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Reflection of light by a nonuniform film between like media

John Lekner

Department of Physics, Victoria University of Wellington, Wellington, New Zealand

Received February 19, 1985; accepted July 15, 1985

We derive variational expressions for the s- and p-wave reflection amplitudes at a nonuniform (and possibly
absorbing) planar layer between like media, for example, a soap film in air. These variational expressions are
correct at grazing incidence, in contrast to first-order perturbation-theory reflection amplitudes, which diverge
there. The variational reflection amplitudes are also correct to second order in the ratio of the film thickness to the
wavelength of the incident wave. The results for an anisotropic film are also given.

1. INTRODUCTION

Charmet and de Gennes t have recently derived ellipsometric
formulas for reflection by an inhomogeneous layer bounded
by a uniform dielectric (liquids or liquid mixtures bounded
by glass are examples of practical interests1 2 ). Their method
was perturbation theory, analogous to the Born approxima-
tion in scattering theory. 3 As we shall see below, the corre-
sponding perturbation-theory results for reflection by an
inhomogeneous layer between like media fail at grazing inci-
dence: the first-order perturbation reflection amplitudes
diverge there. (For passive media, the reflection amplitudes
must not go outside the unit circle.) To deal with this
problem, we have adapted Schwinger's variational method
of scattering theory4' 5 to the reflection problem. With the
same input as first-order perturbation theory (the plane
wave of the first-order Born approximation), the variational
reflection amplitudes are correct at grazing incidence and
are further exact to second order in the ratio of film thick-
ness to wavelength. These results are derived in the next
three sections, comparison of r2J2, rI2, and r/r 8 with the
exact results for a simple model is made in Section 5. The
effect of anisotropy is considered in Section 6. To aid in the
derivation of the formulas in the anisotropic case, a first-
principles derivation of the equations satisfied by the s and p
waves is given in Sections 2 and 3.

2. S-WAVE REFLECTION AMPLITUDE

We consider plane electromagnetic waves incident upon a
film lying in the xy plane and characterized by a dielectric-
function profile, E(z). The media on either side of the film
have e = eo, a constant. When the propagation is in the zx
plane, E = (0, Ey, 0), and for monochromatic waves of angu-
lar frequency w twith time dependence exp(-ict)], the Max-
well equation v X E -(1/c)OB/Ot gives

O _ = i-B - i-B
,ax c

(1)

and By = 0. (c is the speed of light.) The complementary
equation V X B = (/c)dE/Ot gives

OBr, Ox c iEyE (2)

On eliminating B2 and B, from Eqs. (1) and (2) we obtain a
second-order partial differential equation for E,

d y + 2Y + e 2 =
0z2 Ox2 c2

Because e = e(z), we may write

EY(z, x) = exp(iKx)E(z),

where E(z) satisfies

d2E + q2E = q2(z) K
dz2

c

(3)

(4)

(5)

The separation of variables constant K is the component of
the wave vector along the interface. Thus

K = e sin O,
c

(6)

where 0 is the angle of incidence. The component perpen-
dicular to the interface is q(z) and takes the limiting value

q = -cos 0,c
(7)

within the uniform medium on either side of the film.
The reflection amplitude r and transmission amplitude t8

are defined in terms of the asymptotic forms of the solution
of Eqs. (5):

exp(iq0 z) + r exp(-iqoz) - E - t exp(iq0 z). (8)

One constructs a perturbation theory for r in terms of the
solution Eo(z) = exp(iqoz) for the case where E = eo every-
where. This is done by means of a Green function G(z, )
satisfying

dC +q 2 G=(z-r).
Oz

(9)

We can then write an integral form of Eqs. (5) in terms of E0
and G as

E(z) = EO(z) - J d~Aq2 (f)G(z, f)E(f). (10)

Iteration of Eq. (10) gives successive orders [in Aq2
= q2 - q

2

= (E-EO)c 2/c2] in the expansion E = Eo + E1 +.... To first
order in Aq 2,
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El(z) = - f dAq 2(P)G(z, )Eo().

