Principles of
surface-enhanced Raman
spectroscopy

and related plasmonic effects

Eric C. Le Ru and Pablo G. Etchegoin

Preface xiii
Notations, units and other conventions xvii
1 A quick overview of surface-enhanced Raman spectroscopy 1

1.1 What is SERS? – Basic principles 1

1.2 SERS probes and SERS substrates 3
1.2.1 SERS substrates 3
1.2.2 SERS probes 6
1.2.3 Example 8

1.3 Other important aspects of SERS 9
1.3.1 SERS enhancements 9
1.3.2 Sample preparation and metal/probe interaction 10
1.3.3 Main characteristics of the SERS signals 11
1.3.4 Related techniques 13
1.3.5 Related areas 14

1.4 Applications of SERS 14
1.4.1 Raman with improved sensitivity 15
1.4.2 SERS vs fluorescence spectroscopy 15
1.4.3 Applications specific to SERS 17
1.5 The current status of SERS
1.5.1 Brief history of SERS
1.5.2 Where is SERS now?
1.5.3 Current ‘hot topics’

1.6 Overview of the book content
1.6.1 General outline of the book
1.6.2 General ‘spirit’ of the book
1.6.3 Different reading plans

2 Raman spectroscopy and related optical techniques
2.1 A brief introduction
2.1.1 The discovery of the Raman effect
2.1.2 Some applications of Raman spectroscopy
2.1.3 Raman spectroscopy instrumentation

2.2 Optical spectroscopy of molecules
2.2.1 The energy levels of molecules
2.2.2 Spectroscopic units and conversions
2.2.3 Optical absorption
2.2.4 Emission and luminescence
2.2.5 Scattering processes
2.2.6 The concept of cross-section
2.2.7 The Raman cross-sections
2.2.8 Examples of Raman cross-sections
2.2.9 Mechanical analogs

2.3 Absorption and fluorescence spectroscopy
2.3.1 Optical absorption and UV/Vis spectroscopy
2.3.2 Fluorescence spectroscopy
2.3.3 Photo-bleaching

2.4 Phenomenological approach to Raman scattering
2.4.1 Dipolar emission in vacuum
2.4.2 The concepts of polarizability and induced dipole
2.4.3 The linear optical polarizability
2.4.4 The Raman polarizability
2.4.5 The local field correction
2.4.6 Polarizabilities and scattering cross-sections
2.4.7 Final remarks on the phenomenological description

