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Reflection and transmission ellipsometry of a uniform layer
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We examine the general properties of the ellipsometric quantities p = rp/r, andT = tp/t, for a nonabsorbing uniform
film. At fixed angle of incidence and for variable thickness, r moves periodically along circles (as is known) and p
along quartics in the complex plane. For the special case of a film between like media we derive envelopes (and
corresponding bounds on r and p) as functions of the dielectric constants of the layer and its bounding medium. In
the case of unlike media on either side of the film, bounds are found for Re r and Im r; for e2 > E1E2 (where el, e, and e2
are, respectively, the dielectric constants of the medium from which light is incident, of the film, and of the
substrate), we find an approximate upper bound for the ellipsometric quantity -p (defined as Im p when Re p = 0).

1. INTRODUCTION

Consider a uniform nonabsorbing layer of thickness Az and
dielectric constant E, bounded by uniform media of dielectric
constants e1 = ni2 and e2 = n2

2. In what follows we take light
to be incident from medium 1 and partially transmitted into
medium 2. The optical properties of this system have been
well studied,1-4 but some properties of interest have not been
determined. Here we focus on the ellipsometric quantities p
= rp/r, and r = tp/t,, where r and t are the reflection and
transmission amplitudes and the subscripts s and p refer to
TE and TM polarizations, respectively. By examining the
behavior of r and p for a fixed angle of incidence we are able
to place restrictions on the values of r and p as complex
functions of e1, e, and E2. These restrictions will be of use in
making and interpreting ellipsometric measurements.

In the notation of a recent book on reflection4 (cited here
as TR), the ellipsometric ratios are given, for example, from
Azzam and Bashara, 3 Sec. 4.4, or from TR, Sec. 2-4, by

p + p'Z 1 + ss'Z
1 +pp'Zs+s'Z

n ,l (1-p)(I-p') 1 +ss'Z
n2 (1 + SM( + S') 1 + PP'Z

where

q,-q , = q-q2 Q_-__s= , s = q I pQ
ql + q q +q2 Q + Q

(1)

(2)

p= Q2 Q
PQ2+ Q

(3)

are the reflection amplitudes of the s and p polarizations at
the first and second interfaces and

At grazing incidence q, = n,(w/c)cos 01 tends to zero, and
s -1, p - 1; thus p -1 -1, in accord with a general result
proved in TR, Sec. 2-3. To obtain the limiting value of r at
grazing incidence, let y = 7r/2 - 01 be the grazing angle.
Then, if e 5d El and e2 Fd El,

qlcl&) = n, cos 01 = n, sin y = n1-y + 0(y3 ),

qc/w = (e - E1 sin 2 01)1/2 = (e-E1/2

X [1 + y2 el/2(e - El)] + 0(y4),

q2C/CL = (E2 - el sin2 01)1/2 = (E2 - e)1/ 2

X [1 + Y2 e 1/2(E2 - E1)] + 0(y 4 ).

It follows that at grazing incidence

s=-1 + 2nz + 0(y2), p = 1 - 26 + 0(a2)
A nlA

sI = 912 + 0(y 2),
A + $2

- g2 /E2 - E + J (/

$ 2/E2 + + /e

(5)

(6)

(7)

where ji = (E - el)1/ 2 and $2 = (E2 - El)1/2. The consequent
limiting value of r is

e 1-p' 1-s'Z
T - P S'I

njn2 1 + S' I + P'Z
(8)

in which s' and p' stand for the leading terms in Eqs. (7).
This limiting value depends on Az (however, r tends to a
value independent of Az, namely, E/el, in the special case el =
C2; this case is discussed in Section 2).

Z = exp(2iqAz). (4)

The q's are the normal components of the wave vector in the
three media, and Ql = q1/el, Q = qIe, Q2 = q2 /e2-

Some general properties of p and T follow immediately
from Eqs. (1) and (2). When there is no absorption within
the layer and sin2 01 < E/el, q is real and Z moves along the
unit circle in the complex plane. The motion is periodic in
Az, with period 7r/q; p and r correspondingly move on closed
curves in the complex plane. At normal incidence p = s and
p' =s',sop= landr= 1.

