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Formulas are derived for the reflection and transmission amplitudes due to a stratification with 
discontinuities in density p or sound speed c, or both. The formulas are exact in the case of a 
uniform layer (p and c constant within the stratification), and accurate down to surprisingly 
low frequencies for nonuniform layers. At very low frequencies these formulas ultimately fail, 
but there a long-wave theory is available. An additional limitation on the applicability of the 
theory given here is that it fails at classical turning points: Thus total reflection and tunneling 
are excluded. Comparison with an exactly solvable stratification model is made, from zero 
frequency up. 

PACS numbers: 43.20.Fn, 43.20. Bi 

INTRODUCTION 

In a recent paper, • a variety of results were derived for 
the reflection and transmission of acoustic compressional 
waves by an arbitrary stratification, including high- and low- 
frequency limiting forms. A particular application of the 
high-frequency formulas was to a stratification that is 
smooth, except at a finite number of planes where there are 
discontinuities in the derivatives of the densityp or the sound 
speed c, or both. The purpose of this article is to extend these 
results to include the possibility of discontinuities in the val- 
ues ofp and c at the boundaries of the stratification, as well as 
in their derivatives. Such discontinuities are commonly 
found, 2 and thus a theory of reflection from such stratifica- 
tions is desirable. The discontinuities dominate the reflec- 

tion process, and a perturbation theory or the Rayleigh ap- 
proximation (Sec. III of Ref. 1, and Ref. 3) do not provide 
an adequate starting point. An alternative formulation is giv- 
en here, which leads to results that are exact in the high- 
frequency limit, and also exact for the uniform layer at all 
frequencies. At low frequencies the formulas derived here 
fail (except for the uniform layer), but there the limiting 
forms derived in Sec. II of Ref. 1 can be used, as we shall see. 

The problem being discussed is shown schematically in 
Fig. 1. A plane acoustic pressure wave is incident from medi- 
um a onto an arbitrary stratification, extending from depth 
z = a down to depth z = b. A representative profile for c is 
shown on the right. The sound speed c(z) and the density 
p(z) will, in general, have discontinuities in value as well as 
in derivative at the boundaries. 

I. FORMULAS FOR REFLECTION AND TRANSMISSION 
AMPLITUDES 

For the geometry of Fig. l, with a plane wave of angular 
frequency co propagating in the zx plane, the acoustic pres- 
surep has the formp(z,x,t) = exp i(Kx - cot)P(Z), where 
K is the x component of the wave vector, and is a constant of 
the motion [K = (co/ca)sin 0a = (co/cb)sin 0b, where 0, 
and 0b are angles of incidence and refraction]. The differen- 
tial equation for P(z) is 4-7 

d (p_• dP) co--•--• K •. (1) P •zz • q- q2P= O, q2(z) -- c2(z) 
In media a and b, the normal component of the wave vector 
q(z) takes the values 

q. = (co/c.)cos 0•, 

qb = (co/co)cos 06 = ( co/c• ) ( c] - c• sin 2 0• ) •/2. 
The reflection and transmission amplitudes r and t are de- 
fined by 

re iq•z q- re -iq"z (z <a), 
P(z) = luF(z) q- vG(z) (a•<z•b), (2) 

Ire 'q• (z > b). 
Here, F and G arc two in&pendent solutions of ( 1 ) within 
the stratification, and u and v are constant coefficients. As 
shown in Ref. 1, if F and G are known, then r and t can be 
found from 

r = e 2'• Q. Qb (F,G) + iQ. (F,•) + iQ• (•,G) - (F,•) 
Q.Q• (F,G) + iQ. (F,•) -iQ• (•,G) + (F,•)' 

(3) 
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,x 

Ca 
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FIG. 1. Schematics of reflection and transmission by a nonuniform stratifi- 
cation with discontinuities in density p and sound speed c at its boundaries. 
Only the sound-speed profile is shown. 
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t ---- e i<• - a• 2iQ, (F 2 • - • G2 ) 
Q, Qb (F,G) + iQa (F,•) - iQb (•,G) + (F,•)' 

(4) 

In (3) and (4) and in the remainder of this article, the 
following shorthand is used: a = qaa,/• = q•b,Q, = q,/p,, 
Qb = qb/P•, 

(F,G)=F, Gz--GiF z, (F,•)=F,•:--G,•:, etc., 
(•) 

where F• = F(a + ), F 2 = F(b -- ); • stands for the deriva- 
tive of Fat z = a +, divided by the value ofp just inside the 
stratification, namely Pt, •2 = F' ( b -- )/P2, with similar no- 
tation for G. 

