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Reflection at oblique incidence and the existence of a
Brewster angle
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We show that when the ratio rp/r, of the reflection amplitudes for the electromagnetic p and s waves is taken to be
1 at normal incidence, it will have the value-1 at grazing incidence. This result is valid for sharp or diffuse interfa-
cial profiles, for internal as well as external reflections, and in the presence of absorption and anisotropy within the
reflecting layer or its substrate. (The anisotropy of the dielectric function is limited to a difference in the response
of the system to electric fields perpendicular or parallel to the interface, characterized by eq and el.) Under these
conditions, there will always be at least one angle of incidence at which the real part of r/r, is zero. Under the
same conditions, the reflected s and p electric fields at grazing incidence are out of phase with the incident electric
fields, thus producing destructive interference at the mirror's edge in Lloyd's mirror experiment.

1. INTRODUCTION

The existence and location of a Brewster angle are of impor-
tance in ellipsometry and in particular in the application of
the polarization-modulation ellipsometric technique of Jas-
person and Schnatterly' to the study of liquid surfaces.2
There the quantity most easily measured is ;, the value of the
imaginary part of the ratio of the p and s reflection amplitudes
at the angle where the real part is zero. The angle at which
Re(rp/r 8) = 0 is one of several possible operational definitions
of the Brewster angle.3 In this paper we show that, under
rather general conditions, at least one angle of incidence will
exist at which Re(rp/r) = 0. We first establish that, provided
that the response of the planar system is independent of the
azimuthal angle, if r/r = 1 at normal incidence, then rp/r,
=-1 at grazing incidence. The existence of an angle at which
Re(rp/r,) = 0 then follows from continuity. An interesting
result obtained en route is that rp and r take the values +1
and -1 at grazing incidence, exactly and without ambiguity
of phase.

2. THE s-WAVE REFLECTION AMPLITUDE

We consider plane electromagnetic waves incident upon an
interface lying in the xy plane. When the propagation is in
the zx plane, E = (0, E, 0) for the s wave and E satisfies 4

v2 EY + 2Ey = w

C2 (1)

where c is the speed of light and is the angular frequency of
the (monochromatic) wave. When e, the dielectric function,
is assumed to be a function of z only, E = exp(iKx)E(z),
where E(z) satisfies

d 2E~ ( 2
d + _ K2 E = 0. (2)

K is the x component of the wave vector in either medium, so

if 01 and 02 are the angles of incidence and refraction, K =
(,Ej)1/2(/C)sind = (2)1/2(w/c)sin 02, where e1 and 2 are the
limiting values of E(z) at - and +c. The quantity

q2(z) = e(z)--K2
c2

(3)

is the square of the wave-number component perpendicular
to the interface; q(z) takes the limiting values q =
V"f/((o/c)cos 01 and q2 = VC(w/c)cos 02. E(z) has the as-
ymptotic forms

exp(iq1 z) + r8 exp(-iqlz) .- E(z) - t, exp(iq2z). (4)

This equation defines the reflection and transmission am-
plitudes r and t.

We now consider interfaces for which = for z < z 1 and
= 2 for z > Z 2; the thickness Z2 - Z 1 of the nonuniform region

can be large. The prescription includes, by a limiting process,
the dielectric functions used in diffuse fluid-fluid interfaces,
such as

e(z) = /2(fl + 2 ) - 1/2(El - 2)tanh[(z - zo)/2a]. (5)

In the example given, one could take z - zo = -z/2, 2 - Zo
= Az/2, and by making Az/a large enough, any desired ac-
curacy can be achieved. Now Eq. (2) is a second-order linear
differential equation and thus has two linearly independent
solutions [for an arbitrary form of e(z)]. We call these A(z)
and B(z) in the region z1 < z S Z2. Then

exp(iqlz) + r exp(-iqlz), z < z1
E(z) = aA(z) + B(z), Z, < Z < z2 - (6)

ts exp(iq2z), z >Z2

The continuity of E and dE/dz at z and Z2 gives us four
equations in the four Uinknown coefficients r, t, a, and .
Solving for r, we find5 (writing A for A(z1 ), A 1' for dA/dz at
z , etc.) that
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Iq 1q2(AlB 2 - B1 A2 ) + iqi(AlB 2'- BA 2 ') + iq 2(A1 B 2 - B1'A2) - (A1'B2'- B1 'A2 ')

iq2(Aj'B2 - B1'A2) + (Al'B2'- B'A 2 ')

