. Hence, FL costs discourage investment.

5 Welfare Analysis

Up until this point, our attention has focused on the timing of the incumbent’s
investment decision under the three regimes. This section compares the various
charging regimes from the regulator’s point of view. In Section 5.1 we describe
how the regulator assesses the three charging regimes introduced in Section 3.
We present and analyze the regulator’s problem graphically in Section 5.2, before
performing a more detailed numerical analysis in Section 5.3.
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5.1 Evaluating Charging Regimes

We let S(K) denote the payoff to the regulator at the time of investment, where
K is the cost of launching the project. We interpret S(K) as the present value
of the flow of total surplus, less the cost of launching the project. The form this
function takes depends on the access charging regime imposed by the regulator.

Under a constant access charging regime, the regulator observes a constant
flow of total surplus equal to θ(a), where a is the level of the access charge. This
stream has present value θ(a)/r, implying that the regulator’s payoff function
is

Sc(K) =
θ(a)
r

−K.
Under a BL regime, the access charge is also constant through time. If the

implicit rental rate equals ρ, the access charge equals ρK. The constant flow of
total surplus therefore has present value θ(ρK)/r, so that the regulator’s payoff
function is

Sb(K) =
θ(ρK)
r

−K.
The construction of the regulator’s objective function is less straightforward

under FL costs.

Lemma 5 Under a FL access charge with implicit rental rate ρ, the regulator’s
payoff function is

Sf (K) = Θf (ρK)−K,
where

Θf (a) =
1
r
· γδ

γ + δ

(∫ 1

0

yγ−1θ(ay)dy +
∫ 1

0

yδ−1θ(a/y)dy
)
.

At any given time, the value of the regulator’s future flow of total surplus will
depend on the current cost of launching the project, the investment threshold
chosen by the incumbent, and the exact form of S.

Proposition 6 If the project has not already been launched at time t, and the
incumbent has chosen the investment threshold K̂, then the net present value of
the future surpluses at that time is

W (Kt; K̂) =



S(K̂)

(
K̂

Kt

)γ

if Kt ≥ K̂,

S(Kt) if Kt < K̂.

1. When faced with the regime with constant access charges a, the regulator
uses the payoff function

Sc(K) =
θ(a)
r

−K.

2. When faced with the BL regime with implicit rental rate ρ, the regulator
uses the payoff function

Sb(K) =
θ(ρK)
r

−K.
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3. When faced with the FL regime with implicit rental rate ρ, the regulator
uses the payoff function

Sf (K) = Θf(ρK)−K.

When evaluating different access pricing schemes, the regulator uses the objec-
tive function S(K̂)K̂γ .

5.2 Representing the Regulator’s Problem Graphically

In this section, we use Figure 4 to highlight the most important features of the
problem facing the regulator. We focus on constant access charges to make the
exposition as clear as possible, but the insights gained also apply to the more
complicated BL and FL regimes.

The straight line through points A and C in Figure 4 plots combinations
(K̂, S) resulting from a regime where the competitor is granted free access to
the project. That is, it represents the line

S(K̂) =
θ(0)
r

− K̂.

The dashed curves plot various level curves of SK̂γ (or, equivalently, PK̂γ).
If the regulator could choose the investment threshold, it would choose the
threshold so that the outcome is at point A. This is the first-best solution to
the access pricing problem. Like the incumbent, the regulator would wait for
the cost to fall below some threshold before investing. However, as we shall
see, the incumbent is generally too ‘patient’ for the regulator’s liking. This is
chiefly because the incumbent ignores the payoff to customers when evaluating
the investment payoff.

In practice, the regulator does not choose the investment threshold. Suppose
that, as in the first-best case, the regulator allows the competitor free access
to the facility. The incumbent then maximizes its objective function subject to
the constraint represented by the straight line through point B, which describes
the incumbent’s payoff function P0(K̂) = π(0)/r − K̂. The optimal investment
threshold is determined by the point of tangency with the incumbent’s indiffer-
ence curve, labelled B in Figure 4. The first-best threshold is easily shown to
be

γ

γ + 1
· θ(0)
r
,

whereas the incumbent chooses

γ

γ + 1
· π(0)
r
.

