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Transmission ellipsometry measures the real and imaginary parts of the ratio 7 = t /t,, where t, and t8 are
the transmission amplitudes for thep and s polarizations. For a homogeneous layer, the unknowns to be
determined are the layer dielectric constant E = n2 and the layer thickness Az. For nonabsorbing films
the thickness can be eliminated, and an algebraic equation for e results. This equation is reduced to a
quadratic equation. The thickness is then analytically determined also. The effect of measurement
errors on the deduced dielectric constant and layer thickness is discussed. Inversion of thin-film data is
also considered.

1. Introduction
Azzam showed that at a 450 angle of incidence,
transmission ellipsometric data on a transparent
unsupported or embedded layer can be inverted ana-
lytically. Here a solution for the general case is
presented, at all angles of incidence and for a film that
may be supported on a substrate different from the
medium of incidence. The methods are similar to
those used recently in the analytic reduction of
reflection ellipsometric data.2 A layer is considered
that is of thickness Az and refractive index n, between
a medium of incidence of refractive index n1 and a
substrate of refractive index n2. (The dielectric con-
stants Fj = n1

2, s = n2, and e2 = 2 e also made use
of.) Monochromatic light of angular frequency o is
incident at angle 01.

The transmission ellipsometric ratio is given
by 3-5

are the Fresnel reflection amplitudes of the s and p
polarizations at the first and second interfaces, and

Z = exp(2iqAz). (3)

The q's are the normal components of the wave vector
in the three media:

q12 = EX2/C2 - K 2 , 2 = 2 K2 ,

q2-2 E=)22 /C2 -K 2 , (4)

where K is the (invariant) tangential component of
the wave vector:

K = n1 (w/c)sin 01 = n2(W/c)sin 02- (5)

Finally, the Q's are defined by

Q, = IF1 Q = qF, Q2 = q2/E2 - (6)

t, n1 (1 - P1)(1 - P2) 1 + s1s2Z

ts n2 (1 + s1)(1 + 82) 1 + P1p2Z

where

q - q q - q 2

=q 1 + qq + q2

Q -Q
P1 Q + Q1'

Q2 - Q
P2 Q2 + Q
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Transmission ellipsometry measures the real and
(1) imaginary parts of T. Section 2 shows how the

unknowns E and Az can be determined analytically
from Eq. (1) and the experimental data.

2. Inversion of the Transmission Ellipsometry Data
For mathematical convenience the known factor n1 /n 2
is removed from Eq. (1), and we consider as our data

(2) the real and imaginary parts of

-T= t =X + iy. (7)
nj

ver-

cem-
Let us also define the functions

( = (1 -P)(1 - P2)

(1 + sl)(1 + S2)
P = P1P2, S = SS2. (8)
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ness can be found from Eq. (9) by means of

1 + SZ
t= X + iy = f 1 + (9)

For nonabsorbing layers, Z lies on the unit circle.
Because Eq. (9) is a linear equation in Z, we can solve
for Z and eliminate it by using ZZ* = 1. This gives
us [compare Eq. (13) of Ref. 5], on writingx2 + y 2 = r2

(1 - P 2 )r2 - 2f(1 - SP)x + f2(1 - S2 ) = . (10)

The unknown in Eq. (10) is the dielectric constant of
the layer, e. This appears in q (in s, and s2) and in
Q = q/l (inp, andp2). Because

C2 E 2 = q2 + K2 (11)

we see that Eq. (10) is an algebraic equation in the
unknown q. After some algebraic manipulation this
reduces to a quadratic in q2, and thus to a quadratic
ins.

The algebra and the final equation are simplified by
the introduction of dimensionless variables u, v, and
w, defined by 2

q2 = qlq2 u, K2 = qlq2v, q2 = q1w. (12)

The unknown E resides in , which satisfies the
equation

au2 + bu + c = 0,

where

a = [(1 + v)r2
-(2 + v)(v + w)x + (v + w)2]w,

b = (1 + v)[v + w + vw(2 + v + w)]r2

-(v + w)[v + 2w + vw(4 + 2v + w)]x

+ (1 + v)(v + w)
2

w,

c = [(1 + v)vr 2
- (1 + 2v)(v + w)x + (v + w)2]vw.

(13)

The solution of Eqs. (13) gives us two values of u,
and thus two values of

E = () (q2 + K2 ) = (-) qlq2 (u + V)

= njn2 cos 01 COS 02 (U + V).

exp(2iqAz) = Z = f -
tP - [S

(15)

which leads to

2qAz = arctan[yf(S - P), xf(S + P) - f 2S - r2P]

(mod 2wr), (16)

where arctan (, a) stands for the arctangent of 13/a,
placed in the correct quadrant according to the signs
of ax and P3.

