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Abstract
We show that ψ = R(ξ)S(η) eimφ , a product of radial and angular oblate spheroidal functions
and an azimuthal factor, cannot represent physical free-space scalar beams. The reason lies in
the discontinuity in the longitudinal derivative of ψ in the focal plane, where ψ is not a solution
of the Helmholtz equation on the disc ξ = 0.

Keywords: spheroidal, beams

(Some figures in this article are in colour only in the electronic version)

It is known that the Helmholtz equation

(∇2 + k2)ψ = 0 (1)

is separable in the general ellipsoidal coordinate system plus
its ten degenerate forms [1]. Of particular interest is the oblate
spheroidal coordinate system [1–3], related to cylindrical polar
coordinates (ρ, z, φ) by

ρ = b[(ξ 2 + 1)(1 − η2)] 1
2 , z = bξη, φ = φ,

(2)
in which the Helmholtz equation (1) becomes (with β = kb){

1

ξ 2 + η2
[∂ξ(ξ 2 + 1)∂ξ + ∂η(1 − η2)∂η]

+ 1

(ξ 2 + 1)(1 − η2)
∂2
φ + β2

}
ψ = 0. (3)

Separation of the partial differential equation (3) leads to
wavefunctions ψ which are products of a ‘radial’ function
R(ξ), an ‘angular’ function S(η), and the azimuthal factor
eimφ , with m taking integer values:

ψ(ξ, η, φ) = R(ξ)S(η) eimφ . (4)

Wavefunctions of this form were suggested as exact non-
paraxial scalar beams [4]. Kiselev [5] has noted that
‘solutions obtained by separation of variables in oblate and
prolate spheroidal coordinates . . . have singularities related to
particular features of coordinate systems and do not satisfy

(the Helmholtz equation) in the whole space’. (See also the
comment on [4] in the last paragraph of [6].)

We have previously shown that only a subset of the
wavefunctions (4) can represent physical beams [7]. Here we
show that none of them can. That does not preclude their use
in the large β paraxial case, but then the Gaussian beam

ψG(ρ, z) = b

b + iz
exp

[
ikz − kρ2

2(b + i z)

]
(5)

and its Gauss–Laguerre generalizations are simpler to use.
We note in passing that exact non-separable solutions

of the Helmholtz equation are known [8–10]. The problem
with these is the singularity on the critical circle ρ = b,
z = 0. On removing the singularity by combining waves
travelling in opposite directions [11–13], one has the problem
of non-physical free-space propagation in both the +z and −z
directions. Thus these non-separable solutions are unphysical
free-space scalar beams.

Separation of the partial differential equation (3), by
substitution of the product wavefunction (4), leads to the radial
and angular equations

(ξ 2 + 1)R′′(ξ)+ 2ξ R′(ξ)+
[
β2ξ 2 + m2

ξ 2 + 1
− α

]
R(ξ) = 0

(6)

(1 − η2)S′′(η)− 2ηS′(η)+
[
β2η2 − m2

1 − η2
+ α

]
S(η) = 0.

(7)
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Figure 1. The oblate spheroidal coordinate system. A section in the
zx plane is shown. The three-dimensional picture is obtained by
rotating the figure about the z-axis. The confocal ellipsoids (solid
curves) are surfaces of constant ξ . The central ellipsoid ξ = 0 is the
disc ρ � b, z = 0. The confocal hyperboloids (dashed curves) are
surfaces of constant η. In the focal plane z = 0 the region outside the
disc ρ � b corresponds to η = 0 (thick line).

For given β = kb and integer m, a set of values αmn(β)

(n = 0, 1, 2, . . .) of the separation parameter α gives angular
solutions Smn(β, η) finite at η2 = 1. These functions have
expansions in powers of 1 − η2, as follows [2, 3]:

n − m even : Smn(β, η) = (1 − η2)m/2
∞∑

=0

Cmn
2
 (1 − η2)
 (8)

n −m odd : Smn(β, η) = η(1−η2)m/2
∞∑

=0

Cmn
2
 (1−η2)
 (9)

(with similar but different expansion coefficients Cmn
2
 in the

even and odd cases). Thus the angular functions are even or
odd in η according to whether n − m is even or odd.

We now consider the properties of oblate spheroidal beam
wavefunctions of the form (4), in the focal plane z = 0. The
oblate spheroidal variables have the ranges −∞ < ξ < ∞,
0 � η � 1, and the z = 0 plane is represented by the disc
ρ � b or ξ = 0 and the remainder by ρ � b or η = 0 (see
figure 1).