From Assumption 4, θ(0) > π(0), so that the incumbent delays investment too
long for the regulator’s liking. From the regulator’s point of view, the outcome
is represented by point C in Figure 4 — the investment payoff is much higher
than in the first-best case (reflecting the incumbent’s greater profit), but will
be received too late.

Suppose the regulator imposes a positive access charge a. Since the profit
flow function is increasing, and the flow of total surplus is decreasing, in the

14



Figure 4: Representing the regulator’s problem graphically

P, S

K̂

A

B

C

D

E

The horizontal coordinate is the investment threshold. The vertical coordinate

is the investment payoff (P for the incumbent, and S for the regulator).

access charge, the incumbent’s constraint moves outwards to the straight line
through point D and the regulator’s ‘constraint’ moves in to the straight line
through point E. As shown in Figure 4, this induces the incumbent to choose
a higher investment threshold (point D, compared with B when the competitor
had free access to the project). From the regulator’s point of view, the outcome
moves from point C to E. This reduction in payoff offsets the improvement in
welfare resulting from the earlier investment.

Figure 4 illustrates the problem faced by the regulator. With the competitor
provided with free access to the facility, the incumbent is too reluctant to invest.
By introducing a positive constant access charge, the regulator is able to induce
the incumbent to invest sooner. The cost of this strategy is that, because the
regulator’s total surplus is a decreasing function of access charges, its payoff
from investment will fall. One can imagine tracing out a curve, parameterized
by the access charge a, which passes through points C and E. The optimal
access charge would correspond to the point on this curve where the value of
the regulator’s objective function is greatest. At this point, the marginal cost of
raising the access charge any higher would exactly match the marginal benefit
resulting from the ensuing earlier investment.

The regulator faces similar difficulties with BL and FL charging regimes.
The challenge is to induce the incumbent to invest sooner, without setting ac-
cess charges so high that the resulting drop in the present value of the flow of
total surplus cancels out the benefits of earlier investment. In fact, the use of
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BL charges makes this task easier. Recall from Proposition 3 that the incum-
bent invests sooner under a BL regime than under a constant access charging
regime with the same access charge. Therefore, simply by switching from con-
stant access charges to a particular BL access charge, the regulator can bring
investment forward in time without affecting the level of the access charge, and
hence the present value of total surplus. This leads to the following result:

Proposition 7 Each constant access charging rule is dominated by at least one
BL charging rule.

We now turn to the comparison of BL and FL rules from the regulator’s per-
spective.

5.3 Numerical Analysis

We adopt a similar approach to that in Section 4. The difference is that in
Section 4 we were interested in the timing of investment by the incumbent,
whereas now we compare the various charging regimes from the point of view of
the regulator. We start by comparing BL and FL rules with implicit rental rates
equal to the risk-adjusted discount rate, and then compare rules with rental rates
chosen such that the present value of the access charges for each rule equals the
cost of launching the project. Finally, we compare the performance of the best
BL rule with that of the best FL rule, and investigate the properties of the
optimal rental rates for both BL and FL rules.

We use the total surplus flow function shown in Figure 1:

θ(a) = 13.5 + 4.5
(
1 +

a

8

)
e−a/8.

It is decreasing on [0,∞), concave on [0, 8], and convex on [8,∞). The flow of
total surplus equals 18 when the competitor is allowed free access to the project,
and falls to 13.5 in the monopoly outcome.

Figure 5 compares the performance of BL and FL rules in the benchmark
case where the regulator sets the implicit rental rates equal to the risk-adjusted
discount rate µ. The graph plots the value of the regulator’s objective function
under FL costs as a proportion of its value under BL costs as a function of the
drift in costs — the height of each curve is

Sf (K̂f(µ))(K̂f (µ))γ

Sb(K̂b(µ))(K̂b(µ))γ
.

Wherever the function is less than 1, the BL rule dominates the FL rule from
a welfare perspective; wherever the function is greater than 1, the FL rule
dominates. The dotted curve corresponds to low volatility (σ = 0.1) in the cost
of launching the project, the solid curve to moderate volatility (σ = 0.3), and
the dashed curve to high volatility (σ = 0.5). With moderate to high volatility
in costs, the drift in costs has little effect on the relative performance of the two
rules, with the BL rule easily dominating the FL rule. However, when volatility
is low, the drift in costs is a crucial determinant of the relative performance of
the two rules: when drift is negative, FL costs perform particularly poorly, while
when drift is large and positive, FL costs actually dominate the benchmark BL
rule.