3. Effect of Experimental Errors
Figure 1 shows the physical and spurious solutions
for the dielectric constant E and the thickness Az of a
layer of water resting on glass (n, = 1, n = 4/3,
n2 = 3/2, wAz/c = 0.5). The true values of x and y
as defined in Eq. (7) were substituted into Eqs. (13),
which were solved for u and thus for E. The two
values of E are shown in Fig. 1 by solid and dashed
curves. For a given , Eq. (16) then gives the
thickness value. Again, the two values of wAz/c are
plotted as solid and dashed curves. Note that there
is a rapid variation with angle of incidence of the
spurious value of the thickness, despite a weak varia-
tion in the spurious value of e. Thus, if there is
doubt about which root is the physical one, measure-
ments at two angles of incidence will decide between
them. The figure also shows the effect of introduc-
ing errors Ax and by into the real and imaginary parts
of t. Both 6x and by have been taken to be 0.0002 in
magnitude, which is approximately ten times the
actual experimental error. The effect of such errors
(of either sign) is shown in the figure by dotted curves.

We see from Fig. 1 that the effect of errors is largest
at small angles of incidence. This is because at
normal incidence there is no physical difference be-
tween the s and p polarizations (for isotropic media)
and t = tp, for any layer (or indeed for any isotropic

2-

1

(14)

The physical root must give all the Fresnel reflection
amplitudes a modulus not exceeding unity. If mea-
surements at two angles of incidence are available,
the physical roots will agree, and the spurious roots
will not. When u (and thus ) are known, the
Fresnel coefficients can be computed, and the thick-

n
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Fig. 1. Physical (solid curves) and spurious (dashed curves) values
of E and Az/c obtained from Eqs. (13) and (16), shown as a
function of the angle of incidence. Dotted curves show the result
of measurement errors (see text).
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Then Eq. (1) can be written as



stratification). Thus no information can be deduced
from the measurement of tp/t, at normal incidence.
The same is true for reflection ellipsometry of isotro-
pic media.6 (The upper dotted E curve appears to dip
toward the true value of E at small angles, but in fact
it passes through the true value and rapidly diverges
from it as the angle of incidence decreases.)

For small angles of incidence, 7 = tp/t, is unity plus
a term of order K2. This follows from the fact that 7
depends on K = n1(o/c)sin 01 through qj, q, and q2,
the squares of each being linear in K2. There are
two types of term of order K2: those originating in
the Fresnel coefficients, for which the appropriate
dimensionless parameter is (cK/W) 2/El = sin2 01, and
those originating inZ = exp(2iqAz), which are charac-
terized by the dimensionless parameter K 2Az/(nw/c)
= (/n)sin 2 01 (oAz/c). Large angles of incidence
give the best accuracy for both E and Az.

4. Thin Films
Roughly speaking, films can be considered thin when
their thickness is small compared with the probe
wavelength. More precisely, the thickness enters as
qAz, and this dimensionless parameter varies from
27rnAz/X at normal incidence to (2-rrAz/X)(n 2 - n,2)1/2
at grazing incidence. The film is thin when qAz << 1.

At a fixed angle of incidence, the ratio of transmis-
sion amplitudes T = tp/t, moves on a circle in the
complex plane, because it is related to Z = exp(2iqAz)
by means of a bilinear transformation. For different
refractive indices the paths are different circles, but
all these circles pass through a fixed point on the real
axis:

nin2 W 
2
/c

2

T+ = T(Z = 1) = q2+ (17)qlq2 + K2

This point must be independent of the layer character-
istics, because zero thickness of the layer gives Z = 1.
All thicknesses Az such that qAz is an integer multiple
of 7r will also give T = 7,.

The other real value of 7 occurs when Z = -1:
from Eq. (1) we find

qlq2_+_q2
T = 7(Z = 1) nln2 E(QlQ2 + Q (18)

The center of the circle (for a given dielectric
constant of the layer and a given angle of incidence)
lies on the real axis at (7+ + 7-)/2, and its radius is
one half the modulus of

2(EI- E)( - E 2/C2

(qlq2 + K2 )82njn2 (Q1Q2 + Q2) (19)

Because at given angle of incidence the loci of T for
layers with different refractive indices all pass through

T+, it appears that no information can be obtained
concerning the refractive index of a thin film. This
is not so: If we expand Z as 1 + 2iqAz + we find
that, to first order in Az,

qnn2o2/C 2 [

qlq2 + K2 

iK
2
I1

+ 882(Ql + Q2)+ (20)

where I is the homogeneous layer form of a first-
order integral invariant:

(81 - 8)(E - 2)
'1= Az. (21)

The identity E12(Ql + Q2 )W2/c2 = (qi + q2)(qlq2 + K2 )
of Ref. 7 is used in reducing the first-order term.
The same integral invariant I, enters into the first-
order expression for the reflection ellipsometric ra-
tio.74 As in the reflection case, transmission ellip-
sometry of thin films can obtain the quantity I,, but
not E or Az separately [compare Section V of Ref. 2].
The thickness at which e and Az can both be obtained
varies with the accuracy of the ellipsometric data; it is
roughly one tenth of a wavelength for most experi-
ments.

5. Summary
One can easily invert the transmission ellipsometry
data for a transparent film (by solving a quadratic
equation) to find the dielectric constant 8 and thick-
ness Az of the layer. This analytic inversion is much
simpler than that in the reflection ellipsometry case,
which requires the solution of a quintic equation.
Errors in measurement cause errors in the deduced
refractive index and thickness, and these diverge as
normal incidence is approached. For thin films,
transmission ellipsometry can determine I =
AZ(8 1 - )(8 - 82)/7, but not 8 and Az separately.
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