
16 J. Opt. Soc. Am. A/Vol. 3, No. 1/January 1986

Variational theory of the reflection of light by interfaces
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Schwinger's variational theory of scattering is adapted to the calculation of reflection amplitudes. For an arbitrary
transition between two media at a planar interface, we derive variational expressions for the s and p reflection

amplitudes that are correct at grazing incidence and correct to second order in the ratio of interface thickness to
wavelength. The interface or the substrate (or both) may be absorbing. The Hulthen-Kohn variational theory of
scattering is also adapted to reflection. The results are simpler (for the same trial wave function) but not so good as
those obtained from the Schwinger method.

1. INTRODUCTION

In a previous paper (Ref. 1, referred to here as I) we have

derived variational expressions for the reflection amplitudes
for a nonuniform film between like media, for example, a
soap film in air. Here we shall extend these results to reflec-

tion of electromagnetic waves at an interface between any
two media of dielectric constants el and E2. Many of the
results of paper I can be carried over to the present work, and
in such cases the results will be quoted as [I (equation num-

ber)]. In other cases the El 0 e2 problem requires special

techniques (for example, the Green functions have six ana-
lytic parts, instead of just two); then the techniques will be
developed in more detail. Where possible the notation used
here will be that of I.

are defined in terms of the asymptotic forms of the solution
of Eq. (2):

exp(iqz) + rs exp(-iqz) - E(z) - t, exp(iqz). (5)

It is possible to construct a perturbation theory 2 for rs in
terms of

exp(iqlz) + rs0 exp(-iqlz) (Z <0) (6)

to exp(iq2 Z) (Z > 0)

Here ro and to are the Fresnel reflection amplitudes3' 4 for
the discontinuous (or step) dielectric-function profile

EO(Z) = {1

q1 - q2

2. s-WAVE REFLECTION AMPLITUDE s0q, q2

(z <0)

(z >0)

2q,
so q1 + q2

(7)

(8)

We consider the problem of plane electromagnetic waves
incident from a medium of dielectric constant el onto an
interface lying in the xy plane and characterized by a dielec-
tric function E(z). The medium beyond the interface (the
substrate) has dielectric constant e2. When the propagation
is in the zx plane, the s wave has electric field E = (0, Ey, 0),
where [I (4)]

EY(z, x) = exp(iKx) E(z) (1)

and E(z) satisfies the ordinary differential equation [I (5)]

Eo(z) is the solution of

d 2E0 2

dz 2
q0

2 (Z) = EO(Z) 2- _ K2
(9)

with the correct asymptotic forms for a wave incident from
medium one. One constructs a Green function satisfying

d G + qo'G = b(z - 0

This is given by4

(10)

d2E +q2E=o q2(Z) = e(z) 2-_K2

dz c
(2)

The separation of variables constant K is the component of
the wave vector along the interface. Thus

K = - sin 01 = -2sin 02
c c

(3)

where 01 and 02 are the angles of incidence and refraction.
The component of the wave number perpendicular to the
interface is q(z), and it takes the limiting values

W cos 01 = q -, q(z) - q2 = C c cos 02
~E- c c

(4)

The reflection amplitude r, and transmission amplitude t3

E+(+)E_(z)

i(q, + q2)

G,(z, .) =

E(z)[E+(G) + r 0E_(0)]
2iql.- 

-,E_(v)[E+(z) + r 80E_(z)]
2iql

where E±(z) = exp(±iq0z).

E+(¢)[Ez) - r 80E+(z)]
2iq2 , - c

E+(z)[E_(v) - rOE+(r)]
-I 2iq 2

E+(z)E_(i)

i(q1 + q 2)

(11)
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The equation for E can be written as

d2 E 2 2
dz2 + q0

2E = -Aq2 E, (12)

where Aq2 = q2-q02 = 2/c2 (e - eO). From Eqs. (9), (10),
and (12) we see that E satisfies the integral equation

E(z) = Eo(z) - J d~Aq2 ( )E(v)G(z, a). (13)

The asymptotic form of E as z -a is found from Eqs. (11)
and (13) to be

exp(iq 1 z) + exp(-iq 1 z)