16



Figure 5: Welfare assessment of rules with ρ = µ
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Each curve plots the value of the regulator’s objective function under FL costs

as a proportion of its value under BL costs as a function of the drift in costs. The

dotted curve corresponds to low volatility (σ = 0.1), the solid curve to moderate

volatility (σ = 0.3), and the dashed curve to high volatility (σ = 0.5).

Qualitatively, at least, these results are similar to those for investment tim-
ing reported in Figure 2. There we found that the benchmark BL rule generated
earlier investment than the corresponding FL rule, except in the special case
where the project’s replacement cost was trending upwards with little volatility.
However, close inspection of the two figures shows some differences. For exam-
ple, when the drift in cost is negative Figure 2 shows that the FL investment
threshold is substantially lower than the BL one, indicating that investment
would be delayed quite some time. However, from the point of view of welfare,
this is offset by the negative drift in access charges — FL access charges will fall
over time, and the flow of total surplus will rise. Thus, although the FL rule
is inferior to the BL one when drift is negative, the difference is not as great
as the investment behavior evident in Figure 2 might suggest. Similarly, when
the drift in replacement cost is positive (and volatility is low), the benefit of
earlier investment under FL costs is partially offset by the negative trend in the
flow of total surplus caused by rising access charges. Nevertheless, the timing of
investment, rather than the trend in access charges, seems to be the dominant
factor.

We investigate this further by neutralizing the drift factor as we did in
Section 4. Figure 6 compares the performance of BL and FL rules when the
regulator sets the implicit rental rates such that the present value of the access
charges equals the cost of launching the project; that is, ρb = r and ρf = η. With
this adjustment, the BL is clearly superior from a welfare perspective. Across a
range of volatilities, the relative performance of the FL rule deteriorates as drift
increases. Figure 3 shows that when drift is already high, increasing it further
tends to delay investment longer under FL costs than under BL costs. This will
contribute to the lower welfare under FL rules evident from Figure 6. However,
the upward drift in FL access charges, and the resulting downward drift in the
flow of total surplus, compounds the problem, and explains the steep decline in
relative performance shown by Figure 6.12

12It is interesting to note that the FL rule suffers less from the increasing drift in cost when
volatility is high. The reason is that the high drift leads to FL access charges rapidly reaching
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Figure 6: Welfare assessment of rules with ρb = r and ρf = η

-0.08 -0.04 0 0.04 0.08

0.85

0.9

0.95

1

ν

Each curve plots the value of the regulator’s objective function under FL costs

as a proportion of its value under BL costs as a function of the drift in costs. The

dotted curve corresponds to low volatility (σ = 0.1), the solid curve to moderate

volatility (σ = 0.3), and the dashed curve to high volatility (σ = 0.5).

Finally, Figure 7 compares the performance of BL and FL rules when the
regulator chooses the welfare-maximizing implicit rental rate in each case. For
example, the rental rate for the BL rule is

ρ∗b = arg max
ρ

Sb(K̂b(ρ))(K̂b(ρ))γ .

The optimal FL rental rate, ρ∗f , is defined analogously. The figure shows that,
except when the cost of the project is growing rapidly with little volatility, the
best BL rule gives greater welfare than the best FL rule. In the usual case
where the cost of the project is expected to fall over time, the BL rule is clearly
preferred by the regulator.

Figure 8 illustrates the properties of the optimal implicit rental rates for
BL and FL rules. The top three curves in the graph plot ρ∗f as a function of
µ, while the bottom three curves plot the optimal BL rental rate. In all cases
considered, the optimal FL rental rate is higher than the optimal BL rental rate.
Except when drift is high and volatility is low, the optimal FL rental rate is
considerably higher than the optimal BL rental rate, which is only slightly less
than the risk-adjusted discount rate (µ = 0.01). The optimal BL and FL rental
rates respond quite differently to changes in the drift and volatility of the cost
of launching the project. The optimal BL rental rate is increasing in drift, and
it is most sensitive to drift when volatility is low. The optimal BL rental rate is
decreasing in volatility, and it is most sensitive when drift is high. The optimal
FL rental rate is generally increasing in volatility and decreasing in drift. The
exception occurs in low volatility, high drift situations.