2.5 Vibrations and the Raman tensor
2.5.1 General considerations
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.5</td>
<td>Local field enhancements and SPPs at planar interfaces</td>
<td>167</td>
</tr>
<tr>
<td>3.4.6</td>
<td>SPP modes on planar interfaces: A brief summary</td>
<td>173</td>
</tr>
<tr>
<td>3.5</td>
<td>Localized surface plasmon–polaritons</td>
<td>174</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Introduction to localized SPPs</td>
<td>174</td>
</tr>
<tr>
<td>3.5.2</td>
<td>LSP on planar structures</td>
<td>175</td>
</tr>
<tr>
<td>3.5.3</td>
<td>LSP modes of a metallic sphere</td>
<td>175</td>
</tr>
<tr>
<td>3.5.4</td>
<td>LSP modes of nano-particles</td>
<td>177</td>
</tr>
<tr>
<td>3.5.5</td>
<td>LSP resonances</td>
<td>177</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Local field enhancements and LSP</td>
<td>178</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Interaction of SPPs – gap SPPs</td>
<td>179</td>
</tr>
<tr>
<td>3.6</td>
<td>Brief survey of plasmonics applications</td>
<td>181</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Applications of surface plasmon resonances</td>
<td>181</td>
</tr>
<tr>
<td>3.6.2</td>
<td>SPP propagation and SPP optics</td>
<td>182</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Local field enhancements</td>
<td>182</td>
</tr>
<tr>
<td>4</td>
<td>SERS enhancement factors and related topics</td>
<td>185</td>
</tr>
<tr>
<td>4.1</td>
<td>Definition of the SERS enhancement factors</td>
<td>186</td>
</tr>
<tr>
<td>4.1.1</td>
<td>General considerations</td>
<td>187</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The analytical point of view</td>
<td>190</td>
</tr>
<tr>
<td>4.1.3</td>
<td>The SERS substrate enhancement factor – Experimental approach</td>
<td>191</td>
</tr>
<tr>
<td>4.1.4</td>
<td>The SERS cross-section and single-molecule EF</td>
<td>192</td>
</tr>
<tr>
<td>4.1.5</td>
<td>The SERS substrate enhancement factor – Formal definition</td>
<td>197</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Discussion and merits of the various definitions</td>
<td>198</td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental measurement of SERS enhancement factors</td>
<td>200</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The importance of the non-SERS cross-section</td>
<td>202</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Example of AEF measurements</td>
<td>203</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Link between SSEF definition and experiments</td>
<td>205</td>
</tr>
<tr>
<td>4.3</td>
<td>Overview of the main EM effects in SERS</td>
<td>209</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Analysis of the EM problem of SERS</td>
<td>209</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Local field enhancement</td>
<td>212</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Radiation enhancement</td>
<td>214</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Other EM effects</td>
<td>216</td>
</tr>
<tr>
<td>4.3.5</td>
<td>The common $</td>
<td>E</td>
</tr>
<tr>
<td>4.4</td>
<td>Modified spontaneous emission</td>
<td>219</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The link between spontaneous emission and dipolar emission</td>
<td>220</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Modification of dipole emission: definitions of enhancement factors</td>
<td>224</td>
</tr>
</tbody>
</table>
PRINCIPLES OF SERS

4.4.4 Spontaneous emission and self-reaction 229
4.4.5 The Poynting vector approach 231
4.4.6 Spontaneous emission and the optical reciprocity theorem 233

4.5 Formal derivation of SERS EM enhancements 237
4.5.1 Definitions, notations, and assumptions 237
4.5.2 The SERS EM enhancement: general case 240
4.5.3 SERS EM enhancements in the back-scattering configuration 245

4.6 Surface-enhanced fluorescence (SEF) 248
4.6.1 Similarities and differences between SEF and SERS 248
4.6.2 Modified (enhanced) absorption 249
4.6.3 Modified fluorescence quantum yield 250
4.6.4 Fluorescence quenching and enhancement 252

4.7 Other EM effects in SERS 254
4.7.1 Fluorescence quenching in SERS 254
4.7.2 Photo-bleaching under SERS conditions 255
4.7.3 Non-radiative effects in SERS 257

4.8 The chemical enhancement 258
4.8.1 Introduction 258
4.8.2 The charge-transfer mechanism 259
4.8.3 Electromagnetic contribution to the chemical enhancement 261
4.8.4 The chemical vs electromagnetic enhancement debate 263

4.9 Summary 263

5 Calculations of electromagnetic enhancements 265

5.1 Definition of the problem and approximations 266
5.1.1 The EM problem 266
5.1.2 Far field and local/near field 269
5.1.3 Some key EM indicators 273
5.1.4 The electrostatic approximation (ESA) 279
5.1.5 Other approximations 285

5.2 Analytical tools and solutions 286
5.2.1 Plane surfaces 287
5.2.2 The perfect sphere 287
5.2.3 Ellipsoids 289
5.2.4 Other approaches 289

5.3 Numerical tools 290
5.3.1 A brief overview of the EM numerical tools 290
5.3.2 A semi-analytical approach: the discrete dipole approximation 292
5.3.3 Direct numerical solutions 294
5.3.4 Other approaches 297

6 EM enhancements and plasmon resonances: examples and discussion 299

6.1 Quenching and enhancement at planar surfaces 300
6.1.1 The image dipole approximation for the self-reaction field 300
6.1.2 Enhancement and quenching at plane metal surfaces 303