X rso- 1 f dAq 2(M)E(f)E(l)l * (14)

Comparison with Eq. (5) shows that the expression inside
the square brackets is the exact value of r, (this exact result
can also be obtained from a comparison identity 4 ). The
first-order perturbation result is obtained from the exact
result on replacing E by E0 [given by Eq. (6)]:

rSpert = rs - 2i d~Aq ()E 0
2(v). (15)

The adaptation of Schwinger's variational method for the
scattering problem5' 6 to the reflection problem runs as fol-
lows. We multiply the integral Eq. (13) by Aq2(z)E(z) and
integrate over all z. The resulting equation can be put in the
form [cf. 1 (15)] F = S, where

(16)F = J dzAq 2 (z)E(z)EO(z)

is of first degree in the unknown E and

s= J dzAq 2 (z)E 2 (z)

+ J dzAq2(z)E(z) J d~Aq2 ( )E(r)G(z, a) (17)

is of second degree in E. We note that [cf. I (17)]

r8 = r50 - F/2iq1 . (18)

The variational principle for r, follows from the result
(established in I) that 6S = 23F or 6(F2/S) = 0. Thus

rsvar =r. 0 F /S .
2iql (19)

where we have introduced the notation Ar = r - ro (in
parallel with Aq2 = q2 - qo2).

This simplest variational result already has built into it
two important properties:

(1) To second order in the interface thickness, Eq. (22)
gives

___ ___ _ _ 2 /C icL,2/c2

Ar var - 2iqw 2/ (X1 + 2iq2X2 + + q 2 +(q + q2)q+q/
(23)

where 7

X =J dz(e -E)zl-l - (24)

This is the correct expression to this order to the interface-
thickness-wavelength expansion [see Ref. 7, Eqs. (2) and
(15)].

(2) At grazing incidence, when q1 - 0, Ar~var - 0 when El
is E2, and Ar5var - -1 when El = e2. Thus r5var correctly
tends to -1 at grazing incidence, as it must for all interfacial
profiles.8 In contrast, the perturbation expression is in gen-
eral correct only to first order in the interface thickness and
diverges at grazing incidence when el = E2-

3. p-WAVE REFLECTION AMPLITUDE

For propagation in the zx plane and the interface lying in the
xy plane, the p wave has B = (0, By, 0), with

B,(z, x) = exp(iKx)B(z), (25)

where K has the same meaning as for the s wave. B satisfies
[cf. I (30)]

(26)

with asymptotic forms8

exp(iqtz) - rp exp(-iqlz) - B(z) - / tp exp(iq2z).

(27)

The required Green function satisfies

8z (180d ) + (2 e G = K(z-)

and is given by9 [with B±(z) = exp(+iqoz)]

(28)

The simplest variational trial function for E(z) is Eo(z).
This gives the values F0 and So for F and S, where

Fo = j dzAq2 (z)E 0
2 (z) = -2iql(r perts-rO) (20)

and

SO= F 0 + J dzAq 2 (z)EO(z) J dmAq2
( )Eo(v)G(z, A).

B+( )B_(z)

i(Ql + Q2)

(21) Gp(z, A) =

The corresponding variational estimate for r, is [using Eq.
(20)]

F0 AAr.var = - pr pert (22)
so

B_(z)[B,(v) - rOB_(D)]

2iQ, i'~

B_()[B+(Z - r, 0B_(z)]

A/ 2iQl

B+(v)[B_(z) + rpOB+(z)] P =

2iQ2 -

7-1
B+(z)[B_(i) + rOB+(t)]

1/1 1-1 2iQ 2

B+(z)B_(2)

i(Ql + Q2)

(29)

: i' 2~~~~~4
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(Ql = qie, and Q2 = q2/E2 ; rpo is defined below.) B now
satisfies an integrodifferential equation [Eq. (A.10) of Ref. 9]

B(z) = Bo(z) + J d~Av(r) {K2B(r)G(z, P) + dB d-G} I

(30)

where Av = 1/e - 1/Eo and

exp(iqlz) - rpo exp(-iqlz) (z < 0)

