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Ellipsometry of a thin film between similar media
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The conventional formula for the ellipsometric ratio p = rp/r, diverges in the limit when the dielectric constants on
either side of an inhomogeneous layer become equal, el = E2. The general case, including fl = E2, necessitates going to
second order in the layer thickness. A formula is derived that includes the el = E2 case without divergence; the
predicted maximum in the imaginary part of p when El - E2 indicates that index matching (of the bounding media)
can significantly increase the ellipsometric signal.

1. INTRODUCTION

Recent work of Beagleholel has brought into focus a long-
standing problem in the ellipsometry of thin films. This
problem is that the first-order (in the film thickness) correc-
tion to the Fresnel formulas gives a divergent result for the
ellipsometric ratio p = rp/r, when the bounding media have
equal dielectric constants. The equality of the dielectric
constants El, e2 of the bounding media was shown some years
ago2 to give a finite p, and, in fact, a zero p (p is defined as the
value of the imaginary part of p at the principal angle, where
the real part of p is zero). What has emerged from the
calculations of Beaglehole of p for a uniform film is that as e2

tends to el the magnitude of p first increases before going to
zero at el = e2, reaching a maximum for E2 close to El. Be-
cause a maximum in the magnitude of - is of practical impor-
tance in polarization modulation ellipsometry, 3'4 we have
developed a theory for the general case (encompassing all of
El X E2, El E E2, and el = e2). This is given in Section 3.
Before that, the conventional first-order theory is reviewed
in Section 2.

2. THE FIRST-ORDER EXPRESSION FOR p,
e, 0 C2

Consider an inhomogeneous layer of thickness Az, of dielec-
tric function e(z), bounded by media of dielectric constants
el and E2. Light, of angular frequency w and speed (in
vacuum) c, is incident from medium 1. In the absence of the
interfacial layer, the s and p polarization reflection ampli-
tudes would be

q1 - q2

ql + q2
Q2 - Q1

IP" Q2 + Q1'
(1)

where q1 and q2 are the normal components of the wave
vectors in media 1 and 2 and Q1 = ql/El, Q2 = q2/e 2 . The q's
are given by

(cK/co)2 = el sin2 01 = e2 sin2
02, (3)

where 01 and 02 are the angles of incidence and transmission.
The presence of the layer modifies the Fresnel reflection

amplitudes [Eq. (1)]. The modification can be expressed as
a power series in the layer thickness,

rS = rsO + rs2 + * * * 

rp = rpO + rp, + rp2 + - - -1 (4)

where subscript n (=0, 1, 2, ... ) denotes terms that are nth
order in coAz/c. Now

q - q 2 AEW2/C2

'so (q1 + q2 )2 (q1 + q )2
(5)

where AE = El - E2; thus, provided that AE 5 0, ro 5 0 and

rp =rpo rpirso 7rpors, _, + +1 r...
rS r8O 0 0

(6)

Long-wave perturbation theory,5' 6 which is reviewed in
Chap. 3 of Ref. 7, gives the corrections rpn and r8 n to the
Fresnel reflection amplitudes. The first-order corrections
are

2iqlcw2 /c2

sl (qI + q2)2

rp = 2 (Q2 2x _ KA)

where the integrals X1 and A1 are the first in the sets

X = J dz( -EO)Zn-1

=n lE2 Jd n-l
An E. dz\EO E)

(7)

(8)

(9)

(10)

ql2 = el@2
q1 6 ) clK 2

q2 2q22 = e2 t)2_K2.
C

(2)

Here K is the (invariant) component of the wave vectors
along the interface,

Here EO(z) is the step function representing a sharp transi-
tion between media 1 and 2, Eo(z) = el for z < 0, eO(Z) = E2 for z
> 0. From Eqs. (6)-(8) we find after some manipulation
that

0740-3232/88/071041-03$02.00 © 1988 Optical Society of America

John Lekner



1042 J. Opt. Soc. Am. A/Vol. 5, No. 7/July 1988

2iQ 1K2

0 r, 0P e1e2 (Ql + Q2)2

where

I1 = Al- = dz (el )(e -e 2)

The companion formula to Eq. (5) is

/Ae(W'2/C2) r ( cK)2 1 + 1

= elE2 (Ql + Q2 [ - J )El e2/j

On using Eqs. (5) and (13) in Eq. (11), we find that

r= (q, + q2)2 [ 1 IcK"2 (!+ 1

r, ele 2 (Ql + Q 2)
2 el E2

- 2iQ, (cK )2I,/A +.. 