The Green function appropriate to our problem is6

Gs(z D) = exp(iq 0lz - P1l)
2iq0

(11) var = /S2iqo

The simplest variational trial function for E(z) is Eo(z) =
exp(iqoz). This gives the values Fo and So for F and S where

(12)

The first-order perturbation value for the reflection ampli-
tude is obtained from Eq. (11) by taking the limit z - -o

and extracting the coefficient of exp(iqoz):

rsPert 
2iqo drq 2 (r)exp(2iqof). (13)

Note that it diverges at grazing incidence (as q0 - 0).
We now adapt Schwinger's variational method for the

r var =

F = dzAq2(z)exp(2iqz) = -2iq0 r8 Pert

[from Eq. (13)] and

1 2XrC
S = Fo + 1 J__ dzAq2 (z)exp(iqoz) J dAq 2 (l)

X exp(iqot)exp(iqjz - fl).

The corresponding variational estimate for r is

r pert

1 + (4qO2rpert)-l J dzAq2(z) {exp(2iqoz) I dAq2 (v) + [dAq2(t)exp(2iqofl}
_co~~~ ~ ~~~~~~ -X 

scattering problem4 '5 to the reflection problem. We rewrite~~~~
scattering probleM4, to the reflection problem. We rewrite
Eq. (10) as

E(z) + J dfAq2( )E(<)G(z, ) = Eo(z), (14)

multiply through by Aq2(Z)E(z), and integrate over all z:

J dzAq2(z)E2 (z) + J dzAq2(z)E(z) J dgAq2 (f)E(v)G(z, )

= J dzAq2 (z)E(z)Eo(z). (15)

We write this as S = F, where S (the left-hand side) is of
second degree in E and F (the right-hand side) is of first
degree in B. F is proportional to the reflection amplitude, as
we see by extracting the asymptotic form of E(z) from Eq.
(10) asz-> - ; this is

exp(iqz) - exp(-iq0 z) f dAq 2 (v)E(v)E 0 G9. (16)

Comparison of expressions (8) and (16) shows that the exact
reflection amplitude is

r = -FI2iqo. (17)

The variational principle for r is obtained by considering
the shifts 8S and F as E(z) is shifted by 6E(z): These are

At grazing incidence (go - 0) this variational expression
tends to -1, as is correct for any dielectric-function profile.7

Further, Eq. (24) is correct to second order in the film thick-
ness, as can be seen by comparing it with the expansion [Ref.
8, Eqs. (40) and (42)]

F - dzAq2 (z)z=s dzAq2(z)q

+ {i dzAq2(z)1 + .... (25)

3. pWAVE REFLECTION AMPLITUDE

We again take the incident and reflected waves propagating
in the zx plane and the film lying in the xy plane. For the p
wave, B = (0, By, 0); the Maxwell equation v X B =
(e/c)OE/Ot gives E, = 0 and

OY = i-E,
O9z C

dBY = i, 'E,.O R ,, WC (26)

The complementary equation v X E = -(1/c)OB/Ot gives

aE. E iB co
= =i-By

az ax C Y
(27)

BF= J dzbE(z)Aq2 (z)E0(z)

and

(18)

6S = 2 J dzAq2(z)6E(z) {E(z) + J dAq 2 Q()E(r)G(z, t) .

(19)

The expression inside the braces is Eo(z), by Eq. (14), so 5S =
26F. But S = F, so 5S/S = 26FIF, or

6(P/S) = 0. (20)

This is the variational principle: the correct E will ex-
tremize F2/S. Using Eq. (17) we thus have a variational
expression for r:

Elimination of E. and E, givesO (OBy, + d (iOB> +-oB =0
Oz e Oz Ax \ ax C2 y

Since E is a function of z only, we may write

By(z, x) = exp(iKx)B(z),

(28)

(29)

where K has the same meaning as for the s wave and B
satisfies

*K2) B = 0, V = le (30)

and has the asymptotic forms

exp(iq0 z) - rp exp(-iq0 z) -B - tp exp(iq0 z). (31)

(21)

(22)

(23)

- (24)

-
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(The reason for the minus in front of rp is that we wish r, and
rp to refer to the same quantity, here chosen to be the electric
field.7 ) It is possible to construct a perturbation theory for
rp in terms of the solution Bo = exp(iqoz) for the case in
which v = vo everywhere. The corresponding Green func-
tion (cf. the appendix of Ref. 9)

Gp(z = - 2iQ0

is a solution of

Qo = qo/e0 (32)

(33)

S= J dzAvK2B {B | dv [K2BG + dB

+ f(dzv dB f dB f ' [~A OG dCB 2 G] 1- ~ ~~ d_ A KYB-+ J

dz dz [ az dD d rI

(40)