Bo(z) tpo exp(iq2Z) > (31)

Here9

Ql - Q2
-P Ql + Q2

-2 tpo= 2Q,

E-l Q + Q2
(32)

An exact expression for rp is obtained from Eq. (30) by
extracting the coefficient of exp(-iqlz) as z - -a-. This is
[cf. I (35)]

r~ r~0 - IQ J' d~Av (isB B d +rp-:ro2iQl |-a ( dP)

and may be rewritten as

Arp =- 2I f dD (AvK2BBO - AECCO),

(33)

(34)

where Ae = e - eO, C = dB/edz, Co = dBo/eodz. The first-
order perturbation expression is obtained from Eq. (34) by
replacing B by Bo and C by Co. (This is equivalent to lowest
order in Av to replacing dB/dD by dB0 /dD but is preferable
since C is continuous at a discontinuity in e, whereas dB/d is
not). Thus

1 1.
Ar pert =- f dD(vK 2Bo2 - AeC0

2). (35)
2iQl

The variational expression for rp is obtained by operating
on Eq. (30) with

dz -AvKB -d (A d)] (36)
E., [ dz AVdz

The resulting equation can again be put in the form F = S,
where

12 dB dB0\
F = dzAv BB + dz = 2iQlrp (37)

is of first degree in the unknown B and

S = dzAvK2B [B- dAv (K2BG + dB aG)
dBF tBf ( dO dB8G\

+ f dbv dB [ddB _ I d~Av K 2B-+ II
dz [dz a ~ z d~ aza~j

(38)

is of second degree in B. We again find that 6S = 26F, so
b(1P/S) = 0 and

Fo = J dz(AvK 2Bo2 - AeC0
2) =-2iQlArp Pert. (40)

In the evaluation of S we must take care to include the
-Eo(z)b(z - t) singularity in a2G/Ozda. We find that

S=| (Av(2B 2
- AEC2) -K41 dzAvB f d~&BG

+ 2K2 J dzAvB J ddAeC(OG/E0 8a)

-| dzAeCJ dAEC EI(Z)E0 () a (41)

where

z aG)r _zG+E 0 (Z)3(Z. d-
(42)

is the regular part of a 2G/8zaD. The value of So is now found
by replacing B by Bo and C by Co in Eq. (41), and the
resulting variational estimate for the reflection amplitude
has the form

Ar rvar = - 2-Ar pertSo (43)

To second order in the interface thickness, Eq. (43) gives
(after considerable reduction) the terms rp, + rP2 as given in
Ref. 7, Eqs. (5) and (29). Thus the variational expression,
Eq. (43), is correct to second order in the interface thickness.
At grazing incidence, Arpvar tends to zero when el rz E2, thus
giving the correct rp value. 8

4. ADAPTATION OF THE HULTHEN-KOHN
VARIATIONAL METHOD TO REFLECTION
PROBLEMS

We have seen that the adaptation of Schwinger's variational
technique in scattering theory to reflection has led to s and p
reflection amplitudes that are correct to second order in the
interface thickness and are correct at grazing incidence.
These desirable features have been obtained at the cost of
some complexity, and we shall now show how the simpler
Hulth6n-Kohn variational method' 0"'1 of scattering theory
may be adapted to reflection problems.

We begin with the s wave, for which the exact amplitude E
satisfies Eq. (2), and consider the functional

(d 2E+
,PEl= f dE, + q2Et J- dz2 (44)

of the trial function Et, which we take to have the asymptotic
forms

exp(iqlzl) + rt exp(-iqlz) - Et - tt exp(iq2z). (45)

We now write Et = E + 6E; because of Eq. (5) the asyifiptotic
forms of 6E are

Ar var - - .S
2iQl

The simplest trial function for B(z) is Bo(z).
the values Fo and So for F and S, where

(39)

This gives

br exp(-iqlz) - 6E - bt exp(iq2z), (46)

where 6r = rt - r and bt = tt - t (we drop the subscript s for
the moment). We find that
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For the zeroth-order trial function Bo [defined in Eq. (31)],&P = -,[E + bE] - P[E]