(11)

(12)

(13)

(14)

The ellipsometric quantity p is the value of Im(rp/r,) at the
angle where Re(rp/r,) is zero. To first order in the interface
thickness, the real part is zero at the Brewster angle OB =
arctan(e1/e2 )l/2 , at which

3. SECOND-ORDER THEORY FOR GENERAL Ae
We will calculate rp/r,, avoiding division by r, 0 or rpo so as to
include the possibility of el = E2. We use the form

rp rpo + rp, + rp2 + .-.
r. r o+rsl+rs2 + -.

The first-order terms rp1 and rsl have been given above.
second-order terms are [Ref. 2, Eqs. (15) and (29)]

-2q = C ( )2 (2q2 22 +-+ 2-A 2
-s (q1 + q2 ) 2222+q q x 12Y

2Q1Q2 [K 4 A1 2

p2 (QI + Q2 )
3 LQ2 E1E2/

+K 2F( X1 A,
+ [(QI - Q2) - + (Q1 + Q2)

-Q1Q2 - 2(Q1 + Q2) 2 A\2'

The

(20)

(21)

where J is related to a second-order integral invariant 12
[Ref. 2, Eq. (B7)] by

(CQ1 )2 (CQ) 22 1

Co Ct el + E2

(cK\ 2 e1e2

\c ) el + E2
(15) (+ !)(2

(cq 2 E2 22

\O elJ +e 2
(16)

Thus

(el + E2 ) 1/2

2Ae c

Formulas (14) and (17), often attributed to Drude but in fact
going back to Lorenz and Van Ryn (see Rayleigh 8 for a
derivation and reference to earlier work), clearly fail when El
= E2; the apparent divergence is due to the inadmissible
division by zero in Eq. (6). When Ae = 0, both rp0 and r,0 are
zero, and (see Ref. 2, Sec. 4)

For nonabsorbing layers the first-order terms rsl and rpl are
imaginary, and the second-order terms r82 and rp2 are real.
We multiply the numerator and denominator of Eq. (19) by
the complex conjugate of the denominator. After a lengthy
rearrangement of terms, the ratio rp/r, can be expressed in
terms of the three integral invariants I1, 12, and i2; i2 is
defined as

i2 = 2ACX2 -AXI. (23)

(These three integral invariants characterize the reflectivi-
ties IrpI2 and JrI2 and the ellipsometric ratio rp/r, to second
order in the layer thickness, for any layer. Their properties
are discussed and their functional forms are tabulated for six
profiles in Secs. 3-6 of Ref. 7.) The result is

r _ (q1 + q2 )2

r, CIE2 (Ql + Q2)
2

(Ae)2 [I - ( ) (e + 1)] - e2iQl (cK)
Ae2QK 2 (cK/w) 2

Il
2 1/cK\ 2

I + EEl2(Ql + Q2) 2 2
X

(AE)2 - 4qlq 2i2

rp rp I 2 oo-A 1Sin2 00 + . .. , (18)
rs rs, X1

where 00 is the common value of 01 and 02 when el = E2. The
value of p is thus zero, not infinity, to lowest order in the
interface thickness. The fact that the simple theory gives a
divergence as AE - 0, whereas the Ae = 0 value is zero,
suggests the existence of a maximum for small AE. This
turns out to be true, as we will see in Section 3.

