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Matrix methods for the calculation of reflection amplitudes
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Improved numerical techniques for the calculation of the reflection of electromagnetic waves by an arbitrary
stratified inhomogeneity are derived and assessed. The inhomogeneity is sectioned into thin layers, in each of
which the dielectric function is taken to vary linearly, or cubically, with depth. The matrices representing each
layer are calculated to third order in layer thickness.
calculations are also presented.

1. INTRODUCTION

We present improved matrix methods for the numerical
evaluation of reflection amplitudes for s and p polarizations
for an arbitrary planar stratified transition between two
uniform media. The reflection amplitudes r, and rp give the
reflectances R, = IrsI2 and Rp = IrpJ2 and the ellipsometric
ratio rp/rs. Matrix methods are reviewed and extended in
Chaps. 12 and 13 of a recent monograph (Ref. 1, hereafter
referred to as TR). All matrix methods approximate the
stratified inhomogeneous region by a set of N uniform or
nonuniform layers; the reflection properties are then ob-
tained from the product of N two-by-two layer matrices or
N + 1 two-by-two boundary matrices. In the conventional
approach, matrices relate the mutually perpendicular com-
ponents of the electric and magnetic fields from layer to
neighboring layer.2 Here we use layer matrices introduced
in TR, which relate the fields and their derivatives. In the
absence of absorption, the matrix elements are all real. The
standard approach leads to imaginary off-diagonal matrix
elements, complicating the process of taking matrix prod-
ucts. Figure 1 illustrates how an inhomogeneous transition
between uniform media of dielectric constants Ea and 6b is

approximated by a set of layers in each of which the dielec-
tric function varies linearly with depth.

For the s polarization, E = 10, exp[i(Kx - wt)]E(z), 01,
where K is the x component of the wave vector and is a
constant of the motion. At zn and zn+ E(z) takes the values
En and Enf+, its derivative D = dE/dz takes the values Dn
and Dn+1, and these two pairs are linked by the matrix Mn

1~al UMll21 M22 (1LDnsiJ Lm2 i m22J [DnJ

If the uniform media on either side of the inhomogeneity are
labeled a and b, and the wave is incident from medium a,
E(z) has the limiting forms

E = exp(iqaz) + r, exp(-iqaz)

E = t. exp(iqbz)

Here qa and qb are the z components of
media a and b. If sij are the me

Some general properties of the matrices used in these

MNMN-1 .. .Mn... .M2M1 , the s reflection amplitude is given
by

qaqbS12 + S21 + iqaS22 - iqsb11rS= exp(2 qqSzq)
qaqbs12 -s 21 + iqas2 2 + iq^s 1 1

(3)

For the p polarization, B = 10, exp[i(Kx - wt)]B(z), 01, and
the matrix Mn relates the values of B and C = dB/Edz at Zn
and zn+1; E(z) is the dielectric function. If now Pij are the
elements of MN... .Mn. . M1, the p reflection amplitude is
given by

QaQbP12 + P2 1 + iQaP2 2 - iQ6 P11

QaQaP12 - P21 + jQaP22 + iQbPll

where Qa = qa/Ea and Qb = qb/Eb. (With the definition of rp
used in TR and here, rp = r, at normal incidence, when there
is no physical distinction between the two polarizations.)

The simplest approximation replaces e(z) by a constant
value, En, within zn < z < zn+. The matrices Mn then
become, for the s and p polarizations, and with 5n = qn(zn+i -
Zn) qn6zn,

L os an
-q,,sin 6n

qn sin an COS an Qn-l S

cOs an [Qn sin an cos an

sin an

(5)

The numerical method based on these matrices taken to first
order in bzn is equivalent to the Euler method of solving the
differential equations (TR, Sec. 13-1). Natural improve-
ments are to go to higher order in 5Zn and to allow a variable
e(z) within a layer. Law and Beaglehole3 took a linear varia-
tion in E(z),

E(z) = En + (Z-Zn)b-n/5Zn (6)

<fn = en+1 - En)), and the corresponding matrix to first order
(z - Z), in bzn. In TR the linear approximation was taken to second

(z 2 ZN.l). (2) order in ezn. Here we derive expressions for matrices for
linear and cubic variations in e(z) taken up to third order in

the wave vector in bzn. But first we consider some general properties of such
atrix elements of matrices.
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2. GENERAL PROPERTIES OF THE LAYER
MATRICES

The matrices in Eqs. (5) are unimodular (have unit determi-
nants). Thus any approximate matrices derived from them
will be unimodular, to the appropriate order of approxima-
tion. For example, the matrices corresponding to linear
e(z), and taken to second order in bzn, will be unimodular to
second order in bzn.

