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Abstract
An interesting variety of pipe cross-sectional shapes can be generated, for
which the Navier–Stokes equations can be solved exactly. The simplest cases
include the known solutions for elliptical and equilateral triangle cross-sections.
Students can find pipe cross-sections from solutions of Laplace’s equation in
two dimensions, and then plot the velocity distribution in the pipe. The total
flow for a given pressure gradient and pipe area can be readily compared for
different pipe shapes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fluid mechanics is difficult because the Navier–Stokes equations describing viscous flow are
nonlinear. Flow in a pipe of fixed cross-section is an exception: for steady incompressible
flow the continuity equation and the Navier–Stokes force-balance equations reduce to [1–4]

∂xvx + ∂yvy + ∂zvz = 0 (1)

ρ(vx∂x + vy∂y + vz∂z)vx = −∂xp + η
(
∂2
x + ∂2

y + ∂2
z

)
vx

ρ(vx∂x + vy∂y + vz∂z)vy = −∂yp + η
(
∂2
x + ∂2

y + ∂2
z

)
vy

ρ(vx∂x + vy∂y + vz∂z)vz = −∂zp + η
(
∂2
x + ∂2

y + ∂2
z

)
vz.

(2)

Here vx is the x component of the velocity, ρ is the mass density, p the pressure and η the
viscosity. Consider steady flow in a pipe of uniform cross-section, with its axis coincident
with the z-axis. Then the transverse velocity components vx and vy are zero, so the transverse
pressure gradients ∂xp and ∂yp are zero also (the pressure at given z is the same across the
pipe). From fluid conservation, expressed in equation (1), ∂zvz = 0: the flow velocity is the
same at given transverse coordinates x, y along the pipe, and we are left with(

∂2
x + ∂2

y

)
vz = 1

η
∂zp. (3)
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Figure 1. Velocity contours, at 10% to 90% of the maximum velocity, in an elliptical pipe with
a = 2b.

Since vz does not depend on the longitudinal coordinate z, the longitudinal pressure gradient
∂zp must be constant. A solution of (3) satisfying the boundary condition that vz(x, y) is to
be zero at the pipe wall then provides the velocity profile, and the rate of total fluid flow Q can
be found by integration.

A simple example, to be used for comparison later, is the elliptical cross-section [1–5]
given by x2

a2 + y2

b2 = 1. The velocity profile (here u is the velocity at the pipe centre)

vz = u

(
1 − x2

a2
− y2

b2

)
(4)

satisfies the boundary condition that vz is zero on the pipe wall, and satisfies (3) provided

u = − 1

2η
∂zp

a2b2

a2 + b2
. (4a)

The rate of total flow through the pipe is

Q = 4u

∫ a

0
dx

∫ b
√

1−x2/a2

0
dy

(
1 − x2

a2
− y2

b2

)

= 8

3
ub

∫ a

0
dx

(
1 − x2

a2

) 3
3

2 = π

2
uab. (5)

Hence

Q = π

4η
(−∂zp)

(ab)3

(a2 + b2)
(6)

and

vz = 2Q

πab

(
1 − x2

a2
− y2

b2

)
. (7)

Figure 1 shows the velocity contours: all are ellipses with the same major-to-minor axis ratio.
In this paper we shall show how students can generate pipe shapes for which the velocity

profile can be found exactly. The method is not new [2, 4, 5] but does not seem to have been
applied beyond the solution for flow in a pipe of equilateral triangular cross-section. It is
presented here as a pedagogical entry to viscous hydrodynamics, and for the interesting pipe
shapes and flows that can be generated.
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Figure 2. Velocity distribution in an equilateral triangle pipe (equation (8)). The contours are at
0.1 (0.1) 0.9 of the maximum velocity.