When Ae #d 0 this ratio may be expressed in conventional
form as a series of terms in increasing powers of the layer
thickness, agreeing with Ref. 7, Eq. (3.52). However, be-
cause we want a theory applicable to small Ae, we will keep
the form of Eq. (24).

We note some general properties of Eq. (24). All angular
dependence is contained in the coefficients multiplying II,
I2, i2, and j2, the integral invariants depending only on the
interfacial thickness and profile shape E(z) and on the dielec-

/cql \2 el2
I l 2

Co/ el+e

(22)

j2 + I + 1 i2
el E2 . (24)
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Fig. 1. The ellipsometric parameter pfor a thin uniform film (WAz/
c = 0.05, E = 2) between media with dielectric constants el = 1 and
variable E2. The dashed curve is from Eq. (17), the conventional
first-order theory, and diverges at E2 = El. The solid curve is from
expression (25), which is an approximate version of the second-
order theory. The points are calculated from the exact reflection
amplitudes. The p deduced from the second-order expression. [Eq.
(24)] is indistinguishable from the exact p for the small film thick-
ness used here.

tric constants of the bounding media. At normal incidence
(K = 0), we find rp/r, - 1, as it must, since there is then no
physical difference between the s and p waves. At grazing
incidence (ql, Ql - 0), rp/r, - - 1, in accord with a general
theorem of reflection (Ref. 7, Sec. 2-3). When Ae = 0 the
invariants i2 and j2 take the values -X1

2 and -2XlAl/eo,
respectively, and rp/r, reduces to the value given in Eq. (i8).
[We note in passing that Eq. (18) tends not to the correct
value of -1 at grazing incidence but to -Al/Xl. This dis-
crepancy arises from the divergence of perturbation theory
at grazing incidence when el = E2, a difficulty that is dis-
cussed in Sec. 3-5 of Ref. 7. The divergence is removed in
variational theory, 9 where for El = e2 and near grazing inci-
dence,

rvar_ -1
+ 2iqo

X W2
/c

2

r var * 1
I + -2iqO

A1lc
2/c 2

This tends to zero as Ae - 0, as required. The exact p (to
second order, but not assuming OP = OB) is also zero when Ae
- 0 because the functional form AeI 1 /[(Ae)2 - 4qlq2i2] is

retained.
For a uniform layer,

I= (ElAE2) z, i2 = (El - e)(e -E2)(Z)2,

2(el-E)(e - E2) 2
12 =(Az) . (26)

Figure 1 shows / calculated exactly [or from Eq. (24)], from
expression (25) and from Eq. (17) for a thin uniform layer (e
= 2) between media with el = 1 and variable e2. The thick-
ness parameter (COc)Az is 0.05, which corresponds to a film
thickness of approximately 5 nm for XA = 632.8 nm.

From expressions (25) and (26) and by using the fact that
the maximum magnitude of p occurs for el near e2, we find
that the maximum magnitude occurs at

E2-El - (2e1)l/2(e - el) - Az
c

and takes the value

62 - e2 (2el)l/ 2(e - El) - AZ
c

and takes the value

Pm - Al(El - E)

(27)

(27)

(28)

Note that P/m is independent of the film thickness: index
matching (E2 close to El) can give the large ellipsometric
signal [expression (28)] even for very thin films.
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Thus, when (Eo)l/
2 cos 00 is much less than Xlco/c and AlC/c

respectively, r- -1 and rp 1, as required. For thin films
this limit is reached, however, only for 00 close to 90°. When
el = E2 the formula rp/r, - cos2 00 - (Al/Xl)sin 2 00, derived as
in Eq. (18) or from Eq. (24), is correct to lowest order in the
film thickness and accurate away from grazing incidence.]

Of particular interest is the value of /. From Eq. (24) we
see that the real part of rp/r, is zero at an angle Op that differs
in second order in the film thickness from the Brewster angle
OB = arctan(E2/e1)1/2 . Approximating Op by OB and using Eqs.
(15) and (16) in Eq. (24), we find that

-- Ae(El + e2)
1/2 C I,

2 c
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