A calculation along similar lines to that for the s wave (but
more complex) establishes that S = 26F. Thus b(F 2/S) = 0,
and the variational expression for r is, on using Eq. (39),

var _ F2 /S
2iQo

(41)

B now satisfies the integrodifferential equation [Eq. (A.10)
of Ref. 9]

B(z) = Bo(z) + J d~Av() {K 2 B(r)G(z, D + dB a¢} . (34)

An exact expression for rp is obtained from Eq. (34) by extract-
ing the coefficient of exp(-iqoz) in the limit as z -:

2iQf d (Av){K BBo + d d- (35)

This may be written

p 2iQ j, dr - e) K3BBo + (e -eo)CC 0}, (36)

where C = (1/e)dB/dz, Co = (1/eo)dBo/dz, in which form we
see the equivalence to the comparison identity expression
(46) of Ref. 9. We obtain the first-order perturbation theory
expression for rp by replacing B by Bo and C by C0 in Eq. (36).
(This is equivalent to lowest order in Av to replacing dB/dt
by dBo/dt but is preferable since C is continuous at a discon-
tinuity in the dielectric function, whereas dB/dt is not. A
direct consequence is that our rPert gives the correct first
term in the film thickness-wavelength expansion,8 to all
orders in Av.) We obtain

rppert = 1 df K I'Y1 12 - - 0Qo0 exp(2iqo0 ).r~ 2iQ0J~ Xo E

(37)

To derive a variational expression for rp, we rewrite the
integrodifferential equation (34) with the unknown B on the
left side and operate with

f dz {Av(z)K2B(z) -d (d v(Z) dB (38)

on both sides. We again write the resulting equation as S =
F, where S (the left-hand side) is second degree in B, and F
(the right-hand side) is first degree in B. We have, after an
integration by parts,

r JK2BB dB dB0l 
F = j dzAv + dz d z 2iQorp (39)

[by Eq. (35)]. The second-degree term S becomes, again
after integration by parts,

At normal incidence (K = 0), i/E(c/c)B is equal to dE/dz,
where E is the solution of d2E/dz 2 + E(W2/c2)E = 0 (see Sec. 3
of Ref. 7). Using this and the fact that

82G = GP- Efo(Z - '
(42)

we find that F = Feo S = S/eo. Thus rp and r are
identical at normal incidence, as are rvar and rvar for trial
functions satisfying the above relations.

The simplest variation trial function for B(z) is Bo(z) =
exp(iqoz). This gives the values F and S for F and S,
where, using EoAv = Eo - e =-Ac,

Fo = -2iQ 0 rpPert = J dz(AvK2 + AQ 0
2 )exp(2iq0 z) (43)

[see Eq. (37) and the discussion preceding it]. To evaluate
So we rewrite S [using Eq. (42)] as

= dz{AUK2B2
-AeC

2}

S 2 A dz1 vBAEAC C-
+ 2K2 dzAvB | dAeCI

-Q02 f dzAEC f dgAECG

-K4J dzAvBJ d'AvBG. (44)

We now replace B by Bo = exp(iqoz) and C by Co = iQo
exp(iqoz) to obtain

2iK2Qo '
S0 = Fo + Q dzAv exp(iq0z)

X d~A, exp(iqo0 )dG/d

- K4 J dzAv exp(iqoz) J d~Av exp(iq0o)G

+ Q0
4 dzAe exp(iqoz) J d~Ae exp(iqo0 )G. (45)

The corresponding variational estimate for the reflection
amplitude is

var =F 0 pert
sop (46)
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At grazing incidence (Q0 - 0) this variational expression
tends to 1, in accord with the general result 7 that the
reflected electric and magnetic fields are then precisely out
of phase with the incident fields.

In the long-wave limit, the leading terms of F0 and S0 are,
to second order in the film thickness,

Fo = o-2{qo2Xl - K2 Al + 2iqo0cj 2{q0 \2 - 2 +

(47)

SO- Fo = (2iq0 03) 1(q0
4

1
2 - K4A1 2 - 2(eoqK)2J2 ) + ....