2. Functions of x + iy, and (x + iy)3 in particular

The expression αx2 + βy2 has Laplacian 2(α + β). This is unchanged by addition of terms
proportional to xy, x or y, or constants. Thus a solution of (3) can be obtained by setting
vz equal to any harmonic function f (x, y) (one for which

(
∂2
x + ∂2

y

)
f = 0) plus αx2 + βy2,

plus terms bilinear or linear in x and y or constant, provided α + β = 1
2η

(∂zp). It is well
known, and easily shown by differentiation, that both the real and imaginary parts of any
twice-differentiable function of the variable x + iy are harmonic.

Solution of (3) is only half the problem, however: one must also ensure that vz is zero
at the pipe wall. Let W(x, y) = 0 define the pipe wall or walls. For example, an equilateral
triangle of side a with base resting on the x-axis (y = 0) has walls defined by

W3 = y

(
x +

y√
3

− a

2

) (
x − y√

3
+

a

2

)

= x2y − 1

3
y3 +

1√
3
ay2 − 1

4
a2y. (8)

We notice that (x + iy)3 = x3 − 3xy2 + i
(
3x2y − y3

)
has an imaginary part which corresponds

to the first two terms in the expanded part of (8) (the real part is the same function with x and
y interchanged and of opposite sign). This has zero Laplacian; so setting vz = uW3 will be a
solution of (3) and satisfy vz = 0 on the walls, provided

u =
√

3

2a

1

η
∂zp. (9)

Figure 2 shows contours of equal velocity for the equilateral triangular pipe cross-section.
Note that, in contrast to the elliptical pipe, the contours of constant vz are not scaled-down
versions of the pipe walls, but change from circular near the centre to triangular at the walls.
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The rate flow through the equilateral triangular pipe is

Q3 = 2u

∫ a/2

0
dx

∫ √
3( a

2 −x)

0
dyW3 = −ua5

160

=
√

3

320
a4

(
−1

η
∂zp

)
. (10)

It is interesting to compare the flow efficacy of various shapes. For a circular pipe we have,
from (6) with b = a,

Qc = π

8

(
−1

η
∂zp

)
a4,

Qc

(area)2
= 1

8π

(
−1

η
∂zp

)
. (11)

The area of an equilateral triangle of side a is
√

3
4 a2, so

Q3

(area)2
= 1

20
√

3

(
−1

η
∂zp

)
. (12)

The value of Q/(area)2 is smaller than that for the circular cross-section by the factor
8π

20
√

3
≈ 0.7255. The ratio for elliptic to circular pipes is 2ab/(a2 + b2) � 1.

3. Pipe shapes derived from (x + iy)4

Since (x + iy)3 gives the solution for an equilateral triangle, one might guess that (x + iy)4

does the same for a square. Not so, but it can come close, as we shall see. We have

(x + iy)4 = x4 − 6x2y2 + y4 + 4ixy(x2 − y2). (13)

The x ↔ y symmetry of the real part makes it easier to use; in accordance with the general
scheme set out at the beginning of section 2, we put

vz = ua−4[x4 − 6x2y2 + y4 − 2βa2(x2 + y2) + a4] (14)

where a is a scale length and β is a dimensionless number. Then (∂2
x + ∂2

y )vz = −8βu/a2, so

u = a2

8β

(
−1

η
∂zp

)
. (15)

The pipes encompassed in (14) are closed areas (if any) bounded by curves vz = 0. The
topology depends on the parameter β. Let r =

√
x2 + y2 be the distance from the z-axis, and

φ the azimuthal angle. Since (x + iy)4 = r4e4iφ , we can write vz as

vz = ua−4[r4 cos 4φ − 2βa2r2 + a4]. (16)

The pipe walls, if these exist, are given by r±(φ), where

r2
±

a2
= β ±

√
β2 − cos 4φ

cos 4φ
. (17)

For β < 1 there are four open branches in the xy plane, and no ‘pipe’ is enclosed (figure 3(a)).
At β = 1 there is a cusped enclosed area, touching open branches when cos 4φ = 1, i.e., when
φ = 0, π/2, π and 3π/2. This is shown in figure 3(b). For β > 1 there is an enclosed area
centred on the origin, and four open branches; an example is shown in figure 3(c).