6.2 A simple example in detail: The metallic sphere 307
6.2.1 Metallic sphere in the ES approximation 308
6.2.2 Localized surface plasmon resonances and far-field properties 314
6.2.3 Local field effects 324
6.2.4 Distance dependence 335
6.2.5 Non-radiative effects – surface-enhanced fluorescence 337

6.3 The effect of shape on the EM enhancements 342
6.3.1 Shape effects on localized surface plasmon resonances 343
6.3.2 Shape effects on local fields 346
6.3.3 Summary of shape effects 353

6.4 Gap effects – junctions between particles 354
6.4.1 Coupled localized surface plasmon resonances and SERS 354
6.4.2 EF distribution and hot-spot localization 359

6.5 Additional effects 361
6.5.1 Nano-particles on a supporting substrate 362
6.5.2 Surface roughness 364

6.6 Factors affecting the EM enhancements: Summary 364

7 Metallic colloids and other SERS substrates 367

7.1 Metallic colloids for SERS 368
7.1.1 Silver vs gold 368
7.1.2 Citrate-reduced colloids 369
7.1.3 Other types of colloids 371
7.1.4 Remarks on colloid fabrication methods 373
7.1.5 Dry colloids and other “2D planar” SERS substrates 373

7.2 Characterization of SERS substrates 375
7.2.1 Microscopy 376
7.2.2 Extinction or UV/Vis spectroscopy of SERS substrates 377
7.2.3 Other techniques: dynamic light scattering (DLS) for colloidal solutions 381

7.3 The stability of colloidal solutions 385
7.3.1 Introduction 385
7.3.2 The van der Waals interaction between metallic particles 387
7.3.3 The screened Coulomb potential 389
7.3.4 The DLVO interaction potential 394
7.3.5 Colloid aggregation within the DLVO theory 396

7.4 SERS with metallic colloids 399
7.4.1 Molecular (analyte) adsorption and SERS activity 399
7.4.2 Colloid aggregation for SERS 403
7.4.3 Focus on the ‘chloride activation’ of SERS signals 406
7.4.4 SERS from ‘dried’ colloidal solutions 408
7.4.5 SERS signal fluctuations 410

8 Recent developments 415
8.1 Single-molecule SERS 415
8.1.1 Introduction 415
8.1.2 Early evidence for single-molecule detection 417
8.1.3 Langmuir–Blodgett monolayers 423
8.1.4 Bi-analyte techniques 425
8.1.5 Single-molecule SERS enhancement factors 433
8.1.6 Single-molecule SERS: Discussion and outlook 435

8.2 Tip-enhanced Raman spectroscopy (TERS) 436
8.2.1 Introduction to TERS 436
8.2.2 TERS with an atomic force microscope (AFM) 437
8.2.3 TERS with a scanning tunneling microscope (STM) 438
8.2.4 Theoretical calculations on tips 440
8.2.5 Discussion and outlook 442

8.3 New substrates from nano-technology 443
8.3.1 Chemical synthesis of metallic nano-particles 444
8.3.2 Self-organization 447
8.3.3 Nano-lithography 448
8.3.4 Adaptable/Tunable SERS substrates 451
8.3.5 Micro-fluidics and SERS 454

8.4 Optical forces 455
8.4.1 A simple theory of optical forces 455
8.4.2 Radiation pressure in colloidal fluids
8.4.3 Optical trapping of metallic particles
8.4.4 Optical forces on molecules

8.5 Applications of SERS
8.5.1 Analyte engineering and surface functionalization
8.5.2 Substrate reproducibility and SERS commercialization

8.6 Epilogue

9 Density functional theory (DFT) calculations for Raman spectroscopy

A.1 A brief introduction to DFT
A.1.1 Computing aspects of DFT
A.1.2 Principles of DFT
A.1.3 Important parameters

A.2 Applications of DFT to Raman
A.2.1 Principle
A.2.2 Geometry optimization using DFT
A.2.3 Limitations of DFT calculations for Raman

A.3 Practical implementation
A.3.1 Brief overview of the input and output files
A.3.2 Common units and definitions in Raman calculations from DFT
A.3.3 Normal mode patterns and Raman tensors

