Example script to run the function DipFullMonty It produces 4 figures that illustrate the capabilities of the Mie codes for dipole emission close to a single sphere. See the function DipFullMonty for more details. This file is part of the SPlaC v1.0 package (copyright 2008) Check the README file for further information
0001 global noCheckSum; 0002 noCheckSum=true; 0003 % use 'clear all' or 'clear global noChecksum' to erase noCheckSum 0004 % clear global noCheckSum; % same as noCheckSum=false; 0005 % noCheckSum=false; 0006 0007 % N_{max} 0008 nNmax=50; 0009 % N_{max} for ESA approximation in the evaluations of M_{Tot} 0010 nNmaxESA=500; 0011 0012 % sphere radius in nm (scalar [1 x 1]) 0013 a=30; 0014 0015 % wavelengths in nm (column vector [L x 1]) 0016 lambda=transpose(300:1:600); 0017 0018 % dielectric constant of outside medium (real positive scalar) 0019 epsilonM=1.77; % water 0020 %epsilonM=1.0; % air 0021 0022 % wavelength-dependent dielectric function of sphere material 0023 % vector column, same size as lambda [L x 1] 0024 epsilonIn=epsAg(lambda); % silver 0025 0026 % distance of dipole from surface (in nanometer) 0027 % note that the dipole is by convention on the positive z-axis (theta=0) 0028 % and aligned in the (xOz) plane (py=0) 0029 d=1; 0030 0031 % Number of theta for radiation profile computations 0032 nNbTheta=361; 0033 % selected wavelengths for radiation profile plots 0034 lambda0=[373,430,500]; 0035 0036 [stMdip,stEfarAllP]=DipFullMonty(nNmax,a,lambda,epsilonM,epsilonIn,d,nNmaxESA,lambda0,nNbTheta); 0037 0038 % % uncomment the following to check MRadPerp and MRadPara 0039 % % from averages of radiated field 0040 % figure; 0041 % plot(lambda,stMdip.MRadPara,lambda,stEfarAllP.MRadPara, ... 0042 % lambda,stMdip.MRadPerp,lambda,stEfarAllP.MRadPerp); 0043 %