In special cases one can find analytic solutions of ( 1 ), 
and then r and t can be found exactly. We are interested in 
getting approximate r and t for any discontinuous stratifica- 
tion of the type shown in Fig. 1. To this end we approximate 
Fand G by the Liouville-Green waveforms (see Reft 7, Sec. 
6-2 for their properties, and a brief historical note that ex- 
plains the name given to them, in contrast to the common 
WKB or JWKB designation): 

F= (Q,/Q)'%"•, Gm(Q:/Q) e , (6) 

where Q(z) = q(z)/p(z), Q• = q•/p•, Q2 = q2½2, and the 
phase integral •(z) gives the accumulated phase at z: 

•(z) = d•q(•). (7) 

The resulting approximate values of (F,G) to (F,G) are then 

(F,G) m - 2i sin 

(EG) miQ• ( - 2 cos A4 + •2 sin A•), 

(•,G) miQ• (2 cos A 4 + ),• sin A•), (8) 
(F,G) miQ• Q2 [ - 2 sin 

- I• T2 sin A• ]. 
Here, A• is the phase increment on going through the strati- 
fication from a to b: 

•b b 2 ) 1/2 dzq(z) = • • dz(- • sin 2 0• . (9) A• =. c. 
Also appearing in ( 8 ) are the (internal) boundary values 
and •2 of the dimensionless function 

q• -q- ß, (10) 
I 

where Q =-- q/p. This function, and its derivative divided by q, 
should be. small throughout the stratification if the Liou- 
ville-Green functions (6) are to be good approximations 'to 
the exact solutions of ( 1 ), since from (6) we see that Fand G 
satisfy the equation 

d ' q2(1 I d7 1 •)F==0. (11) 
Thus the approximations fail at low frequencies (7 is propor- 
tional to o i ) and also whenever q is small, as happens at 
grazing incidence, and at classical turning points (zeros of 
q). From ( 1 ) we see that q2(z) stays positive, and classical 
turning points will not occur, if c(z) <%/sin 0•. This in- 
equality covers both total reflection, which occurs 
sin 0• > c,,/%, and the possibility of "tunneling" through a 
region of negative q2 but with c• < %/sin 

From. (8), we find the reflection and transmission am- 
plitudes on substituting into (3) and (4). We expand these 
in powers of 7/: 

r=ro +rl +.'., t=to +tl +'". (12,) 

The zeroth-order amplitudes are, with c and s short for 
cos A• and sin A& 

ro = e•,.• (Q•Q• - Q•Qi )c - i(Q•Q• - Qt Qz )s (13.) 
(Q•Q2 • Q•Qi )c - i(Q•Q• + Ql Q2 )s' 

to = e,(•_ •) 2Q• (Ql Q• ) •/• 
(Q•Q: + QoQ, }c - i(Q•Q• + Q, Q: )s' 

(14) 

When Ql = Q2 = Q, these reduce to the uniform layer values 
(given in different form in Refs. 4 and 5) 

e2i• Q(Q• - Q• )c - i(Q•Q• -- Q2)s r• =. (15;) 
Q(Q• + Qb)c-i(Q•Q• + Q:)s' 

t•=d(• •) 2Q•Q (16) 
Q(Q• + Q•)c- i(Q•Q• + Q2)s' 

Note that a nonuniform layer could have Ql = Q2; to zeroth 
order in •; the approximation used here will give the same 
reflection and transmission amplitudes as a uniform layer, 
but a correction appears in the first-order terms. 

The contributions of first order in 7 to the reflection and 
transmission amplitudes are 

• (r: rl )d + (Q•r, + Q2Y2 ) s2 + 2iQ•Q:7q cs] rl __ e2,•iQ•Q l [ Q2 _ 2 
[ (Q•Q._ + Q•Q• )c - i(Q•Q• + Qi Q= )s] 2 ' 

t l : e i(a - •) Q• ( Q, Q• )'/2 [ (Q• Q: Y2 - Q• Q i 7/1 ) S -- iQl Q2 (Y, - Y2 ) c ] 
[(Q•Q2 + Q•Qi )c- i(Q.Q• + QiQ2)s]: 

When there is no discontinuity in Q at either boundary 
(Q• = Q, and Q2 = Qo ), ro is zero and t o reduces to the 
perfect transmission value e"" • (Q,/Qb)•/•e '•, while r• 
takes the value 

e2i'•i(y2e2i•-- Yl )/4, 

(1'7) 