= [EdbE/dz - bEdE/dz]7', (47)

plus terms of second order in 5E. IThis result follows on two
integrations by parts and use of the fact that, from Eq. (2),
1[E] = 0.} From Eqs. (5) and (46) we then obtain the result
that Id = 2iqlr, which can be written in the form of a
variational principle:

- 4 - 2iq1 r) = 0. (48)

In the application of this principle, we use a trial Et (and the
corresponding rt, tt) to evaluate 4[Et]; then from Eq. (48) we
obtain

cI[Et] - 2iqlrt = 4P[E] - 2iqlr + higher-order terms in 5E.

(49)

The variational estimate for the reflection amplitude is thus

rvar = rt - D[Et]/2iql. (50)

As an example, consider the simplest trial function Et = Eo,
the solution of Eq. (9). On writing q

2
= q 0 2 + Aq2 and using

Eq. (9) we see that

'[E0 1] = J dzAq2 EO2 , (51)

which we recognize as the F 0 of Eq. (20). Thus the trial
function Eo leads to the first-order perturbation-theory re-
sult [Eq. (15)]

rsvar = r 0 - F0/2iql. (52)

There are corresponding results for the p wave: We de-
fine the functional

P[Bt= J dzBt{+ (e 53) + - ) (5)
of the trial function Bt. The variational principle now has
the form

5(41 + 2iQ1 rp) = 0. (54)

rpvar = rpo + 4 0o/2iQl

= rp 0 - 2iQ dz^v{K 2 B 0 + (dBo/dz)21. (55)

This is not the same as the perturbation result [Eq. (35)]:
there is agreement only to lowest order in Au = 1/E - 1/Eo. In
consequence, Eq. (55) does not give the correct result to first
order in the interface thickness [Ref. 7, Eq. (5)] and does not
agree with rsvar at normal incidence.

The adaptation of the Hulthen-Kohn variational method
to reflection problems is thus seen to give results that are
inferior, for the simplest trial functions, to those obtained
from adapting the Schwinger method. This is compensated
for by the greater simplicity of the Hulth6n-Kohn method,
which makes possible the use of more-sophisticated trial
functions.

5. COMPARISON OF THE PERTURBATION
AND VARIATIONAL RESULTS

We begin with a comparison according to general criteria
(for arbitrary interfacial profiles) and then look at the re-
sults for a particular model profile. The general criteria are
that r, and r, should be equal at normal incidence (the s and
p waves are then physically indistinguishable); that r, -1 -
and rp - 1 at grazing incidence8 ; that r, and r, should be
correct to second order in the interfacial thickness7; and that
r, and r, be free of divergence for reflection between like
media.' The status of the theories with respect to these
general criteria is summarized in Table 1, for the case in
which the input or trial functions for all three theories are Eo
and Bo.

We shall now see how the theories perform in the special
case of a uniform layer of dielectric constant E, located be-
tween z 1 and Z2 = Z1 + AZ. Only the s-wave reflectivity will
be examined, as a function of interface thickness Az and as a
function of angle of incidence for fixed Az. We need Fo and
So, and these depend on the positioning of the step profile
Eo(z). We assume for the moment only that this lies between
z1 and .2 . For this configuration we find the s-wave results

Table 1. Comparison According to General Properties of the Reflection Amplitudesa

r, Correct r, Correct r, Free of r, Free of
rp = r8 rho-1 rp - 1 to Second Order to Second Order Divergence Divergence

at Normal at Grazing at Grazing in Interface in Interface When When
Method Incidence Incidence Incidence Thickness Thickness El = E e =El

Adaptation of
Hulthen-Kohn no yes(iu) yes(u) yes(c) no no no
variational method

First-order
perturbation yes yes(u) yes(u) yes(c) no no no
theory

Adaptation
of Schwinger yes yes yes yes yes yes yes
variational method

The symbol (u) denotes a property valid only for unlike media (el •d (2); the symbol (c) denotes the property being conditional on the positioning of the step pro-
file so as to make XA = 0.
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first-order perturbation result [Eq. (52)] gives, to second
order in the interface thickness,