The intuition for the behavior of the FL rental rate is clear. With FL costs,
the incumbent is exposed to the risk that once the project is completed, the
replacement cost (and hence the access charges) will fall. A high FL rental rate
is required to compensate the incumbent for bearing this risk; without such

levels where the total surplus flow function is convex. More volatile cost, and hence more
volatile access charges, therefore lead to a relatively high expected value for total surplus flow
in the distant future. This helps offset the later investment and downward trend in the flow
of total surplus.
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Figure 7: Welfare assessment of rules with ρb = ρ∗b and ρf = ρ∗f
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compensation, the incumbent will delay investment too long for the regulator’s
liking. When drift is positive, the risk is reduced, allowing the regulator to set
a lower FL rental rate. When volatility is high, so is the risk to the incumbent,
and the regulator is forced to set a higher rental rate.

6 Conclusion

Using a simple model of an investment project, we found that when a regulator
imposes a constant access charge a firm adopts an investment policy which is
too conservative — it waits too long before investing. This inefficient delay
arises because the firm bears all the cost of bringing investment forward in
time, but shares the benefit of earlier investment with its competitors. However,
by switching from fixed access charges to either backward looking or forward
looking ones, the regulator can induce the firm to invest sooner without affecting
the present value of the firm’s profit flow. It achieves this by ensuring that the
firm’s competitors start to bear some of the cost of bringing investment forward
in time.

Forward looking rules do so by allowing access prices to reflect current costs.
Even if the current cost of launching the project is too high for investment to
be optimal under a regime of fixed access charges, it may well be optimal to
invest under a forward looking regime. The reason is that access prices are high
in this situation, leading to a high profit flow. However, forward looking rules
impose additional risk on the firm — it is exposed to future movements in costs
once the investment costs have been sunk. This extra risk limits the extent to
which investment can be encouraged.

Backward looking rules, which set access charges depending on the cost at
the time of investment, are more successful at promoting investment. Like
forward looking rules, they allow the firm to shift some of the cost of investing
early onto its competitors. Unlike forward looking rules, they do not expose the
firm to the risk of future movements in costs. In the usual case of downward
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Figure 8: Behavior of optimal implicit rental rates
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(or no) drift in costs, there is no ambiguity — backward looking rules lead to
earlier investment. Numerical examples suggest that for realistic cases they also
dominate in terms of welfare. Even with some upward drift in costs, as long as
volatility in costs is sufficiently great, backward looking rules still lead to earlier
investment and higher welfare.

The policy implications of this paper are twofold. Firstly, except in the spe-
cial situation where costs are climbing rapidly, and with little volatility, back-
ward looking rules should be adopted. Secondly, if a forward looking rule is
used, the implicit rental rate should be set at a level considerably higher than
the risk-adjusted discount rate. A high rate is required to compensate the in-
cumbent for the risk it bears when faced with forward looking access charges.
Without such compensation, the incumbent will delay investment too long.
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Proofs

Proof of Lemma 1

Consider the portfolio made up of one unit of the asset being valued and
−KtF

′(Kt)/Xt units of the spanning asset. The value of this portfolio at time
t equals

F (Kt)−KtF
′(Kt)

and, using Itô’s Lemma, its value evolves according to

dF (Kt)−KtF
′(Kt)
Xt

dXt+f(Kt)dt =
(
1
2
σ2K2

t F
′′(Kt)− (µ− ν)KtF

′(Kt) + f(Kt)
)
dt.

This portfolio is therefore riskless, and must earn the riskless rate of return r.
Thus

1
2
σ2K2

t F
′′(Kt)− (µ− ν)KtF

′(Kt) + f(Kt) = r(F (Kt)−KtF
′(Kt)),

and the ordinary differential equation for F follows immediately.

Proof of Lemma 2

Clearly, if K ≤ K̂, V (K; K̂) = P (K), since investment occurs immediately.
Suppose, instead, that K > K̂, so that investment will be delayed for some
unknown period. From Lemma 1, V satisfies the ordinary differential equation

0 =
1
2
σ2K2VKK + (r − η)KVK − rV.