(18) 

I 

which is equivalent to Eq. (51 ) of Ref. 1. 
The above theory is based on the assumption that 7/and 

its derivative dy/d(• = q • dy/dz are both small. The ap- 
proximations thus fail at low frequencies (except for the uni- 
form layer, for which 7/is identically zero). There we have 
the long-wavelength expansions derived in Sec. II of Ref. 1. 
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To second order in the interface thickness (order being the 
power of a dimensionless quantity like roAz/c, ), the reflec- 
tivity is given by four integrals, namely: 

I• = dzp(z), J• = dz q2(z), 
p(z) 

12 = dzp(z) d• q2(•) (19) 
p(•-), 

J2 = dz q2(z) d• p(•). 
•'(z) 

When there is absorption, there is a first-order correction to 
the zero-thickness reflectivity 

Rst½, [ (Qø -Qb) ] 2 (20) = (O• •Q•) ' 
[The subscript step indicates a sudden (step) transition 
from medium a to medium b. ] When there is no absorption, 
the correction to Rstep is second order in the thickness of the 
stratification, • 

R = R•p • [4Q•Qo/(Q• + Qo)4] 

• [(Q•Qd•)• + J• - 2Q•J• - 2Q•I: ] +"'. 
(2•) 

The high- and low-frequency expressions will be compared 
with exact reflectivities for a solvable model profile in the 
next section. 

II. EXACT AND APPROXIMATE REFLECTIVITIES FOR 

THE EXP-EXP STRATIFICATION 

In Sec. IV of Ref. 1, analytic solutions for Fand G were 
given for two model stratifications. We will use the one in 
which both p and c vary exponentially with depth to com- 
pare the approximate expressions of the previous section 
with exact results. The exponential variation of p and c is 
defined in terms of two lengths: 

p(z) =p•e (z "•/•, l = Az/ log(p2/pt ), (22) 
c(z) = c•e (z-a)/L, L = Az/ log(c•/c• ). (23) 

For this stratification, the integrals defined in (19) take the 
values 

ß •2 T a'• - - IK C• 

1/l + 2/L -2 •c •' + K 1 -- . c• t22 2 

[The reader is reminded that K is the component of wave 
vector along the interface: K = (co/c,)sin 0•. ] 

For the high-frequency approximations, we need ?'•, ?':, 
and A4. From the defining relation (10) for ?', and using 
Q = q/p and q2(z) = 092/c2(j) -- K 2, we find 

Tq/ (25) 

Into this general expression, we insert the exp-exp profile 
values 

l dc I 1 dp_ l -- (26) 
cdz L' pdz l 

and then obtain ?'• and ?'2 by substituting the values q• and q2 
for q and c• and c2 for c. The phase increment A• across the 
stratification, assuming no absorption and angle of incidence 
less than arcsin (co/c•) so that q remains real, can be 
found analytically • for the exp-exp profile: 

A• = L {K [atn(q•/g) - atn(q•/K) ] + q, -- q•}. (27) 
With these results, we can use the high-frequency formulas 
(13) and (17) for r 0 and r•, and calculate the reflectivity 

RH = Ir0 q- r, 12. (28) 
Figure 2 shows the reflectivity from a model exp-exp 

stratification, with acoustic parameters chosen to corre- 
spond to the Tufts abyssal plain, as presented by Chapman. 8 
The exact reflectivity is obtained from the results of Sec. IV 
of Reft 1, the low-frequency curve from (21) and (24), and 
the high-frequency curve from (13), (17), (25), (27), and 
(28). 

We see that the low-frequency approximation is good up 
to about ro•z/% = 1 (•, •>6Az), while the high-frequency 
results are good from about (o•z/% = 2 (• <3•z). In the 
intermediate region, the errors can be 20% or more, and it 
may be necessary to use numerical methods 6'•-• to obtain 
the reflectivity. 

0.4' 

FIG. 2. Normal incidence refiectivities for an exl•exp stratification, as a 
function of frequency. Note that the dimensionless parameter •oAz/% is 2rr 
times the thickness of the stratification divided by the wavelength in medi- 
um a. The solid curve is the exact reflectivity, the dashed curves are the low- 
and high-frequency approximations, as indicated. The parameters used 
were: p• = l, p• = 1.5, /2 2: 1.7, p• = 2.2 (g cm 3), and % = 1.5, 
c• = 1.7, c2 = 2.3,% = 5.2 (kin s-I). 
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