We make the following demands on a physical scalar beam
wavefunction ψ:

(i) ψ must satisfy the Helmholtz equation (1). (Note that this
implies that the derivatives ∂zψ and ∂ρψ exist and are
continuous: a discontinuity in the first derivative would
imply an infinite second derivative, with nothing in the
free-space Helmholtz equation to cancel it.)

(ii) The integral
∫ ∞

0 dρρ|ψ|2 must be finite (2π�z times this
integral represents the probability of finding a particle

in a transverse section of thickness �z of a Schrödinger
particle beam, for example).

(iii) The z-component of the probability density flux Jz ,
proportional to Im(ψ∗∂zψ), must be non-zero and finite,
at least in the central part of the focal plane (otherwise
the wavefunction ψ would not represent a propagating
beam). (We could also require that the total flux through
any section of the beam be finite, which implies that the
integral

∫ ∞
0 dρρ Im(ψ∗∂zψ) is finite, but shall not need

to.)

The oblate spheroidal wavefunctions

ψmn(ξ, η, φ) = iR(3)mn(β, ξ)Smn(β, η) eimφ (10)

where n − m is odd, and R(3) = R(1) + iR(2), were shown
in [7] to satisfy condition (ii) and also to have physically
reasonable isophase surfaces. However, the continuity of the
derivative ∂zψ is suspect, as is evident in figure 3 of [7]. From
equation (19) of [8]

∂zψ = 1

b(ξ 2 + η2)
{η(1 + ξ 2)∂ξ + ξ(1 − η2)∂η}ψ. (11)

Consider ψ = R(ξ)S(η) (the factor ieimφ in (10) is
omitted, to simplify the expressions):

∂zψ = 1

b(ξ 2 + η2)
{η(1 + ξ 2)R′S + ξ(1 − η2)RS′}. (12)

In the focal plane z = 0 we have

∂z(RS) =

⎧⎪⎪⎨
⎪⎪⎩

S(η)

bη
R′(0) (ξ = 0, ie ρ � b)

R(ξ)

bξ
S′(0) (η = 0, ie ρ � b).

(13)

We have already established in [7] that n−m must be odd,
so from (9) S(η)/η will be finite as η → 0, and S′(0)will exist.
It remains for us to examine the existence of R′(0) and of the
limit of R(ξ)/ξ as ξ → 0. Clearly both will exist if R(ξ) is a
continuous odd function of ξ . But R(ξ) must be proportional
to R(1)mn(β, ξ) + iR(2)mn(β, ξ) for a beam propagating in the +z
direction, as follows from the asymptotic forms (βξ → ∞) [3]

R(1)mn(β, ξ) → 1

βξ
cos

[
βξ − π

2
(n + 1)

]

R(2)mn(β, ξ) → 1

βξ
sin

[
βξ − π

2
(n + 1)

]
.

(14)

For given m and n, R(1) and R(2) have opposite parities [3],
so they cannot both be odd, and thus neither can R(ξ) be odd.

In the example shown in figure 3 of [7], namely m = 0,
n = 1, R(1)01 is odd in ξ and R(2)01 is even in ξ . Further R(2)01 (β, ξ),
shown for β = 2 in figure 2 together with its derivative, is
not analytic at ξ = 0, having a discontinuous derivative there.
This is the cause of the blade-like appearance of the |ψ|2 plot
(figure 3, [7]), and also means that the radial equation (6) is not
satisfied inside the disc ρ � b, z = 0.

We now demonstrate a more general result, not dependent
on specific properties of the R(1,2)mn (β, ξ) and Smn(β, η)
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Figure 2. The radial spheroidal function R(2)
01 (β, ξ) and its derivative

(solid and dashed lines, respectively), drawn for the highly
non-paraxial case β = 2. As β increases, the discontinuity in the
derivative at ξ = 0 rapidly decreases, and is not visible on this scale
when β = 5.

spheroidal functions, namely that no single separable product
wavefunction of the form

ψ(ξ, η, φ) = R(ξ)S(η)(φ) (15)

can represent a scalar beam. From (11) we have

∂zψ |ξ=0 = 1

bη
R′(0)S(η)(φ) (16)

∂zψ |η=0 = 1

bξ
R(ξ)S′(0)(φ). (17)

The derivative ∂zψ must be finite on the critical circle
{ρ = b, z = 0} or {ξ = 0, η = 0} (condition (iii)). Thus
the necessary (but not sufficient) conditions for the finiteness
of ∂zψ on the critical circle are

R′(0)S(0) = 0 and R(0)S′(0) = 0. (18)

The conditions (18) will be satisfied if one or more of the
following hold:

(a) R(0) = 0 and S(0) = 0

(b) R′(0) = 0 and S′(0) = 0

(c) R(0) = 0 and R′(0) = 0

(d) S(0) = 0 and S′(0) = 0.

