Relative Frequency Affects Pitch Accent Realisation: Evidence for Exemplar Storage of Prosody

Katrin Schweitzer¹, Sasha Calhoun²,³, Hinrich Schütze¹, Antje Schweitzer¹, Michael Walsh¹

¹ University of Stuttgart, Germany
² University of Edinburgh, UK, ³ Victoria University of Wellington, NZ
Katrin.Schweitzer@ims.uni-stuttgart.de, Sasha.Calhoun@vuw.ac.nz

Abstract
This paper looks at the variability of pitch accent realisations on different word types in relation to the relative frequency with which each word type occurs with a particular pitch accent type (among all pitch-accented occurrences of the word). Results indicate that pitch accent realisation variability decreases with increasing relative frequency. This is consistent with Exemplar Theory: relative frequency can be regarded as an encoding of the diversity of prosodic contexts in which a word occurs. If there is less prosodic variability among stored tokens of a word, there will be less variability in production. It seems that pitch contours are stored with words, contrary to the standard assumption that accenting is “post-lexical” in English.

Index Terms: exemplar theory, pitch accents, intonation

1. Introduction
It is well established that frequency of usage affects linguistic realisation across a variety of domains [1, 2]. These findings can be well explained within the framework of Exemplar Theory [3, 4, 1] (c.f. section 2), where it is assumed that language input is stored in memory in rich detail as exemplars and that targets for subsequent productions are derived from them. Frequency effects are assumed to result from different numbers of stored exemplars. In the domain of prosody, the variability of syllable duration [5, 6] and pitch accents [7] has been found to be subject to frequency effects: The duration of frequent syllables is less easy to predict from the length of the underlying phones than it is for infrequent syllables [5, 6]; and the shape of frequent pitch accents is more variable than the shape of infrequent ones [7]. Moreover, it has been argued that intonation contours can be stored with lexical items [8].

If pitch accent shapes are stored, this should influence production and it would be expected that pitch accent shape on a specific word type is affected by the diversity of (prosodic) contexts in which that type occurs (e.g. pitch accent type, information status as well as phonological context). It is assumed here that the diversity of contexts in which a specific word occurs is reflected by the diversity of pitch accent types associated with it and that this can be measured by the relative frequencies of the pitch accent types on the word, i.e. the proportion of times a word occurs with a given pitch accent type. The idea behind this is that for words that appear in diverse contexts (i.e. word-accent pairs of low relative frequency) exemplars from a greater number of competing contexts are activated in production. Therefore, greater variability of the resulting F₀-contours is expected. That is, while high absolute frequency increases the variability of the F₀-contours [7], we expect high relative frequency to decrease the variability since it reflects low diversity of contexts.

The research presented in this paper specifically targets this claim. In particular, we address the following questions:
1. Does the relative frequency of a word-accent pair affect the realisation of the pitch accent?
2. If so, what is the impact of relative frequency on a set of word-accent pairs?
3. What conclusions can be drawn for theories of lexical storage and post-lexical accenting?

In examining the variability of pitch accent tokens in a speech corpus (section 3), a parametric intonation model, known as PaintE [9], (cf. section 4), is employed to extract meaningful parameters from pitch-accented words of varying relative frequency in a speech corpus. Variability of pitch-accented word types is measured using Euclidean distance (section 5). Linear regression models assess the relationship between relative frequency and variability (section 6). Results are interpreted from a usage-based perspective (section 7).

2. Exemplar Theory
Exemplar Theory is concerned with the idea that language is acquired by repeated exposure to concrete language input, and it has successfully accounted for a number of language phenomena, including diachronic language change and frequency of occurrence effects and grammaticalisation [2], syllable duration variability [5, 6], entrenchment and lenition [1], among others. Central to Exemplar Theory are the notions of exemplar storage, frequency of occurrence, recency of occurrence, and similarity. There is an increasing body of evidence which indicates that significant storage of language input exemplars, rich in detail, takes place in memory [10, 11]. These stored exemplars are then employed in the categorisation of new input percepts. Similarly, production is facilitated by accessing these stored exemplars as production targets. Computational models of the exemplar memory also argue that it is in a constant state of flux with new inputs updating it and old unused exemplars gradually fading away [1].

Up to now, little exemplar-theoretic research has examined pitch accent prosody (but see [12] for memory-based prediction of pitch accents and prosodic boundaries, [8] for evidence of word storage with intonation contours, and [7] for evidence of frequency effects on within-type pitch accent variability) and to the authors’ knowledge this paper represents the first attempt, from a usage-based perspective, to examine the relationship between the diversity of prosodic contexts in which a word occurs.
and the variability of realisations of one specific pitch accent type.

3. Data

The corpus used in this study is the Boston Radio News Corpus, a collection of radio news broadcasts [13]. A subset of the corpus has been labelled prosodically using ToBI [14]. The analysed data set contains approximately 1 h of speech from five professional speakers (3 female, 2 male). One speaker produced nearly half the tokens in our data set; however, as tokens from her were fairly evenly spread across the frequency bins (see below), we believe this did not unduly influence results.

