Low-level function to calculate s_k and x_k for a sphere multilayer See p. 623 for definitions. Parameters: - lambda: column vector [L x 1] wavelength in nm - Ca: cell of K scalars a_k: radii of spherical interfaces (in nm) for k=1..K - Cepsilon: cell of K+1 scalars or [L x 1] vectors epsilon of media (possibly wavelength-dependent) for k=0 (inside sphere) to k=K (embedding medium). Returns: - Cs: cell of K+1 vectors [L x 1] s_k for k=1..N - Cx: cell of K+1 vectors [L x 1] x_k for k=1..N This file is part of the SPlaC v1.0 package (copyright 2008) Check the README file for further information
0001 nK=length(Ca); % number of spherical interfaces K 0002 % Calculate x_k=k_k a_k and s_k=k_{k-1}/k_k, see p. 623 0003 Cx=cell(1,nK); 0004 Cs=cell(1,nK); 0005 for kk=1:nK 0006 % Calculate x_k [L x 1]. Note that Cepsilon{jj} is epsilon in region jj+1 0007 Cx{kk}=2*pi* sqrt(Cepsilon{kk+1}) * Ca{kk} ./ lambda; % [L x 1] 0008 % Calculate s_k [L x 1] 0009 % 0*lambda is used to ensure that s_k is [L x 1] even when 0010 % both epsilon's are scalar 0011 Cs{kk}=sqrt(Cepsilon{kk}+0*lambda)./sqrt(Cepsilon{kk+1}); % [L x 1] 0012 end