(48)

where (cf. Ref 8, appendixes A and B)

Xn dz(c - )z'-, An = fo2 J dz (_ - _) r' (49)
_ C O e

and

I = dz J dsgn(z - [1 -e)] [e() - eo]. (50)

From these results we find that the variational reflection
amplitude for the p wave as given by Eq. (46) is correct to
second order in the film thickness [Ref. 8, Eqs. (41) and
(43)].

4. REFLECTION AMPLITUDES IN TERMS OF
FIVE INTEGRALS

The first-order perturbation theory approximations for the
reflection amplitudes can be expressed in terms of two Fou-
rier integrals (cf. Ref. 8, appendix A)

X(k) = J dz exp(ikz)Ae, (51)
fW- A

A(k) = Coj dz exp(ikz) A C (52)

These have the dimensions of length (or of length X dielec-
tric constant, if the latter is given a dimensionality). In
terms of X and A,

rPert - _ 2iq X(2qo), (53)

r pert = _ 1 [qo 2X(2q0 ) - K2A(2q]. (54)
2iqoc0

The variational expressions based on the same wave func-
tion as the first-order perturbation theory require three
more integrals. These are not Fourier transforms but have a
related character:

U(h) = J dzAE exp(ikz) J dAE (55)

+ f dtexp(ik)Ac},

2 ~ cF P AcIv)= c0 jdzA exp(ikz) dz
E ~~~~~~~E

+ d~exp(ik.,D (56)

f2

r k) = co d Ž { exp(ikz) 2 dAe-7 dtexp(ikfl)A}- (57)

They all have the dimensions of (length X dielectric con-
stants).2 (In both the and expressions, the first and
second terms are equal because of the z, symmetry of the
integrands.) In terms of these integrals,

c 2 /c2

_2iq X(2q)

w2/C2 (2qo)

2iqo X(2qo)

and

-2 [o 2X(2q0) - K2 A(2q0)l

rp [qo 4 4(2q9)-K4 z (2q) - 2q0
2 K2

r (2qo)]

1 + 2iq0 o0 [q0
2X(2q) - IA(2qO)]

(The numerators in each case give the first-order perturba-
tion result.) At normal incidence, when K - 0 and q0 -

colc -- ko, both reflection amplitudes tend to

- °o X(2ko)

r var =
1 +k 0 o (2ko)

1 + 2iEo X(2ko)

(60)

At grazing incidence, when q0 -0, the results rvar - -1 and
rpvar - 1 follow from

o(0) = X2(0); X (0) = A2(0). (61)

From Eq. (59) we see that a film between two like media is
transparent to the p wave (according to both the first-order
perturbation and the variational theories) at an angle

0 = arctan[X(2q,)/A(2qo)1'1 2. (62)

This is an approximate extension of the rigorous result8 that,
to lowest order in the film thickness, there is transparency at
0 = arctan(XJ/A)1 /2 . Note, however, that the ratio X/A is not
(in general) real. Complete transparency at a certain angle
is thus characteristic of thin films; as we shall see in the next
section, it also characterizes uniform films of any thickness.

5. COMPARISON WITH EXACT RESULTS FOR
UNIFORM FILM

For the important special case of a uniform film of constant
dielectric function , located between z and Z2 = z + Az in a
medium of dielectric function o, we have8

i(q2- q'-
r = exp(2iqozl) i(q q0

2)r
2qqo -i(q 2+ q 2) 

-rp = exp(2iqozl) 2Q - u + - I
2QQ0 _ i(Q2 +Q Q0 )r

(63)

and

John Lekner
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From Eq. (59) we thus obtain for the p-wave reflection
amplitude

Rn

0 . 1

0

r var =

1 (CJ/c)Az 3

Fig. 1. Reflectivity at normal incidence as a function of the film
thickness Az. The exact eflectivity (e) is the solid curve, the
perturbation result (p) is the dashed-dotted curve, and the varia-
tional result (v) is the dashed curve. In this and the following
figures, co = 1 and C = 2.

1

c/C Cos 20- ° sin2 d X(2qO)
2i~fi cos 0 L

+ W/C [os20 + E° sin2 0 (2qo)
2i+ Cos 0 \ J ?\(2qo)

(69)

This correctly gives transparency at = arctan(E/Eg)'/2. For
the ratio of the amplitudes we find [compare with Eq. (64)]

rvar 2~ ~
rp = [Cos2 0 sin 2 
r. var e

X

/C o-(2qo)

2i e cos 0 X(2q0 )

CO/C 2 +' 2 or(2q0 )
1 + i /c [cos2o + sin2 o] °

2iWe_ cos 0 f X(2qo)

(70)

[The s-wave reflection amplitude is given directly by Eq.
(58).1 We see that in each case we need X(2qo) and the ratio

P

30 600

1

90
Fig. 2. Reflectivity for the s wave as a function of the angle of
incidence at (/c)Az = 1. The exact, perturbation, and variational
results are denoted by curves e, p, and v, respectively.