For each nuclear H* and L+H* accent (as well as the downstepped versions of these accents), four parameters reflecting its shape were extracted using a parametric intonation model (PaIntE, [9], see section 4). Outlying tokens, i.e. tokens where one or more of the dimension values fell within the upper or lower 2.5 percentile of the dimension’s range, were removed. As the purpose of the study was to examine the variability between tokens of a word-accent pair, types with only one occurrence were not analysed so that the nuclear H* dataset (referred to as HN) finally comprises 1425 tokens and 465 types, the nuclear L+H* set LHN 306 tokens (123 types).

For each word type, the frequency of the combination of this word type with either H* or L+H* was calculated as was the frequency of how often the word occurred with any pitch accent. The ratio of these two values measures the relative frequency of the word-accent-pair:

\[h(w_a) = \frac{n(w_a)}{n(w_a|x \in \text{acc})} \]

where \(h(w_a) \) is the relative frequency of word \(w \) and accent \(a \), \(n(w_a) \) is the absolute frequency of the combination of these two, and \(\text{acc} \) is the set of accent types, hence \(n(w_a) \) corresponds to the absolute frequency with which the \(w \) occurs with any pitch accent. It is assumed here that this value reflects the diversity of the prosodic context in which the word occurs. The higher the proportion of contexts with a different pitch accent, the lower the relative frequency of the particular accent on this word. The word “school” for instance, occurred 19 times with a pitch accent, in eight of these occurrences the accent has been labelled as H*. Thus, the relative frequency of the word-accent pair “school–H” is \(h(\text{school}, \text{H}) \approx 0.421 \).

The frequency distribution of the word-accent pairs is a typical LNRE-distribution (large number of rare events), where few types occur often and many types occur rarely. Due to this fact, the datasets are highly unbalanced: Firstly, the number of tokens from outweighing effects of the fewer tokens with higher frequency. The statistical analysis for the random set was validated in a 100-fold cross-validation. For L+H* no such analysis could be carried out, since this set would have consisted of only 32 types, and would thus have lacked sufficient statistical explanatory power.

The last data reduction equals the number of tokens that are analysed per type as well as the number of types that are analysed per frequency bin. Two tokens per type were randomly selected, as were 10 types per frequency bin. This reduced the data to only 196 types (and 392 tokens). Only types from the frequency bin 2-6 went into the analysis, since there were not enough types in the higher frequency bins. The analyses carried out on this drastically reduced random dataset (referred to as HNenu) were repeated 1000 times.

4. Determination of pitch accent shape

A parametric intonation model, known as PaIntE [9], was employed to represent pitch accent shape using a small number of linguistically meaningful parameters. The model approximates stretches of \(F_0 \) by employing a phonetically motivated model function [9]. This function operates on a three-syllable-window, i.e. the span of the accentuated syllable and the syllables adjacent to it, if they are in the same intonation phrase. The function is composed by addition of two sigmoidals (rising and falling) with a fixed time delay which is selected so that the peak does not fall below 96% of the function’s range.

Six parameters, illustrated in figure 1, are used to describe the contour: parameter \(b \) locates the peak of the accent within the three-syllable window, parameters \(c_1 \) and \(c_2 \) model the ranges of the rising and falling slope of the accent’s contour, \(d \) corresponds to the actual height of the peak and parameters \(a_1 \) and \(a_2 \) (not displayed in the figure) denote the “amplitude-normalised” steepness of the rising and falling slope [15].

Four of the PaIntE parameters were employed in the analyses: parameters \(c_1 \) and \(c_2 \) to determine the ranges of an accent’s falling or rising slope, respectively, \(b \) to analyse the accents’ temporal alignment and \(d \) to measure the height of the accent’s peak. The \(a \) parameters were excluded from the analysis because in cases where only one sigmoid is used, the \(a \) value of the other sigmoid is meaningless, since there is no slope, and would interfere with the analysis. For \(c \) parameters, this is not the case, because the value for the sigmoid that is not used, is set to 0 which reflects the actual properties of the accent. To normalise for speaker differences the PaIntE parameters were z-scored for each speaker separately.

5. Calculation of pitch accent variability

To calculate a measure of variability, each of the accent tokens was represented as a 4-dimensional vector (one dimension for each z-scored PaIntE parameter). For a given word type and a given accent, the average distance between the tokens of a word-accent pair in the 4-dimensional space was calculated. This was done by calculating a centroid (i.e. a vector composed by the mean value of each dimension) and then calculating the Euclidean distance:

\[d(x_i, \bar{x}) = \sqrt{\sum_{j=1}^{4} (x_{ij} - \bar{x}_j)^2} \]

The average distance of all tokens of a type to their centroid gives a measure of the variability of the type. For example, in the case of the word “school” in the HN dataset, the centroid...
Figure 1: The PaIntE model function is the sum of a rising and a falling sigmoid with a fixed time delay. The time axis is normalised to the syllables’ lengths. The parameters are calculated over the span of the accented syllable (starred) and its immediate neighbours (if the accented syllable is not followed/preceded by an intonation phrase break).