The matrix Mn takes (En, DO) into (En+,, Dn+1) according
to Eq. (1). For the moment, we write this matrix as M(n, n +
1). The inverse matrix takes (En+,, Dn+l) into (En, Dn).
This is M(n + 1, n) so

M-l(n, n + 1) = M(n + 1, n). (7)

In other words, taking the inverse of M is equivalent to the
exchange of n and n + 1. Now the inverse of a unimodular
two-by-two matrix is

[mll M1712 -= M22 (8)

LM21 M22- L-M21 mill

Thus we have two symmetries. First, we can obtain M2 2

from ml, by exchanging n and n + 1. Second, each of the
off-diagonal elements is antisymmetric with respect to this
interchange.

At normal incidence there is no physical distinction be-
tween s and p polarizations, and rp = r,. From Eqs. (3) and
(4), on using the normal-incidence limiting values, qa - naw/
C, qb f nbl/C, Qa - nafl7/C, and Qb - nb'oW/c, where n =J/2
is the refractive index, we find the relationships

P11 h S22, P1 2 =-C2/w2S21,

P21 = C'02/C2S12 , P22 = Sll. (9)

3. CALCULATION OF THE MATRIX
ELEMENTS

In this section we derive general expressions for the s and p
matrix elements for an arbitrary profile. These expressions
are then evaluated, to third order in 5Zn, for the linear and
cubic profiles.

Expressions up to the second order in bzn were derived in
TR, Sec. 12-5, by using matrix methods. An equivalent
method that is due to Brekhovskikh 4 (explained in Sec. 5-5
of TR) is somewhat simpler to apply and will be used here.
The reflection amplitude r, for an inhomogeneity extending
from a to b is calculated in the form

Ib
un(z) = -iqb dAvnl(r)

b
vn(z) = -iqbl | d~q (r'_J(t). (12)

To evaluate r8 to third order we need u,(a) and vn(a) up to n
= 3. The resulting u(a) and v(a) are

ub
u(a) = I1- iqb(b -a) - f dzq 2(Z) (Z - a)

Ib
+ iqb a dzq2 (Z) (Z-a)(b-z) + .... (13)

ob rb
v(a) = 1 - ilqb J dzq2(Z) -! dzq2(z)(b - z)

+ i/qb J dzq 2(z) J d~q2(r)(z - ¢) + .... (14)

When E(z) is real (no absorption), so is q2
= Ew

2 /c 2 - K2 , and
thus for even n all un and vn are real, and for odd n they are
imaginary. We write u(a) = Ur + iui and v(a) = Ur + iVi,
substitute into Eq. (10), and compare with Eq. (3). This
leads to the identifications

Sli = Vr, S12 =-Uilqb,

S21 = qbVi' S22 = Ur- (15)

The p-polarization matrix elements may be obtained sim-
ilarly. The reflection amplitude is calculated in the form

= exp(2iqaa) QaU(a) - QbV(a)
a QU(a) + QbV(a) (16)

where now U(z) and V(z) satisfy the coupled integral equa-
tions

b
UWz = 1 -iQb I d ~E (r) VWr,

b
VWz = I1-iQb-l f d~e 1(r)q2(v) U(r). (17)

The results of iterating up to third order in the thickness are

b rb
U(a) = 1 - iQb J dzE(z) -fJ dze(z)

b b
X fZ d~q 2(r)/,e() + iQb f.dze(z)

r, = exp(2iqaa) qau(a) - qbV(a)
qaU(a) + qbv(a)

(10)

where u(z) and v(z) satisfy the coupled integral equations

b -1b ~2~U
u(z) = 1 - iqb I dpv(¢), v(z) = 1- iqb 1 f d~q2 (¢)u().

(11)

These equations may be iterated to give u = _ u,, and v =
Y vn, starting with uo = 1 = vo. The nth-order iterates are
nth order in the interfacial thickness. They are given, for n
> 1, by

Jr b
x I d~q2(r)/e(q) J de(E) + ....

b
VWa = 1 - iQb 1l Ja dzq 2 (Z)/,E(Z)

b b
- J dzq2(z)/E(z) IJ d~e() + . . .

b b
+ iQb-l dzq2(z)/E(z) J d~E(v)

b
'IX Jt d~q2(t)/E(t) + * ---

(18)

(19)

J. Lekner and M. C. Dorf



2094 J. Opt. Soc. Am. A/Vol. 4, No. 11/November 1987

I I I I Z

Z1 ZN
Fig. 1. A stack of N nonuniform layers bounded by media with
dielectric constants ea and Eb. The nth layer extends from Zn to Zn+l,

and in this case the dielectric function within the nth layer is ap-
proximated by the line passing through E(Zn) and e(zn+l) (linear fit).
The cubic fit, discussed in Section 5, is indistinguishable from the
exact e(z) on this scale.