The result that r, - -1 for grazing incidence follows imme-

diately on letting q, = V'_I(w/c)cos 01 - 0. It also follows

easily that the reflection amplitude for an arbitrary nonsin-
gular profile shape of extent Az approaches the step or sharp
interface value as Az tends to zero5:

rs- exp(2iqlzi) q- q2 as Az - 0. (8)
ql + q2

Note that even in the limit of a sharp transition from El to E2,

there is an arbitrariness in the phase of the reflection ampli-

tude (associated with the arbitrariness of the location of the
step relative to the origin). However, at grazing incidence,

when q1 - 0, this arbitrariness disappears, and the reflection

amplitude is known in magnitude and in phase. The incident

and reflected waves are then moving parallel to the interface,

and there is no motion perpendicular to the interface to give
rise to a phase shift associated with the path difference 2z,

between the incident and reflected waves.
We note also that the electric field is reversed on reflection

at grazing incidence under all conditions (including total in-
teral reflection). This is a general property of waves satisfying

equations of the form d2 t/dz2 + q24 = 0. For example,

nonrelativistic quantum particles of mass m and energy E,
moving in a potential V(z), satisfy a Schr6dinger equation in

which the z variation has this form, with q 2(z) = (2m/h 2)[E

- V(z)] - K2. Thus we have proved that, at grazing inci-

dence, the reflected probability amplitude for electrons,
neutrons, etc., will be equal in magnitude to, and out of phase

with, the incident probability amplitude.

3. THE p-WAVE REFLECTION AMPLITUDE

We again take the incident and reflected waves propagating
in the zx plane and the interface lying in the xy plane. For
the p wave, B = (0, By, 0), By = exp(iKx)B(z) (when e is a

function of z only), and B(z) satisfies 4

- 0 exp(iKx)[exp(iq1z) - rp exp(-iq z)]

-sin 02
-E,-- 2 tpexp(iKx+iq2z). (12)

The reflection amplitude is defined as the ratio of the coeffi-
cient of exp(-iqlz) to the coefficient of exp(iqlz). We see
that the reflection amplitudes for E. and E- (the electric-field
components parallel and perpendicular to the interface) have
opposite sign. At normal incidence, there is no physical dif-

ference between the s and p waves. E, is then zero, and (for
our definition of rp and tp) rp = r5, tp = t. The opposite
convention (with rp = -r, at normal incidence) is also in
use.6 ' 7

At normal incidence (K = 0), the Maxwell equation v X E

=-(1/c)aB/Ot gives aE./Oz = i(o./c)By; thus B, the solution
of Eqs. (9) and (10), must be proportional to dE/dz, where E
is the solution of Eqs. (2) and (4). This is indeed the case, as

may be verified by substituting dE/dz for B in Eq. (9) and
using Eq. (2).

We will now derive a general expression for rp, analogous
to the result of Eq. (7) for r8. Let C(z) and D(z) be two lin-
early independent solutions of Eq. (9) within the interval (zi,

Z2 ). Then

rexp(iqlz) - rp exp(-iqlz), z <Zi

B(z) yC(z) + D(z), zl < z < Z2
I(E2 1/2

t-I tp exp(iq 2 z), Z > Z2

(13)

The form of Eq. (9) shows that dB/edz must be continuous
(discontinuity in dB/edz would give rise to a delta-function
term). On using the continuity of B and dB/Edz at z1 and Z2,

we obtain four equations in the four unknowns rp, tp, 'y, 5.
Solving for rp, we find that

r = -exp(2iq zj) QlQ 2 (C1D2 - D1 C2) + iQi(ClD2'- D1 C2 ') + iQ 2(CV'D2 - D1'C2) - (C'D 2'- Dl'C2 ')

QlQ 2(C1D 2 - D1 C2 ) + iQ(CD 2'- D1C 2 ') - iQ 2(Ci'D 2 - D1 'C2) + (C1 'D2'- Di'C2Y)
(14)

d dB\) + _K - B = 09
d z \ E z \c 2 E

We take the asymptotic forms of B(z) to be3

exp(iqiz) - rp exp(-iq z) - B(z) - 2 tp exp(iq2z).