__[2r Cos 6
L.

where

--C sin2 ol 2 +

- 2 kQ0

Q /

0
0

p

30 60 90
Fig. 3. Reflectivity for the p wave as a function of the angle of
incidence, at (w/c)Az = 1. The exact, perturbation, and variational

(64) reflectivities are all zero at 0 = arctan V/2 54.70.

Im
q = e K 2 , Q = q/E, = tan(qAz). (65)

Note that rp is zero at 0 = arctanV"7E, which is the same as
the Brewster angle for light incident from a medium with
dielectric constant EO onto a bulk medium of dielectric con-
stant E. A uniform film between like media is always trans-
parent to the p wave at the same angle, irrespective of its
thickness.

For the perturbation and variational expressions we need
the five integrals defined in the last section. These take the
values

X(k) = Ac exp(ikz1)[exp(ikAz) - 1]/ik,

u(k) = 2(AC)2 exp(ikzl)lAz exp(ikAz) - [exr

(k) = ° X(k), 2;(k) = ( )(k),Ec

(6(

/

-1 P

0. 2

0. 1

1

Fig. 4. The ratio r/r. in the complex plane, at (w/c)Az = 1. The
p(ikAz) - 1]/ikllik, exact (e) and variational (v) trajectories are shown by solid and

dashed lines, respectively; the perturbation trajectory lies along the
(67) real axis between +1 and -/2. All three trajectories start at +1 at

normal incidence and pass through the origin at 0 = arctan (c/fc)1/2

r(k) = 0. (68) 54.7°. Only the perturbation trajectory does not end at -1 at
grazing incidence.

0. 3

0
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o-(2q)/X(2qo). It is convenient to rewrite Eqs. (66) and (67)
in the form

X(2qo) = AELZ exp[iq 0 (z1 + Z2 )]j0 (qoAz), (71)

o(2qo) = (AEAZ)2 exp[iqo(z1 + Z2)]U0(qOAz) + i(qoiz)j,

(72)

where jo(x) = sin xix and jl(x) = sin x/x 2
- cos x/x are

spherical Bessel functions. It is then clear that /X, and
hence R, = I rj 2, Rp = I rp 2, and rp/r,, are all independent of
the location of the film, as they must be.

In Figs. 1-4 we compare the exact (e), perturbation (p),
and variation (v) expressions for the reflectivity at normal
incidence as a function of film thickness (Fig. 1), R, and Rp as
a function of angle of incidence (Figs. 2 and 3), and rp/r in
the complex plane as a function of angle (Fig. 4). The
comparison is for the values o = 1, = 2.

We see that the simplest trial function [the plane wave
exp(iqoz)] gives variational results that are far better than
the perturbation results when the film thickness is small
compared with the wavelength but that both results fail for
thick films. For example, the zeros in the reflectivity occur
at qAz = nr (n = 1, 2, . . . ), whereas the trial function
exp(iqoz) produces zeros at qoAz = nir. It is clear that a
theory that takes account of the variation in wave number
with variation in the dielectric function is required for
thicker films.

6. EFFECT OF ANISOTROPY

We will consider only systems with azimuthal symmetry
(about the normal to the surface), that is, those that are
characterized by two dielectric functions, eil(z) and EI(z) (in
our geometry, cx = y = li, cz = EI). We denote equations
(used earlier) modified to take account of anisotropy by
adding primes to their numbers. On eliminating B. and Bz
from Eqs. (1) and

0Bx d 1 c (
ax - x = _tE11 - Ey, (2')

we find that

a
2EY + 2EY co2 E O

Oz 2 ax2 +II Ec 2

and separation of variables by the substitution [Eq.
gives the equation

d2 E+ (Elj K2)E = o.

(3')

(4)]

(5')

All equations for the s wave derived earlier are thus modified
only by the replacement of E(z) by Eil(z).