We again write U(a) = Ur + iUi, V(a) = Vr + iV,, substitute
into Eq. (16), and compare with Eq. (4). This leads to

P= Vr, P12 = -Ui/Qb,

P21 = QbVi, P22 = Ur (20)

4. THIRD-ORDER RESULTS FOR A LINEAR
FIT TO e (z)

The above expressions are for a general stratification ex-
tending from z = a to z = b. We now specialize to a profile
that has e(z) linear in z [as given by Eq. (6)] and extends from
Zn to zn+,. An arbitrary profile can then be approximated by
a set of such layers, as illustrated in Fig. 1.

The matrix elements for the s polarization are, to third
order,

S11 = 1 + (bzn)2[K2/2 - W2/C2(2en + EnJl)/6],

S12 = 6Zn + (Wzn)3 [K2/6 - W2/c2 (En + En+n)/12],

S21 = aZn[K2
- co2/C2 (En + En+l)/ 2 ]

+ (bzn)3 [K4/6 - K2 W2/c2(en + enjl)/6

+ W
4 /c (E 2 + 3

EnEn+1 + En+i1/30],

S22 = 1 + (Wn )2 [K2/2 - w2 /c2 (en + 2EnJl)/6]. (21)

The corresponding results for the p polarization are

P11 = 1 + Wn )21K2[2(fn+j2/5fn)1o9(En+1/fn)

- En- En+1]/45fn - w 2/c2(E, + 2EnJ÷)/6j,

P12 = 5Zn(En + en+J)/2 + (Wzn)3 K2 [En+1
4 - En4-4En2En+2

X log (en+1/En)I/16(En) 3

- C02 /C2 (E 2 + 3 Enen+1 + En+ 2)/301,

P21 = bzn[f 2 log(En+1/En)/6n - W2/c2]

+ (Wzn) 3 W4/C4(en + EnJl)/12 + K9VI2/c'

X [6En(En2 + lOenen+1 + En+ 2 ) - 6(En3 + En+ 3 )

X log(En+1 /En)]/36(5fn) 3 + K 4[(en+1
2 + En2 )log(en+l/en)

- (en+ 1
2

-n2)/4(bfn)31'

P22 = 1 + (6Z I)21K2[Ec + en+l - (2 n g /En)]/45En

- cc2 /C
2 (2en + En+i)/61. (22)

For numerical work it is faster and more accurate to re-
place the terms containing log(En+i/en) by the leading terms
in the expansion in terms of ben/e,. We obtain

p 1 l 1 + (bz") 2 [K2 (2en + En+l)/6en - w2 /c2 (en + 2e6+n)/61,

P12
6
zn(En + EnJl)/2 + (bzn)3 [K 2 (En + enJl)/12

- W2 /C2 (EI2 + 3
enen+l + en+ 1

2 )/30],

P21 5zn[K
2 (en- 1 + En+i 1)/2 - W2/c 2]

+ (nzn)3[w4/c4(En + En+n)/12 - K2(&2/c2)/3

+ K 4 (En_1 + En+- 1
1 )/12],

P22 1 + (bZ")2[ K 2 (en + 2En+,)/6en+l - W2/c 2 (2en + en+l)/6].

(23)

5. THIRD-ORDER RESULTS FOR A CUBIC FIT
TO e(2)

The linear fit to e(z) in [Zn, Zn+l] uses just ef and en+1. A more
accurate fit can be obtained if the derivatives En' and en+1' are
known. The four values En, en+l, en', and en+1' are sufficient
for a cubic approximation to e(z) [see TR, Eq. (13.13)]:

E(z) En + (z - Zn)En' + 5n [36en - zn(2en' + En+0')I

+ ( Z )[Z(En' + en+l ) -266n] (24)

The resulting s wave matrix elements may be found from
Eqs. (13) and (14):

S= 1 + (Wnz)2)K2/2 - w2/c2 [(77n + 3En+l)/20

+ kzn(En'/20 -En+,/30)]},

S12 = bzn + (Wnz)31K2/6 - W2 /c2 [(En + enJl)/12

+ Zn(en' -En+')/60]},

S21 = bZnK 2
-0

2 /c2[(En + En+j)/2

+ 6zn(En' - En+1')/12Jj + (6zn) 3 fK4 /6

- K2 C02/c 2[(En + En+0)/6 + bZn(En' - en+1
1)/40]

+ w4/c4[74(en + en+1)2 + 124een+l

+ kzn( 26 en'En + 3 7 En fn+l -37nEn+1

-
2 6 En+1'En+1) + (Zn) 2 (2En- 5EnEn+

+ 2En+1 '2 )]/25201,

S22 = 1 + Wzn )2tK2/2 - w2/c2[(3en + 7EnJl)/20

+ bZn(En'/30 -En+1/20)]}. (25)