The general solution to this equation is

V (K; K̂) = C1K
−γ + C2K

δ,

where C1 and C2 are arbitrary constants and

γ =
r − η
σ2

− 1
2
+

√
2r
σ2

+
(
r − η
σ2

− 1
2

)2

> 0,

δ = −r − η
σ2

+
1
2
+

√
2r
σ2

+
(
r − η
σ2

− 1
2

)2

> 1.

We require that V (K; K̂) → 0 as K → ∞, so that the rights to the project are
worthless when launching is prohibitively expensive. This forces C2 = 0. Since
investment in the project is triggered when Kt falls below K̂, we must have
V (K̂; K̂) = P (K̂). It follows that

V (K; K̂) = P (K̂)

(
K̂

K

)γ

.
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Proof of Lemma 4

From Lemma 1, the function Πf must satisfy the ordinary differential equation

1
2
σ2a2Π′′

f (a) + µaΠ
′
f (a)− rΠf (a) + π(a) = 0.

Since a = 0 is an absorbing barrier for geometric Brownian motion, we must
have

Πf (0) =
∫ ∞

0

e−rsπ(0)ds =
π(0)
r
.

It is straightforward to confirm that

Πf (a) =
1
r
· γδ

γ + δ

(
a−γ

∫ a

0

xγ−1π(x)dx + aδ

∫ ∞

a

x−δ−1π(x)dx
)

satisfies the ordinary differential equation above. Making the change of coordi-
nate y �→ x/a in the first integral and y �→ a/x in the second shows that

Πf (a) =
1
r
· γδ

γ + δ

(∫ 1

0

yγ−1π(ay)dy +
∫ 1

0

yδ−1π(a/y)dy
)
,

as required.

Proof of Proposition 1

We need to consider the case of FL access charges. The first order condition
for the incumbent’s maximization problem can be written in the form K̂f =
Rf (ρK̂f ), where

Rf (a) =
γ

γ + 1
· Πf (a) +

1
γ + 1

aΠ′
f (a).

Integration by parts confirms that

a

∫ 1

0

yγπ′(ay)dy = π(a)− γ
∫ 1

0

yγ−1π(ay)dy

and

a

∫ 1

0

yδ−2π′(a/y)dy = −π(a) + δ
∫ 1

0

yδ−1π(a/y)dy.

Therefore

Rf (a) =
γ

γ + 1
· Πf (a) +

1
γ + 1

aΠ′
f (a)

=
1

γ + 1
· γδ

γ + δ
· 1
r

(
γ

∫ 1

0

yγ−1π(ay)dy + γ
∫ 1

0

yδ−1π(a/y)dy

+a
∫ 1

0

yγπ′(ay)dy + a
∫ 1

0

yδ−2π′(a/y)dy
)

=
γδ

γ + 1
· 1
r

∫ 1

0

yδ−1π(a/y)dy. (1)
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Integrating this expression by parts gives

Rf (a) =
γδ

γ + 1
· 1
r

∫ 1

0

yδ−1π(a/y)dy

=
γ

γ + 1
· 1
r

∫ 1

0

d(yδ)π(a/y)

=
γ

γ + 1
· π(a)
r

+
γ

γ + 1
· a
r

∫ 1

0

yδ−2π′(a/y)dy. (2)

Proof of Proposition 2

The following result will be useful in the proofs of this and some subsequent
results. The concavity of π implies that the function π(a)− aπ′(a) is increasing
in a for all nonnegative a, so that

π(a)− aπ′(a) ≥ π(0) > 0.

Therefore
aπ′(a)/π(a) < 1 for all a ≥ 0. (3)

With a constant access charge equal to a, the investment payoff, evaluated
at the investment threshold, is

Pc(K̂c) =
π(a)
r

− K̂c =
1

γ + 1
· π(a)
r

> 0.

With a BL rental rate of ρ, the investment payoff is

Pb(K̂b) =
π(ρK̂b)
r

− K̂b =
1

γ + 1
· 1
r
(π(ρK̂b)− ρK̂bπ

′(ρK̂b)).