Arp =-F0/2iql = - * ( )
2iql q, + q2

O. 04 11; <

X [X1 + 2iq2X2 + * * *]-

o 1 2 3

(c( /c)Az
Fig. 1. Reflectivity at normal incidence, as a function of the thick-
ness Az of a uniform film. The exact, perturbation, and variational
results are denoted by curves e, p, and v, respectively.

v 8

30
- _ _ _ - ,7

60 j/go

/p ..
0

Fig. 2. Ratio of the s reflectivity estimates to the exact reflectivity,
as a function of the angle of incidence. The film thickness is about
one third of a wavelength ((w/c)Az= 2, Az =Xo/7r). As the reflectiv-
ity increases monotonically with angle of incidence by a factor of
nearly 30, the perturbation (p) and variational (v) results show
maximum deviations of about -70 and +7%.

Fo = - E - E2)(l + r 0)2 z2j+ ( 2 )
c

(60)

On comparison with the exact (to this order) r, given in Eq.
(23), we see that the perturbation result is correct to second
order in the interface thickness if the relative positioning of
e(z) and Eo(z) is chosen so as to make Al = 0. This is the
equal area rule of Ref. 4:

Jdz(E-El) =rl dz(E2 -E), (61)

which can always be satisfied if E is real and El 5) E2. For the
profile under consideration, this condition implies that

Z,= -E2 - e z
E2 - El

e - e

Z2= E El Az.
Z2 2 - El

(62)

The question of optimum positioning of the reference
profile is discussed further in the next section. Here we
simply compare the results obtained using the condition
(61). The first-order perturbation theory and the adapta-
tion of the Hulth6n-Kohn variational theory results are
equivalent for the s wave and are denoted by p in Figs. 1 and
2. The results from the adaptation of the Schwinger varia-
tional theory are denoted by v. The exact results (given in
Refs. 2-4) are denoted by e. The figures illustrate the de-
pendence of R, = I rj 2 on interface thickness, and of R,/Rsexact
on angle of incidence, for the values el = 1, E = (4/3)2, E2 = (3/
2)2, representing reflection from a layer of water on glass.

- (e -ej)z 1 [J+(0j) + 2ro + r02ji(0 1)]I, (56)

where

(i = qzi, ji(0) = exp(±iO)sin 0/0; (57)

and

So = Fo + 2 (Il + I12 + I22), (58)

where

=( 2q1 ) z1 { (1 - ro - ro2)[1+ rj(0 1)] -I+(01)

+ ro3j-(2k1) + 2ro[ro exp(-2ikl) -iP111,

(E - el)(E - E2)( + ) zr z2ijo (k2 )[1 + r)j_(¢1)],112 = (q1 + q2)

{= (E - 2 )(I + ro)) 2 { (2)
122 2q2 z- J + k2

+ exp(2i0 2 )[r0j+(0 2) - 1] - rj+(2P2)1. (59)

When El = E2, these results reduce to those obtained in
Section 5 of Ref 1.

We now specify the positioning of the step profile: the

6. DISCUSSION

We see from Table 1 that the adaptation of Schwinger's
variational theory to reflection problems has provided esti-
mates for the s and p reflection amplitudes that satisfy all
the currently known and verifiable general criteria. From
the figures we see that the variational result is a considerable
improvement on the perturbation result for the same input
wave function.

We mentioned above the problem of the optimum posi-
tioning of the reference profile. For the variational meth-
ods, this positioning is an implicit variational parameter.
We have not yet succeeded in solving the optimization prob-
lem in a general way, except in the long-wave limit, where
the equal area rule gives the optimum positioning for the
perturbation theory, whereas the adaptation of Schwinger's
method is correct to second order in the interface thickness
for all positionings. Our numerical experiences is that the
perturbation results are sensitive to the positioning of EO
(and can be much worse than displayed in Figs. 1 and 2),
whereas the variational results are insensitive to this posi-
tioning.

The theory given here clearly works best for interfaces
that are thinner than a wavelength. Work is in progress on a
perturbation-variation theory that can cope with thick in-
terfaces as well.
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