Figure 2: Relationship between the relative frequency of word-H* pairs and the variability among the tokens of each of the types.

Table 1: Overview of the significance of the linear regression models for the complete dataset (HN and LHN) yielded a significant p-value indicating a correlation between the relative frequency of a word type occurring with the respective accent and the variability among the tokens of this type. This effect held also over the modified datasets HNmod and LHNmod where extremely frequent types, that were the only ones in their frequency bin, were removed. Figure 2 illustrates the effect for HN, i.e. it depicts the variability of tokens of a word-H* pair plotted against the relative frequency of this pair. Hence, each point in the graph represents a type (e.g. “school – H*”). The regression line illustrates a decrease of variability with increasing relative frequency. The same effect can be observed for L+H*: the greater the relative frequency of a word type and

<table>
<thead>
<tr>
<th>Dataset</th>
<th>HN</th>
<th>LHN</th>
<th>HNmod</th>
<th>LHNmod</th>
<th>HNbal</th>
<th>HNequ</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td><0.01</td>
<td><0.05</td>
<td><0.01</td>
<td><0.05</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>coefficient</td>
<td>-0.2967</td>
<td>-0.3804</td>
<td>-0.2901</td>
<td>-0.3637</td>
<td>79%</td>
<td>7%</td>
</tr>
<tr>
<td>std. error</td>
<td>0.0918</td>
<td>0.1591</td>
<td>0.0922</td>
<td>0.1591</td>
<td>7%</td>
<td>5%</td>
</tr>
<tr>
<td>repetitions</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>significance</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>tendency</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
</tbody>
</table>

represents eight instances of “school-H*”, and the average distance of the eight instances to this centroid is interpreted as the variability value for the type “school-H*”.

6. Results

Linear regression models were fitted to assess the relationship between the relative frequency of a word-accent pair and the variability of the tokens of this type (there were no other variables in the models). This was done for all the above mentioned datasets (section 3). Table 1 gives an overview of the significance of the models. For both analysed accent types, the regression models for the complete dataset (HN and LHN) yielded a significant p-value indicating a correlation between the relative frequency of a word type occurring with the respective accent and the variability among the tokens of this type. This effect held also over the modified datasets HNmod and LHNmod where extremely frequent types, that were the only ones in their frequency bin, were removed. Figure 2 illustrates the effect for HN, i.e. it depicts the variability of tokens of a word-H* pair plotted against the relative frequency of this pair. Hence, each point in the graph represents a type (e.g. “school – H*”). The regression line illustrates a decrease of variability with increasing relative frequency. The same effect can be observed for L+H*: the greater the relative frequency of a word type and

7. Discussion and Outlook

The analyses described above indicate a relationship between the relative frequency with which a word occurs with a certain pitch accent and the variability of the realisations of this accent. The greater the relative frequency of a word-accent pair, the less variable are the realisations of the accent.

Such an effect presents a challenge for traditional, autosegmental theories of intonation. These theories are in general silent on the effect of frequency on pitch accent type and re-
alisation. However, once a particular accent type has been assigned to a given word, it is assumed that the realisation of the pitch contour on that word is related purely to the phonological context, e.g. the position in the phrase and how near other accents are [16]. While these factors are undoubtedly still relevant, our results seem to show that accent-word frequency also plays a part in explaining pitch contour variation. Along with our previous results (see section 1), these findings suggest that pitch contour realisation cannot be considered to be purely a “post-lexical” process in English.

An exemplar-theoretic view of pitch accenting, on the other hand, expects word-based storage of accent contours, and resultant frequency effects. An exemplar-theoretic explanation for this phenomenon is as follows: In production, exemplars of the target word are activated. If more of these exemplars come from different contexts (e.g. are accented with pitch accents other than the intended one), the F0-shapes from which the production target is derived will be more variable, because they include not only realisations with the intended accent but also realisations with competing pitch accents.

The competing realisations are expected to cause “noise” in the production of the intended accent. Hence, the larger the proportion of competing pitch accents, the greater the variability among the realisations of the target accent. In other words, accent-word pairs with a small relative frequency (more competitors) are expected to be more variable than accent-word pairs with a high relative frequency (less competitors).

For word types that have a high relative frequency with one accent type, this result is consistent with the proposal in [8] that certain words have “fixed” intonation, linked to specific pragmatic meanings of that word, e.g. discourse expressions like “really”.

Our analyses demonstrate an effect of relative frequency on the realisation of pitch accents. However it is possible that the changes in variability result from an imbalance in dataset in terms of number of tokens and types. To rule this out, we would need to repeat the analysis on a much larger dataset. Unfortunately, we are not aware of a substantially larger corpus annotated for accent type. However, in the future we are looking to adapt our methodology for larger available corpora which have some prosodic annotation (not including accent type).

8. Acknowledgements
This work was supported by the German Research Foundation (Collaborative Research Center SFB-732) and a British Academy Postdoctoral Fellowship to S. Calhoun.

9. References