The inequality (3) proves that the payoff is positive.
Finally, with a FL rental rate of ρ, the investment payoff is

Pf (K̂f) = Πf (ρK̂f)− K̂f

= Πf (ρK̂f)−Rf (ρK̂f )

=
1
r
· γδ

γ + δ

∫ 1

0

yγ−1π(ρK̂fy)dy,

which is clearly positive.

Proof of Proposition 3

Consider the BL rule with implicit rental rate ρ and let a = ρK̂b(ρ). If the
regulator imposed the constant access charge a, the incumbent would choose
the investment threshold

K̂c = Rc(a) =
γ

γ + 1
· π(a)
r

≤ γ

γ + 1
· π(a)
r

+
1

γ + 1
· aπ

′(a)
r

= Rb(a) = K̂b(ρ).

This would lead to later investment, completing the proof of the first part of
the proposition.
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For the second part, consider the FL rule with implicit rental rate ρ and
choose a such that

π(a) = rΠf (ρK̂f(ρ)).

If faced with this constant access charge, the incumbent would choose the in-
vestment threshold

K̂c =
γ

γ + 1
· π(a)
r

=
γ

γ + 1
Πf (ρK̂f (ρ))

≤ γ

γ + 1
·Πf (ρK̂f (ρ)) +

1
γ + 1

ρK̂f(ρ)Π′
f (ρK̂f (ρ))

= Rf (ρK̂f(ρ))

= K̂f(ρ).

This would lead to later investment, completing the proof of the second part of
the proposition.

Proof of Proposition 4

Integrating (2) by parts gives

Rf (a) =
γ

γ + 1
· 1
r

(
π(a) + a

(∫ 1

0

d

(
yδ−1

δ − 1

)
π′(a/y)

))

=
γ

γ + 1
· 1
r

(
π(a) + a

(
π′(a)
δ − 1

+
a

δ − 1

∫ 1

0

yδ−3π′′(a/y)dy
))

for all a > 0. Now, δ > 1, so that

Rf (a) ≤ γ

γ + 1
· 1
r

(
π(a) +

aπ′(a)
δ − 1

)
.

The assumption that r ≤ η implies that 1/(δ − 1) ≤ 1/γ, whence

Rf (a) ≤ γ

γ + 1
· 1
r

(
π(a) +

aπ′(a)
γ

)
= Rb(a).

Let ρ1 > 0 be arbitrary, and define K̂1
b = K̂b(ρ1) to be the investment

threshold under the corresponding BL rule. Let

ρ2 =
ρ1K̂

1
b

Rf (ρ1K̂1
b )
.

Since
Rf (ρ1K̂1

b ) ≤ Rb(ρ1K̂1
b ) = K̂

1
b , (4)

it follows immediately that ρ2 ≥ ρ1. Furthermore, Rf (ρ1K̂1
b ) is easily shown to

equal the investment threshold under the FL rule with rental rate ρ2. Therefore,
since K̂f (ρ) is increasing in ρ, we have

K̂f(ρ1) ≤ K̂f(ρ2) = Rf (ρ1K̂1
b ) ≤ K̂1

b = K̂b(ρ1),

where we have used (4) to obtain the second inequality in this expression. Since
ρ1 was arbitrary, the proof is complete.
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Proof of Proposition 5

The following interpretation of Rf (a) will be useful.

Lemma 6 Let z̃ be the random variable with support [1,∞), density function
f(z) = δz−(δ+1) and distribution function F (z) = 1− z−δ. Then

Rf (a) =
γ

γ + 1
· 1
r
· E[π(az̃)].

Proof: The expected value equals

E[π(az̃)] = δ
∫ ∞

1

z−(δ+1)π(az)dz.

The change of variable z �→ 1/y leads to

E[π(az̃)] = δ
∫ 1

0

yδ−1π(a/y)dy.

Inspection of equation (1) completes the proof. �

We start by proving that there exists an increasing function δ∗(γ) such that
the BL rule leads to earlier investment if and only if δ > δ∗(γ).

The investment threshold under the BL rule is K̂b = Rb(âb), where âb is
defined implicitly by âb = ρRb(âb). Similarly, the investment threshold under
the FL rule is K̂f = Rf (âf ), where âf is defined implicitly by âf = ρRf (âf ).
Therefore, the BL rule leads to earlier investment than the FL rule if and only
if

âb = ρK̂b > ρK̂f = âf .