2. UNIFORM LAYER BETWEEN LIKE MEDIA

We consider first the special case where e1 = e2, for example,
a soap film in air or a layer of dielectriclike glass immersed in
a fluid dielectric. Then q2 = q, and s' = -s, p' = -p. The
ellipsometric ratios reduce to

p 1-SZ
s 1-PZ

1 -Pi -SZ
1 - S 1- PZ (9)

where

S-s 2 , p =p22 (10)
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Equations (9) are both bilinear (or fractional) transforma-
tions. Such conformal mappings have the property that
circles in the Z plane transform to circles in the complex
plane of the new variable. We can see this, and at the same
time obtain the center and radius of the transformed circle,
as follows. Both p and r have the form

w =f1- SZ
1 -PZ

1

Y

(11)

Thus

(wP - fS)Z = w - f. (12)

On multiplying Eq. (12) by its complex conjugate and using
ZZ* = 1, we find that

(1 - P2)ww* - f(l - SP)(w + w*) + f2(1 - S2) = 0. (13)

(We have assumed that e> El, so that s, p, and all coefficients
derived from them are real at all angles.) This is the equa-
tion of a circle: setting w = x + iy, we can write it in the form

(X - XO)2 + y 2 = r2 (14)

-1

_ - - o

, 7 A \90

x

Fig. 1. Paths of r = x + iy in the complex plane for fixed angles of
incidence and variable thickness of a layer between like media. The
largest circle is approached at grazing incidence. Thus Re r must lie
between unity and ElEi, while TIm rI cannot exceed (e - El)/2f,. The
loci are drawn for El = 1 and e = (3/2)2, representing glass in air.

where

1- SP s-Px0 =f l p2 r = f 1 _ .p2 (15)

These results may be obtained more directly by using the
fact that w moves on a circle whose center lies on the real
axis. Setting Z = +1, we obtain the points w-, on the real
axis of the w plane. Then x0 = (w_ + w+)/2 and r =
(w -w+)/2.

For the transmission ellipsometric ratio, f = (1 -P)

(1- S) and

1 - SP
X=(1 - S)(1 + P),

S-P( (1S) ( 1 + P)
We note that for all circles in the r plane

XT -r, = 1.

boundary between semi-infinite media with dielectric con-
stants El and e.

The envelope of a set of curves O(x, y, a) = 0 for variable
parameter a is given by the simultaneous solution of 0 = 0
and aq0/Oa = 0 (see, for example, Ref. 5, articles 139 and 140).
Here a can be the angle of incidence 01 or some function of 01
that increases or decreases monotonically, such as s. For a
family of circles with center x0 and radius r,

4 = (X - XO)2 + y2-r2

a, =-2(x-x 0 ) dx _2r dr-
49a da da(16)

(19)

(20)

Setting 0 and Iolaa equal to zero, we obtain the parametric
equations of the envelope:

(17)

At normal incidence the center is at (1, 0) and the radius
tends to zero. At grazing incidence we take the limit as
,y - 0 in Eqs. (16), using Eqs. (6), and find that XT tends to
(E + el)/2E1 and rT tends to (E- l)/2E,. Thus the loci of r are
nested circles bounded by the largest, for which

(x- )\+Y= 2 2 'E
2el / 26,)

as shown in Fig. 1.
For the reflection ellipsometric ratio p = rp/r,, f = p1s, and

p 1-SPS- p2 p S-P
P S 1-P 2 (18)

[For determination of the envelope, discussed below, it is
convenient to treat the radius as an algebraic quantity, al-
lowing it to change sign with p at OB = arctan(E/El)l/2 . A
discontinuity in the slope of rp is thus avoided.] At normal
incidence the center lies at (1, 0) and the radius tends to zero.
At grazing incidence xp tends to-(e + Ei)/2E and rp to (e-El)/
2 e. The circle approached at grazing incidence intersects
the point (-1, 0). Note that both the center and the radius
are zero at OB = arctan(e/el)1/ 2 , the Brewster angle for a

drx=x0 -r
dx0

y = ±r [1- _ dr 2 1/2)\dx0/ (21)

For given dielectric constants el and E, x0 and r are specified
by the angle of incidence 01. Since the center and the radius
are specified in Eqs. (18) in terms of the reflection ampli-
tudes s and p, it is convenient to use one of these as the
parameter. The other amplitude can be eliminated by the
use of Eqs. (3), which implies that

1+s q= 1 + p Q EI q
1-s q 1-p Q1 eq, (22)

These relations, and those consequent, are due to Azzam.6

The apparent difference between these and Azzam's is due
to the use of different conventions: Azzam has p = -s at
normal incidence; we have p = s. (The relationship between
s and p and the electric- and magnetic-field components is
discussed in TR, p. 7.) From Eqs. (22) we obtain the identi-
ty

1 +p -El 1-s
1-p C 1+s

which gives p in terms of s or vice versa:

(23)
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1 - ss'pp' pp - ss'r= f
1-PP1

where

_nl (1 -p)(l -p )
n2 (1 + s)(1 + s')

At normal incidence, f - 1, xo - 1, and r - 0.
incidence,

f e 1-p'
nln2 1 + S'

Fig. 2. Paths of p in the complex plane for fixed angles of incidence
and variable thickness of a layer between like media. The paths are
circles, distorted to ellipses by enlargement of the vertical scale.
The dashed curve is the envelope. The values of el and e are for air
and glass, as in Fig. 1.