(10)

The reason for the factors -1 and (ej/el)1/2 multiplying rp and

tp is that we wish r, and rp, and t, and tp, to refer to the same

quantity (here chosen to be the electric field) and to be equal

to normal incidence. The electric-field components of the p
wave are found from E = (ic/eW)v X B, the time-harmonic
consequence of v X B = (e/c)cdE/dt. From Eq. (10) we find

that

Cos exp(iKx)[exp(iqjz) + rp exp(-iqlz)]

Ex Cos2 tp exp(iKx + iq2Z), (11)

where C1 denotes C(z 1), C 1' denotes dC/dz at z1, etc., and Qi

= qi/Ei, Q2 = q 2/E2. On setting Qi = 0, we find that rp - 1
at grazing incidence; the method used in Ref. 5 to prove Eq.

(8) gives

rp - -exp(2iqlzl) Q - Q2 as
Ql + Q2

Az -. 0. (15)

The fact that rp - 1 at grazing incidence shows, together
with Eq. (12), that the electric field of the p wave is reversed
by reflection. That the electric field of the s wave is reversed
at grazing incidence was shown in Section 2. These results

hold whether the reflecting surface is metallic or dielectric,
sharp or diffuse, for internal as well as externalreflection, and
(as we show in Section 4) in the presence of anisotropy. It

follows that the Lloyd mirror experiment should produce
diffraction fringes, with destructive interference at the mir-
ror's edge, under these general conditions. This is in accord
with experiment.8
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4. THE EFFECT OF ANISOTROPY WITHIN
THE INTERFACE AND THE SUBSTRATE

In all real interfaces, even single-component monatomic
crystal-gas and liquid-gas systems,9 the dielectric response
of the system is in principle different for the electric-field
vector perpendicular and parallel to the interface. Two di-
electric functions, E(z) and Ell(z), thus enter Maxwell's
equations; the s- and p-wave equations now become (Ref. 10,
App. A)

d2 E+ (0 2

dz2 - K 2 )E =0 (16)

and

d (1 dB) + 2 (1
dz Cel dz lc2 el 17

We again have the result that, at normal incidence, B =
(constant) dE/dz. The s-wave equation has the same form
as before, with e replacing E and q 2

= E(I(W2/C2) - K 2 ; the
previous results thus follow. The p-wave equation now
contains both EII and ; outside the interfacial region the ef-
fective qB2 isEII(C02/ 2)-(eI,/E±)K 2 . ProvidedthatqBandqE
are equal inside medium 1 (which must therefore be isotropic),
the meaning of q is the same for the s and p waves. The
derivation of Eq. (14) proceeds as before [with C and D now
the solutions of Eq. (17)]. Thus the results that rp - 1 and
r- - -1 at grazing incidence remain valid in the presence of
anisotropy.

The average electrodynamic properties of many systems
are fully characterized by Ell and e, even when there is mo-
lecular orientation at the interface, provided that the orien-
tation is relative to the normal to the interface. When, how-
ever, there is alignment along a direction parallel to the in-
terface, as can be the case in some liquid crystals, the system
has lost azimuthal symmetry, and the description of reflection
in terms of s and p waves is no longer adequate.

5. EXISTENCE OF A BREWSTER ANGLE

We have shown that when rp/r, = 1 at normal incidence, r/r,
- -1 at grazing incidence. In the polarization-modulation
ellipsometry technique, the angle of incidence for which
Re(rp/r,) = 0 is the operational definition of the Brewster

angle. Since rp/r, moves in the complex plane from the point
+1 at normal incidence to -1 at grazing incidence, it follows
that it must cross the line Re(rp/r,) = 0 at least once (and in
general an odd number of times). This is a consequence of
the continuity of solutions of linear differential equations as
a function of the parameters of the equations (see, for exam-
ple, Ref. 11, in particular, Secs. 4 and 10 of Chap. 6).

The existence of at least one Brewster angle as defined
above is thus established for all planar reflecting systems for
which the s- and p-wave characterization is adequate. The
presence of absorption is implicitly accounted for: We have
not made the assumption that the dielectric functions of the
interface or substrate are real. Anisotropy has been shown
not to affect the main results, provided that the azimuthal
symmetry remains unbroken.
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