A.4 Examples of DFT calculations for SERS applications
A.4.1 Validation of absolute Raman cross-sections of reference compounds
A.4.2 Raman tensor and vibrational pattern visualizations
A.4.3 Depolarization ratio breakdown under SERS conditions

B The bond-polarizability model

B.1 Principle and implementation
B.1.1 Principle
B.1.2 Calculation of bond polarizabilities
B.1.3 Practical implementation

B.2 A simple example in detail
B.2.1 Bond-polarizability analysis
B.2.2 Raman polarizabilities
B.2.3 A brief comment on the symmetry
C A brief overview of Maxwell’s equations in media 499
C.1 Maxwell’s equations in vacuum 499
C.1.1 The equations 499
C.1.2 Maxwell’s equations for harmonic fields in vacuum 501
C.1.3 Plane wave solutions in free-space 503
C.2 Maxwell’s equations in media 503
C.2.1 Microscopic and macroscopic fields 503
C.2.2 The electromagnetic response of the medium 504
C.2.3 Electric polarization and magnetization 505
C.2.4 Constitutive relations 508
C.2.5 Boundary conditions between two media 512
C.3 Other aspects relevant to SERS and plasmonics 513
C.3.1 The microscopic field 513
C.3.2 Plane waves in media 515
C.3.3 Electromagnetic problems in SERS 517
C.3.4 Link with the static approach 518
D Lorentz model of the atomic/molecular polarizability 523
D.1 The Lorentz oscillator 523
D.1.1 Principle 523
D.1.2 Multiple transitions (multiple resonances) 525
D.1.3 Example: linear optical polarizability of rhodamine 6G 525
D.2 Link with macroscopic properties 526
D.2.1 Dielectric function in a dilute medium 526
D.2.2 Dielectric function in solids 526
D.2.3 The metallic limit 527
D.3 Summary 528
E Dielectric function of gold and silver 529
E.1 Model dielectric function for silver 529
E.1.1 Analytical expression 529
E.1.2 Comparison to experimental results 530
E.2 Model dielectric function for Au 531
E.2.1 Analytical expression 531
E.2.2 Comparison to experimental results 532
PRINCIPLES OF SERS

G.1.3 The electrostatic solution 575
G.1.4 Some important EM indicators for ellipsoids 578
G.1.5 Some aspects of the numerical implementation 581

G.2 Oblate spheroid (pumpkin) 583
G.2.1 Geometrical factors 583
G.2.2 Surface averages 584
G.2.3 Limit of large aspect ratio 585

G.3 Prolate spheroid (rugby ball) 585
G.3.1 Geometrical factors 585
G.3.2 Surface averages 586
G.3.3 Limit of large aspect ratio 587

H Mie theory and its implementation 589

H.1 Introduction 589
H.1.1 Motivation 589
H.1.2 Overview of this appendix 590

H.2 The concepts of Mie theory 590
H.2.1 The electromagnetic equations 590
H.2.2 The vectorial wave equation in spherical coordinates 591
H.2.3 Scattering by a sphere 593
H.2.4 Optical resonances of the sphere 596
H.2.5 Some aspects of the practical implementation of Mie theory 597

H.3 Basic formulas of Mie theory 598
H.3.1 Conventions 599
H.3.2 Spherical coordinates: A brief reminder 599
H.3.3 Definition and properties of the vector spherical harmonics 600
H.3.4 Expressions for the susceptibilities 605
H.3.5 More on optical resonances 607
H.3.6 Absorption, scattering, and extinction for an incident beam 608
H.3.7 Absorption and radiation for a localized source 611
H.3.8 Far-field radiation profile 612
H.3.9 The local field at the surface 612

H.4 Plane wave excitation of a sphere: The ‘original Mie theory’ 613
H.4.1 Expansion of a plane wave in vector spherical harmonics 613
H.4.2 Extinction, scattering, and absorption for plane wave excitation 614
H.4.3 Average local field at the surface 615
H.4.4 Useful expansions for plane wave excitation 615