El-e-(El + E)S El-E-(El + E)pp=, = (24)
El +E -(El-E)s El + e- (e,-E)p (

The two reflection amplitudes are symmetrically related
by a bilinear transformation. If we denote the transforma-
tion by T, we see that T[T(z)] = z for all complex values of z.
In general, a transformation will have this property if there
exists a relation between z and T(z) that is symmetric with
respect to the interchange of z and T(z). In the case of the
reflection amplitudes, Eq. (23) is such an expression.

The derivative of p with respect to s is

dp - -4el
ds [El + e-(El-e)S]2

and, from Eqs. (18),
dr
dx 0

s dp [S - 3P + P2(3S - P)] + (1 - P 2)(S + P)
p ds

-- [1 + P(3P - 3S - P2S)] - (1 - P2)(1 + SP)
p ds

(26)

1 - P'

(27)

(28)

At grazing

p/ + s'
1 -P1

(29)

where s' and p' are given by the leading terms in Eqs. (7).
The limit point (largest value of Re T) attained at grazing
incidence is x0 + r. When E > E2, it follows from Eqs. (7) that
s' + p' > 0 at grazing incidence, so x0 + r - E/nln2. (In the
case of like media, this gives e/el, as before.) When E < E2,

s' + p' < 0 and x0 + r - n2/n, at grazing incidence. Figure 3
shows T for a layer of water on glass.

The reflection ellipsometric ratio, given by Eq. (1), no
longer has circles as the loci for fixed angle of incidence when
El #d E2. The paths are quartic curves, as we shall now show.
Equation (1) is a quadratic in Z, which we write as

aZ 2 + AZ + y = 0, (30)

where the coefficients a, f3, and y all depend linearly on p =rp+rs:
az = stp'(Pp -s A =p(s' + spp )p'-PSS'

y = PS - p. (31)

To find the loci at fixed angle of incidence, we eliminate Z
from Eq. (30) and the complex conjugate of Eq. (30). Multi-
plying Eq. (30) by Z* and the conjugate of Eq. (30) by Z and
using ZZ* = 1, we obtain

aZ + # + yZ* = 0, a*Z* + f* + y*Z = 0.

Thus

z -/*y - a*O
Z a 12 - h 12

and again using ZZ* = 1 gives

(32)

(33)

The envelope of p = x + iy is the concatenation of two curves.
Equations (21), (25), and (26) define the envelope from x = 1
until this curve is tangent to the circle for grazing incidence.
This circle then continues the envelope, which is shown in
Fig. 2.

3. UNIFORM LAYER BETWEEN UNLIKE
MEDIA

We now consider the case in which El 3^ E2, starting with the
transmission ellipsometric ratio, which is simpler. Equa-
tion (2) is a bilinear transformation of Z = exp(2iqAz), which
for fixed angle of incidence and variable thickness moves on
the unit circle; thus r moves on a circle in the complex plane,
as notod by Azzam.7 From Eq. (2) and the analogs of Eqs.
(11) and (15), the center and the radius of the circle in the T
plane are

0.2

0

-0.2

1.6

Fig. 3. Paths of T in the complex plane for fixed angles of incidence
and variable film thickness. The refractive indices used are n, = 1,
n = 4/3, n2 = 3/2.

M. C. Dorf and J. Lekner



Vol. 4, No. 11/November 1987/J. Opt. Soc. Am. A 2099

In terms of these we can define a generalized center x0 and
radius r by

300
50

-1 V UVv- 1

-0.2I
Fig. 4. Paths of p in the complex plane for fixed angles of incidence
and variable film thickness. The curves are quartics, which are very
nearly circles, as illustrated in Fig. 5. The dielectric constants are
as in Fig. 3.

x0 = (p- + p+)/2, r = (p - p+)/2.

These are

= ps(1 - S')(1 - P') - p's'(1 - S)(1 - P)
(1 - PP')(S - S')

r= ps'(l -S)(1 -P') -p's(l -S')(1 -P)
(1 - PP')(S - S')

Note that the denominator common to Eqs. (38) and (39)
goes to zero when S' = S(s' = As). The condition s' = -s can
be satisfied only if el = E2; in this case there is no divergence,
as Eqs. (38) and (39) reduce to Eqs. (18). The other possibil-
ity, s' = s, is satisfied when q2

= qlq2. This is one of the
conditions for zero reflection of the s polarization. At nor-
mal incidence it holds if E2

= ElE2. At oblique incidence it can
be satisfied only if E2 < e1e2, and then it holds at the angle of
incidence (see TR, p. 46)

0.2

0

l -0.2
Fig. 5. The 600 quartic of Fig. 4 (solid curve) compared with a
circle passing through the same points on the real axis (dashed
curve).

