Home > SPlaC v1_0 > Plane > PlnScriptKretPSPP.m

PlnScriptKretPSPP

PURPOSE ^

Solves the EM problem of excitation of PSPP in the Kretschmann configuration

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

 Solves the EM problem of excitation of PSPP in the Kretschmann configuration
 The Kretschmann configuration is illustrated in Fig. 3.12(b).
 This is equivalent to a three-multilayer planar system (Prism/Metal/Dielectric).
 Note that the incident wave propagates in the prism, i.e the coupling
 from air to prism must be considered separately (see Sec. 3.4.5).
 This script simply defines the relevant parameters, calls the function
 PlnRefMulti to solve the EM problem, and provides examples of plots
 of the results.

 This file is part of the SPlaC v1.0 package (copyright 2008)
 Check the README file for further information

EXAMPLE OF OUTPUT ^

Example figure output

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%
0002 % Parameters:
0003 %%%%%%%%%%%%%%%%%%
0004 
0005 % Wavelengths and angles of incidence (inside the prism)
0006 % lambda (in nm) is column vector
0007 lambda=transpose(400:1:800); 
0008 %lambda=633;
0009 
0010 % aideg is row vector; angle of incidence in degrees
0011 aideg=0:1:89; % broad angle range
0012 %aideg=32:0.01:40; % ok for 633nm, nM=1.0
0013 %aideg=48:0.005:60; % ok for 633nm, nM=1.33
0014 
0015 % Metal thickness in nm
0016 Lmetal=50; % in nm, ok for 633nm
0017 
0018 
0019 % Refractive indices:
0020 
0021 % Prism, assumed a constant here
0022 nP=1.766; % Sapphire
0023 
0024 % Dielectric gap (for PSPPs), assumed a constant here
0025 %nM=1.0; % Air
0026 nM=1.33; % Water
0027 
0028 % Epsilon of Metal (column vector)
0029 epsMetal=epsAg(lambda); % Analytical expression for Ag
0030 %epsMetal=epsAu(lambda); % Analytical expression for Au
0031 
0032 %%%%%%%%%%%%%%%%%%%%%%%%%%
0033 % Solution of the problem
0034 %%%%%%%%%%%%%%%%%%%%%%%%%%
0035 
0036 % Defines Krestschmann configuration, 2 interfaces, 3 layers
0037 % Prism/Metal/Dielectric
0038 % all epsilons must be columns (lambda dependent)
0039 % epsilon1 must be real positive
0040 nNbSurf=2;
0041 Cepsilon{1}=nP^2+0*lambda; % Prism
0042 Cepsilon{2}=epsMetal; % Metal
0043 Cepsilon{3}=nM^2+0*lambda; % Dielectric for PSPP
0044 CL{1}=0; % interfaces positions
0045 CL{2}=Lmetal;
0046 
0047 % solves the problem for TM waves
0048 stResTM=PlnMultiRef ('TM',nNbSurf, lambda, Cepsilon, CL, aideg);
0049 
0050 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0051 % Examples of post-processing
0052 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0053 % see help of MultiRef for description of the results
0054 
0055 
0056 %Reflectivity (reflection coefficient $R^p=|r^p|^2$)
0057 % Rp is matrix [length(lambda) x length(aideg)]
0058 Rp=abs(stResTM.rP).^2;
0059 
0060 % Local field intensity EF outside metal
0061 % i.e. on interface 2 outside
0062 Mperp=stResTM.MoutPerp{2};
0063 Mpara=stResTM.MoutPara{2};
0064 % Total LFIEF (with respect to field amplitude IN PRISM)
0065 M=Mperp+Mpara;
0066 
0067 % plot examples
0068 
0069 % 3D plot of Rp(aideg, lambda)
0070 surf(aideg, lambda,Rp);
0071 
0072 % 2D plots of Rp(lambda) and Rp(aideg)
0073 scrsz = get(0,'ScreenSize'); % scrsz(3) contains screen width
0074 figAspectRatio=3;
0075 figWidth=3/4*scrsz(3);
0076 figure('Name','KretPSPP', ...
0077     'Position',[(scrsz(3)-figWidth)/2 scrsz(4)-150-figWidth/figAspectRatio figWidth figWidth/figAspectRatio]);
0078 % plot of Rp(lambda) for given angle
0079 subplot(1,2,1);
0080 aideg_index=54;
0081 plot(lambda,Rp(:,aideg_index));
0082 title(['Wavelength-dependent reflection coefficient for angle: ' num2str(aideg(aideg_index)) ' degrees']);
0083 
0084 % plot of Rp(aideg) for given lambda
0085 subplot(1,2,2);
0086 lambda_index=234;
0087 plot(aideg,Rp(lambda_index,:));
0088 title(['Angle-dependent reflection coefficient for lambda=' num2str(lambda(lambda_index)) ' nm']);

This web page is part of the SPlaC package © 2008. Contact: Eric Le Ru
Generated on Wed 03-Dec-2008 11:10:14 by m2html © 2003 (adapted)