Note that âb satisfies

(γ + 1)ab =
ρ

r
(γπ(âb) + âbπ

′(âb)) . (5)

Implicit differentiation with respect to γ, followed by some tedious manipulation,
shows that

∂âb

∂γ
=

âb

(
1− ρ

r
π′(âb)

)
γ
(
(γ + 1)

(
1− ρ

r
π′(âb)

)
− ρ

r
âbπ

′′(âb)
) .

Combining the inequality (3) with equation (5) gives

(γ + 1)âb =
ρ

r
(γπ(âb) + âbπ

′(âb)) >
ρ

r
(γ + 1)âbπ

′(âb),

implying that 1 > (ρ/r)π′(âb). The numerator of ∂âb/∂γ is therefore positive.
Furthermore, the concavity of π ensures that the denominator of ∂âb/∂γ is also
positive, proving that âb is increasing in γ.

We now turn to âf , which satisfies

(γ + 1)af = γ
ρ

r
E[π(âf z̃)], (6)
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Figure 9: Proof of Result 5

✻

✲
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âb

âf

â

δ
δ∗(γ)

where z̃ is the random variable introduced in Lemma 6. Implicit differentiation
with respect to γ, followed by some more tedious manipulation, shows that

∂âf

∂γ
=

âf

γ
(
γ + 1− γ ρ

r
E[z̃π′(âf z̃)]

) .
Combining inequality (3) with equation (6) gives

γ
ρ

r
E[z̃π′(âf z̃)] < γ

ρ

r

E[π(âf z̃)]
âf

= γ + 1,

so that the denominator of ∂âf/∂γ is positive. Therefore, âf is an increasing
function of γ.

It is easily seen that increasing δ shifts the distribution of z̃ to the left, in the
sense of first order stochastic dominance. Since π(az) is an increasing function
of z, this change reduces E[π(az̃)], for any given a. A similar calculation to that
above proves that âf is a decreasing function of δ.

Figure 9 plots âb and âf as functions of δ for an arbitrary value of γ. From
above, âb is constant and âf is decreasing. The value of δ∗(γ) can be found
from the point where the two curves intersect. Suppose that γ and δ are such
that âb and âf take some common value â. Noting that

âπ′′(â) < 0 < γ
(
1− ρ

r
π′(â)

)
E[z̃π′(âz̃)],

it is straightforward to show that

dâb

dγ
<
dâf

dγ
.

Returning to Figure 9, where the two curves cross, âf is more sensitive than âb

to small changes in γ. Since both curves move up when γ increases, the curve
labelled âf moves up further. The point of intersection must move to the right.
That is, increasing γ raises δ∗.
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Note that
∂γ

∂(r − η)/σ2
> 0,

∂δ

∂(r − η)/σ2
< 0.

Therefore, holding σ2/r fixed and increasing (r− η)/σ2 causes γ to rise, and δ∗

to rise with it, while δ falls. Thus, when (r − η)/σ2 is sufficiently large, δ will
be less than δ∗(γ), and âf will be greater than âb. Thus, there exists a function
N(·) such that âb > âf if and only if (r − η)/σ2 < N(σ2/r). We define

M(σ2/r) = 1− (σ2/r)N(σ2/r).

Then âb > âf if and only if (r − η)/r < (1−M(σ2/r)).

Proof of Lemma 5

The proof follows that of Lemma 4, with Πf replaced by Θf everywhere.

Proof of Proposition 7

Consider the constant charging rule with the arbitrary positive access charge
â. Since the functions Rb(·) and Rc(·) are continuous, with Rb(0) = Rc(0) and
Rb(a) > Rc(a) for all a > 0, it follows that there exists a number a′ ∈ (0, â)
such that Rb(a′) = Rc(â). Since θ(·) is decreasing, θ(a′) > θ(â). The regulator’s
objective function takes the value(

θ(â)
r

−Rc(â)
)
(Rc(â))

γ

under the constant access charge, and the greater value(
θ(a′)
r

−Rb(a′)
)
(Rb(a′))

γ

under the BL regime with access charge a′. Clearly, the second case is preferred
by the regulator, completing the proof.
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