(1a12 - ly! 2) 2
- 1012(ldl2 + KyJ2) + 2 Re(a *# 2 y*) = 0. (34)

Thus, when e2 < ele2, no bounds (independent of angle of
incidence and layer thickness) can be put on p = rp/rs. On
the other hand, when e2 > elE2, as for a layer of water on glass
(illustrated in Fig. 4), the trajectories of p are contained in a
bounded region.

As illustrated in Fig. 5, the quartics are often closely ap-
proximated by circles. From the equation of these circles we
deduce some approximate properties of the p curve. The
circles are determined by the two points p+ corresponding to
Z = +1, as given in Eq. (26). As Z = exp(2iqAz) moves on
the unit circle, the circle in the p plane that passes through
the points pa at Z = ±1 is

We write this as p = xo- rZ, with center x0and radius r given
by Eqs. (38) and (39).

Polarization modulation ellipsometry8 has particular in-

Sin& a, /3, and -y are linear in p = x + iy, this is a quartic in x
and y, of the form

a(x2 + y 2 )2 + 2b(x2 + y 2 )x + C[(X - XO)2 + y2] = cr2. (35)

The coefficients in Eq. (35) are determined by Eqs. (31) and
(34); they depend in a complicated manner on E/El, E2/El, and
01. Because we make no use of the general coefficients, we
omit them. In the degenerate case where el = e2, a and b are
zero, and Eq. (35) reduces to the equation of a circle with
center xP and radius rp given by Eqs. (18). Since Eq. (35)
contains no terms of odd power in y, the quartic curves have
reflection symmetry about the x axis.

When Z = ±1 (2qAz respectively an even or an odd multi-
ple of 7r), p is real if the reflection amplitudes s, s', p, and p'
are real. (This holds in the absence of absorption within the
layer and the substrate for e and E2 greater than El sin2 O1.)
We call pa the values of p corresponding to Z = +1:

I:pp' ld+s' (36)
P 1 i pp/ S +S'

1

f max

a
-1 n 2 2 3 4

Fig. 6. Maximum value of T, the value of Im p when Re p = 0. The
curve results from approximating the quartic loci of p = rp/rs by
circles. The points are exact values of Tmax. The figure is drawn for
el = 1 and E2 = (3/2)2.

0.2

7 450 (37)

(38)

(39)

-0.4

= r [ E1 E2 - E
2 1]/2= rcinLl(el + E2-2E)J

(40)

P = '/2(P+ + p-) + 1/2(P+ - p-)Z. (41)
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terest in the angle at which Re p = 0 (the principal angle) and
in T, the value of Im p at this angle. When the paths of p are
approximated by circles, the envelope of p crosses the imagi-
nary axis when x0 = 0, at the points :ri. Thus an approxi-
mate upper bound on p (denoted by Pmax) is the value of Irl
evaluated at the angle 00 that gives x0 = 0. From Eq. (38),
this condition leads to a quadratic in u = el sin2 00, namely,

(El + E2 2 C 

( e ele2) 1 El2)

X (E(1 + E1 'l + E2-1)u - (E2 - ElE2) = 0. (42)

Substitution of the solution of Eq. (42) into Eq. (39) gives
the required upper bound on p. Figure 6 illustrates the
behavior of Tmax as a function of E for fixed El and e2 , for e2 >
ele2. (For E

2
<ElE2, Pmax diverges, as noted above; moreover,

in this regime the quartics are not well approximated by
circles.)

As E - (elE2)1/
2 = nln 2 from above, Pmax - 1. This result

follows from solving Eq. (42) in the above limit: we find that
00 - 0 and IH! - 1. By definition, rp = r8 at normal inci-
dence, and indeed the point x = 1 lies on the unit circle. As
E - n1 n2 and 01 - 0, this becomes the only point on the p
trajectory, in the sense that for E just greater than nln 2 , and
near normal incidence, p varies very slowly with layer thick-
ness near x = 1 and very rapidly elsewhere. For E2 >> ClE2, the
angle resulting from Eq. (42) tends to grazing incidence.
Again Irl approaches unity, but now the density of points on
the trajectory of p is concentrated at x = -1, consistent with
the general result (TR, Section 2-3) that rp/r, - -1 at

grazing incidence. We conclude that for all positive real
values of el, E, and e2 such that el < (ele2)01 2 < e, Pmax < 1.

When absorption occurs within the film, q has a positive
imaginary part, and Z = exp(2iqAz) spirals into the origin as
the thickness Az of the film increases. As a result, p and r do
not describe closed curves. However, absorption within the
substrate (E2 and q2 complex) does not alter the qualitative
behavior described above. The loci of r in general, and of p
in the case of like media, are still circles, and p still follows
quartics in the unlike-media case. The approximation of
these quartics by circles is no longer valid: for example, the
points p+ and p_ corresponding to Z = +1 no longer lie on the
real axis.
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