The p wave is more complicated, since it samples (for a
general angle of incidence) both li and E1. Equation (26)
becomes0

aBy (
_ = Ell-Ex,

aBy = iel -EE.
ax c

(26')

Elimination of Ex and Ez from Eqs. (26') and (27) gives

a 1l By+ a 1 d~ Y+(J B=O
dz + d -By = 0.a \ell aZ aJ x CE IOx / c2 ~

(28')

Separation of variables by the substitution [Eq. (29)] then
gives

d ( dB)+ (2- 2K2)B 0,
(30')

where v = /ell and v = 1eI. The integrodifferential
equation now satisfied by B is

B(z) = Bo(z) + J dzG(z, ) [AV K2B() - d (vI di)]

= Bo(z) + J d4Av±K2BG + Av11 dBOG1 ' (34')

as may be verified by writing Eq. (30') in the form

( d) + ( - V0K2)B = Av 1K2B - d (AvI dB).

The exact rp is [cf. Eq. (A12) of Ref. 10]

rp = 2QI dt K2 BBo + (Elo)CCO (36')
rp=2iQ0 J . CO E 

where now C(M = (1/Ell)dB/d¢. The corresponding first-
order perturbation expression is

rpf= 2iQ0 f d¢{(d ± - 1)K - (el -o)Q 02} exp(2iqo0 ).

(37')

The variational expression is obtained by operating on
the integrodifferential equation with

dz {Av,(z)K2B(z) - - (AvIl(z)dB/dz)}-

The term that is first degree in B is again F =-2iQorp.

second-degree term becomes

S = dzAvK 2B B - d4[Av±K2BG

dB G } zAdB dB

|G d[ K d+ dB n2G -
- d[Av K2B -'- + AVII JF Oz j

We again have S = 2F and rvar = -F2 /2iQoS.
simplest trial function, Bo(z) = exp(iqoz), we have

Fo = E0
2[q 2X(2q) - K2 A(2q0)],

S0 = Fo + (2iq0E0
3 f)-[q04 (2qo)

- K4 (2q) - 2K2 q0
2r(2q 0 )],

where now

X(k) = J dz exp(ikz)AEll,

AC1
A(k) = o dz exp(ikz)

11

(38')

The

(40')

For the

(73)

(74)

(51')

(52')

John Lekner



Vol. 3, No. 1/January 1986/J. Opt. Soc. Am. A 15

or(k) = dzAell exp(ikz) J d~Af

+ f dtexp(ikh)fflji} (55')

Ac1

+ j d~exp(i/4) l (56')

r(k) = eoJ dz 1 exp(ihz) j dtAc

-| drexp(ik)Aci} (57')

The perturbation and variational expressions for r, and r,
have the same form as before [given by Eqs. (58) and (59)],
with the integrals for the anisotropic case defined above. At
normal incidence we have equality of the reflection ampli-
tudes, and, as before, rvar - -1 and rpv- -> 1 at grazing
incidence. There is again transparency at the angle given by
Eq. (62).

For the uniform but anisotropic film, Eq. (63) remains
valid, with qp2 = (1ico2/c2 - K2 , qp2 = Cic&/c2 - K 2 C1/c±, and Q2

= (l/Cii)w2/c2 - K2/c±E 1. The film is transparent to the p
wave when Q2

= Qo2[=(1/Co)w2/c2 - K2/Co2]. This is at the
angle

0 = arctan (75)
CO Io - o

The relationship between A and A is now

A(k) = A 1 C (k), (76)
C1I A 11

and so the perturbation and variational expressions for rp
again give the correct angle for transparency. Note, howev-
er, that these expressions give interference zeros at qAz =

nfr, whereas the s- and p-wave zeros occur at q8Az = nir and
qpAz = n-, respectively.

7. CONCLUSION

We have shown that the simplest variational expressions for
the s and p reflection amplitudes are a substantial improve-
ment over those of first-order perturbation theory. In par-
ticular, the troublesome divergence of the perturbation am-
plitudes at grazing incidence is replaced by correct limiting
values. The expressions derived include the possibility of
absorption and/or anisotropy within the film. All informa-
tion is in terms of five integrals over the (arbitrary) dielectric
function profile. The variational expressions are correct to
second order in film thickness/wavelength and work well
for films that are thin compared with the wavelength. For
thicker films, it may be possible to construct variational
expressions using Green functions appropriate to the short-
wave limit.
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