The elements Pij of the p-polarization matrices will not be
given. They are complicated, and (as we explain in Section
6) the cubic fit to e(z) gave results that were close to the
simpler linear fit, except in one circumstance.
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6. COMPARISON OF THE NUMERICAL
TECHNIQUES

In Chap. 13 of TR comparison is made between Li and L2,
the linear approximations taken to first and second order in
bzn. Here we compare Li, L2, and L3. The cubic approxi-
mations, C1-C3, were found in general to be similar to the
corresponding linear approximations L1-L3, except for pro-
files thin in comparison with the wavelength, i.e., for (w/c)Az
small. In that case only a small number of matrices is
required, and the cubic approximation is more accurate. In
general, however, we have found that a cubic fit to e(z),
which involves the calculation of the derivative of E(z) at
each boundary, is more trouble than it is worth.

The remainder of this section is restricted to comparison
of the linear approximations. In all cases we give the frac-
tional errors, with sign, expressed as parts per thousand, the
quantity displayed being 103(A/E - 1), where A and E are
the approximate and the exact values, respectively. The
dielectric constants EC = 1 and Eb = (4/3)2 are used in all three
tables. Table 1 compares LI, L2, and L3 for the Rayleigh
profile, defined by C = EC for z < a, e = Eb for z > b, and, for a <
z < b,

r -1/2 _ ea-1/2 -2
e(z) = (EaCl/

2 + eb- 1/2)/2 + (z - 2) eb Z - (26)

where z = (Za + Zb)/2 and Az = b - a. Figures 2-15 and 5-4 of
TR show the normal-incidence reflectivity for the exactly
solvable Rayleigh profile.

The next two tables compare L2 and L3 for the exponen-
tial profile, given by e = Ea for z < a, e = Cb for z > Zb, and, for
Za < Z < Zb,

C(Z) = (Cafb)" 2 exp z log -b (27)

where 2 = (a + b)/2 and Az = b - a. The s and p reflectivi-
ties and the ellipsometric ratio for the exponential profile
are displayed in Figs. 6-4-6-6 of TR. Table 2 shows errors in

Table 1. Fractional Errors (parts per thousand) in
the Normal-Incidence Reflectivity for the Rayleigh
Profile as a Function of the Interface Thickness Alza

WAZ Li L2 L3
C

0.2 -0.3 0.004 0.007
0.4 -1 -0.02 0.03
0.6 -3 -0.2 0.07
0.8 -4 -0.7 0.1
1.0 -4 -2 0.2
1.2 -3 -4 0.3
1.4 1 -9 0.4
1.6 10 -20 0.6
1.8 30 -30 0.7
2.0 70 -50 0.9

each of which e(z)

Table 2. Parts-per-Thousand Errors in the s and p
Reflectivities for the Exponential Profile as a

Function of the Angle of Incidencea

R,, R.,
Ola (deg) L2 L3 L2 L3

0 40 0.4 40 0.4
15 40 0.1 40 0.2
30 4 0.0 -30 -0.7
45 -10 -0.02 -10 -1
60 -4 -0.004 -1 -0.7
75 -1 -0.0006 -0.5 -0.2
90 0 0 0 0

a The layer thickness is approximately one half of the wavelength in medi-
um a, (w/c)Az = 3, and N = 30.

Table 3. Parts-per-Thousand Errors in the Real and
* Imaginary Parts of rl/r 5 at 45°, for the Exponential
Profile at (w/c)Az = 3, as a Function of the Number of

Layers, N
N L2 L3

10 600, -20 6, -5
20 650, -3 -0.2, -1
30 70, -1 -0.2, -0.6
40 40, -1 -0.2, -0.3
50 20, -0.5 -0.1, -0.2

R, and RP as a function of angle of incidence for fixed thick-
ness and number of layers. Table 3 compares errors in the
real and imaginary parts of rp/r,, at fixed thickness and angle
of incidence, as a function of N, the number of layers.

From the results shown here, and others like them, we
conclude that the linear approximation taken to third order
in the layer matrix thickness (L3) is generally much better
than the previous best matrix approximation L2, which in
turn was an improvement over LI. The increased accuracy
is obtained at the expense of slightly more complex expres-
sions to program [compare, for example, the S12 and S21

matrix elements in Eqs. (21), with and without the (bZ,)
3

terms]. There is a corresponding increase in computer run-
ning time: we found that for the same number of layers the
L3 method took 30 to 40% longer to run than the L2. This
cost in programming and computer time is offset many times
over by the up-to-2-orders of magnitude increase in accuracy
of the third-order results.
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