For β � 1 the pipe radius as a function of azimuthal angle is given by r− in equation (17).
The maximum radius is at cos 4φ = 1:

rmax
− = a

{
β −

√
β2 − 1

} 1
2 . (18)
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(a) (b) (c)

Figure 3. The three different topologies arising from equation (14) as β varies. For β < 1 there
are open regions only, illustrated for β = 1

2 in (a). At β = 1 the open areas pinch off a cusped
enclosed area, shown in (b). As β increases from unity the enclosed area shrinks and becomes
rounded, shown in (c) for β = 3

2 .

(a) (b)

Figure 4. Fluid velocity in the (x + iy)4 pipe, obtained from equation (16) with β = 1. Part
(a) shows the contours at 0.1, 0.2, . . . , 0.9 of the maximum velocity, while (b) shows v/vmax in
elevation.

The minimum radius is at cos 4φ = −1 (φ = π/4, 3π/4, 5π/4 and 7π/4),

rmin
− = a

{√
β2 + 1 − β

} 1
2 . (19)

For a square centred on the origin, rmax/rmin = √
2, and this ratio of rmax

− to rmin
− is obtained

for β2 = 25/24.
Figure 4 shows the velocity distribution in the β = 1 pipe. This pipe has cross-sectional

area and rate of flow given by

area = a22 ln(
√

2 + 1) ≈ 1.7627a2 (20)

Q4 = ua2{2 ln(
√

2 + 1) − 2
√

2/3} ≈ 0.8199 ua2. (21)

Comparison with (11), with the use of (15), shows that the Q/(area)2 ratio is smaller than that
for a circular pipe equation (11) by the factor

π{2 ln(
√

2 + 1) − 2
√

2/3}
[2 ln(

√
2 + 1)]2

≈ 0.8290. (22)
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(a) (b) (c)

Figure 5. Pipe profiles obtained by setting vz = 0 in (a) equation (24) with β = 1; (b) equation (25)
with α = 1, β = 2; (c) equation (26) with α = 1 = β. The scale length a is unity in all the figures.

For comparison, a square pipe [6–8] has Q/(area)2 related to that for the circular pipe by the
larger factor

2π

3

[
1 − 6

∞∑
n=0

tanh[(2n + 1)π/2]

[(2n + 1)π/2]5

]
≈ 0.8833. (23)

As β increases from unity the enclosed area shrinks, becoming more circular. I have not found
analytical formulae for the area or rate of flow for general β.

4. Other pipe shapes and discussion

There is an uncountable infinity of analytic functions, and thus of solvable pipe shapes. Three
simple illustrations are (x + iy)6, sin(x + iy) and ei(x+iy). Introducing a scaling length a, and
dimensionless parameters α and β, we can write down the following velocity profiles based
on the real parts:

vz = ua−6{r6 cos 6φ − 2βa4r2 + a6} (24)

vz = u

{
sin

x

a
cosh

y

a
− α

x2

a2
− β

y2

a2

}
(25)

vz = u

{
e−y/a cos

x

a
+ α

x2

a2
+ β

y2

a2
− 1

}
. (26)

The (x +iy)6 example produces enclosed pipes with hexagonal symmetry for β � (27/32)
1
3 =

3/2
5
3 ≈ 0.9449. As β increases from this value the pipes shrink, and become more circular.

Figure 5 shows three particular cases of the three profiles above.
Students could be encouraged to create their own functions of x + iy which, with the

addition of αx2 + βy2 and terms in xy, x, y or constants, give enclosed areas in the xy plane.
Then they can have the satisfaction of having solved, exactly, a problem in laminar viscous
flow, quite possibly for the first time. The exercise has no obvious practical application,
but it does teach some of the elements of hydrodynamics, and gives students a feel for the
velocity distribution in a pipe, and how it depends on the pipe cross-sectional shape. The class
experience may benefit from the comparison of the results obtained by different students or
groups of students, with flow efficiencies Q/(area)2 being calculated by analytic or numeric
integration.
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