(19)

If (a) holds then ψ(ρ, z = 0) = 0, making Jz zero in the
entire focal plane, which is contrary to condition (iii).

If (b) holds then ∂zψ|z=0 = 0, again making Jz zero in the
entire focal plane.

If (c) holds then ψ(ρ � b, z = 0) = 0, giving zero
Jz through the central disc of the focal plane, which is non-
physical (consider paraxial beams).

If (d) holds then both ψ and ∂zψ will be zero for η = 0,
i.e. for {ρ � b, z = 0}, not a fatal flaw. But if S(0) and S′(0)
were both zero, the series expansion of S(η) would start with
the second or higher power of η, whereas the indicial equation
of (7) gives the exponents 0 and 1.

Thus the separable form of (15) cannot represent a scalar
beam.

Electromagnetic beams may be constructed from scalar
solutions of the wave equation. For example [13, 14] the
TM, TE, ‘LP’, and ‘CP’ beams have their vector potential A
proportional (respectively) to

(0, 0, ψ), (∂yψ,−∂xψ, 0), (ψ, 0, 0) and (−iψ,ψ, 0).
(20)

(The quotation marks indicate that the ‘LP’ and ‘CP’ beams
are fully linearly and circularly polarized only in the plane
wave limit: it has been shown that perfect linear or circular
polarization cannot exist in finite beams [14].)

The expressions in (20) are only the simplest of an infinity
of possible vector potentials representing electromagnetic
beams. As these vector potentials depend linearly on ψ

or its derivatives, the reasons given against the form ψ =
R(ξ)S(η) eimφ for scalar beams make it unlikely, in our view,
that a separable wavefunction can be made the basis of physical
electromagnetic beams.
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nonparaxial beams of the scalar Helmholtz equation Opt.
Lett. 29 430–2

[5] Kiselev A P 2006 Localized light waves: paraxial and exact
solutions of the wave equation (a review) Opt. Spectrosc.
102 603–22

[6] Sheppard C J R 2007 High-aperture beams: reply to comment
J. Opt. Soc. Am. 24 1211–3

[7] Lekner J and Boyack R 2010 Constraints on spheroidal beam
wavefunctions Opt. Lett. 35 3652–4

[8] Izmest’ev A A 1970 One parameter wave beams in free space
Radio Phys. Quantum Electron. 13 1062–8

[9] Deschamps G A 1971 Gaussian beams as a bundle of complex
rays Electron. Lett. 7 684–5

[10] Landesman B T and Barrett H H 1988 Gaussian amplitude
functions that are exact solutions to the scalar Helmholtz
equation J. Opt. Soc. Am. A5 1610–9

[11] Sheppard C J R and Saghafi S 1998 Beam modes beyond the
paraxial approximation Phys. Rev. A 57 2971–9

[12] Ulanowski Z and Ludlow I K 2000 Scalar field of nonparaxial
Gaussian beams Opt. Lett. 25 1792–4

[13] Lekner J 2001 TM, TE and ‘TEM’ modes: exact solutions and
their problems J. Opt. A: Pure Appl. Opt. 3 407–12

[14] Lekner J 2003 Polarization of tightly focused laser beams
J. Opt. A: Pure Appl. Opt. 5 6–14

3

http://dx.doi.org/10.1364/OL.29.000430
http://dx.doi.org/10.1134/S0030400X07040200
http://dx.doi.org/10.1364/JOSAA.24.001211
http://dx.doi.org/10.1364/OL.35.003652
http://dx.doi.org/10.1007/BF01032775
http://dx.doi.org/10.1049/el:19710467
http://dx.doi.org/10.1364/JOSAA.5.001610
http://dx.doi.org/10.1103/PhysRevA.57.2971
http://dx.doi.org/10.1364/OL.25.001792
http://dx.doi.org/10.1088/1464-4258/3/5/314
http://dx.doi.org/10.1088/1464-4258/5/1/302

	References



