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Ellipsometry of surface films on a uniform layer

John Lekner

Department of Physics, Victoria University of Wellington, Wellington, New Zealand

Received November 19, 1987; accepted March 3, 1988

A perturbation theory is used to construct general expressions for the s and p reflection amplitudes off a uniform
layer with adsorbed thin films on one or both sides. In a special case (identical media on both sides of the sample,
and at the Brewster angle for the uniform layer), calculations indicate a stable ellipsometric signal, provided that the
thickness of the uniform layer is within a broadly defined range. (Uniform here means homogeneous and of
constant thickness.)

1. INTRODUCTION

In a recent paper, Beagleholel posed the problem of the
ellipsometry of thin nonuniform (stratified) films on an oth-
erwise uniform layer. (The film may be either on the illumi-
nated side or on the back of the uniform layer, or there may
be films on both sides, if we generalize the Beaglehole formu-
lation somewhat.) When the uniform layer is transparent
and thin relative to the beam width (e.g., 10 Arm), as, for
example, with thin sheets of mica dipped into a solution,
"the reflection from the back surface could not be separated
from that of the front, or removed by roughening of the back
surface. Since the resulting interference effects cause dra-
matic changes in the locus of rp/r, in the complex plane, it
was not evident that there remained any sensitivity to the
properties of the front surface." This quotation is from the
paper by Beaglehole,l who showed by numerical calculations
for uniform films that in the neighborhood of the Brewster
angle the locus is displaced along the imaginary axis by an
amount of the order of that which would be measured if the
substrate were semi-infinite.

We examine this problem theoretically here, treating the
inhomogeneous thin films or adsorbates as a perturbation.
The configuration under discussion is shown in Fig. 1. In
Section 2 we derive formulas for the changes er, and br, in
the reflection amplitudes that are due to the presence of the
thin films, and thus the change in the ellipsometric ratio p =
rp/r.. The general formulas are simplified considerably in
the special case discussed in Section 3, namely, ea = Eb and p
measured at the Brewster angle for the uniform film. We
use an example to illustrate this case in Section 4.

2. CHANGES IN r, and rp CAUSED BY THE
THIN FILMS

A plane electromagnetic wave, propagating in the zx plane,
is incident from medium a, at an angle of incidence 9

a, upon
the system shown in Fig. 1. The exact s-wave reflection
amplitude r, is related to the reflection amplitude rso of the
uniform layer (designated by the dashed lines in Fig. 1) by
the comparison identity2'3

r s 2=i- - | dz(c - o)EEo (1)

where w is the angular frequency of the wave, c is the speed of
light in vacuum, and qa is the component of the wave vector
normal to the interface in medium a, given by cqa/w = Eal/2

cos Oa. The dielectric functions e(z) and eo(z) are the permit-
tivities of the actual and the bare layers divided by the
permittivity of free space; they are represented by the solid
and dashed lines in Fig. 1. The electric fields in the two
cases are E(z) and Eo(z) times the amplitude of the incident
electric field, times exp[i(Kx - wt)], where K is the (invari-
ant) wave-vector component along the interface. If the ad-
sorbed films are thin compared with the wavelength of the
incident light, then the actual electric field E is approximat-
ed well by E0, .and we have

= r,' - r,-° - 2iq/J (2)

In general there are two contributions to the integral in
relation (2), from the two thin regions near z = Za and z = Zb

where e(z) deviates from eo(z). To lowest order in the film
thickness, the function Eo(z) in these two regions is approxi-
mated by Ea and Eb, these being equal to the values of E0
calculated at Za and Zb. From Ref. 3, Sec. 2-4, or Ref. 4, Sec.
4.3, we find that

Ea Eo(za) = exp(iqaza) (1 + Sa(1 + S , (3)
1 + SaSbZ

where Z = exp(2iqAz) and where

qa -q q -qb
Sa= qa +q Sbq + qb (4)

are the s-wave Fresnel reflection amplitudes appropriate to
reflection at the discontinuities in the dielectric function at
Za and Zb; qa, q, and qb are the z components of the wave
vector in medium a, the uniform layer, and medium b, re-
spectively. The unperturbed electric field at Zb is given by a
similar formula:

(1 + Sa)(1 + sb)Z
Eb =E Eo(Zb) = exp(iq,,z,) 1 +S5)~

To lowest order in the thickness of the films adsorbed or
deposited at Za and Zb, \
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Here Pa and Pb are the Fresnel reflection amplitudes at the
(bare) interfaces,

b

Q - Qa
Q + Q.

Qb - Q
Qb + Q

(14)

and Q = q/eu and Qb = qb/eb. From relation (9), the change
in rp to the lowest order in the thickness of the adsorbed
films is

14 Az - brp = I- lCa
2 la + Cb2 lb + K2 [Ba2La + Bb2Lb]1,

2wQa

z where la and lb are as defined in Eqs. (7) and

Zb

Fig. 1. Uniform layer with a dielectric constant e,, and thickness
Az, with adsorbed or otherwise attached nonuniformities at its
boundaries Za and Zb. The attached thin films are treated here as a
perturbation on the uniform layer.

brs = C02/c2 JEa 2 1a + Eb 2lb}' (6)2iq a(6
where la and lb are integrals over the difference between the
actual dielectric function e(z) (with the adsorbed films) and
the dielectric function eo(z) representing the bare system
(medium a-uniform layer-medium b):

la = jdz(e - e0), db = J dz(E - eO). (7)
(a) (b)

[In Eqs. (7) the integrations extend from Za - bZa to Za and
from Zb to Zb + 4Zb, respectively, where 6Za and 3

Zb are the
film thicknesses at the a and b boundaries of the uniform
layer.]

A similar set of results can be found for the p polarization,
starting from the comparison identity [Ref. 5, Eq. (46), or
Ref. 3, Eq. (3.42)]

rp= rpo° f dZf(e! - ) K BB( + (e - eo)CCo, (8)

where Qa = qa/Ea, the magnetic field is [0, B(z)exp i(Kx - wt),
01, and C = dB/Edz. The subscript zero again denotes a
quantity relating to the bare system. The change in rp that
is due to the adsorbed films is

- rpo ___ ;ri -- 2 +
brP -- rp - r 2iQ | dz[(--1K'fB0 + (e -0)C02

(9)

and, as before, we can replace Bo and Co by their values at Za
and Zb, namely,

(10)
(1 - Pa)(l - PbZ)

Ba-=exp(iqaza) 1 + PapbZ

Bb = exp(iqaza)
(1 - Pa)(l - Pb)ZI/2

1 + PaPbZ
(11)

(16)La= dz(1--- , Lb = dz(--
= f(a) CO e f(b) dz( e

All terms in br, and brp carry the common phase factor
exp( 2iqaza), as do the reflection amplitudes rSo and rpo.
Thus the observables Rs = IrsI2, Rp = Irp12, and p = rp/r, are
independent of the (arbitrary) value of Za.

Equations (6) and (15), which give the corrections to the s
and p reflection amplitudes to the first order in the thickness
of the films, are simple enough in form but difficult for an
experimenter to apply because of the dependence on the
layer thickness as well as on the other parameters in the
problem. In Section 3 we consider a special case that may be
useful because of its simplicity.

3. THIN FILMS ON A UNIFORM LAYER
BETWEEN LIKE MEDIA

When Eb = Ea (the media a and b are optically identical at the
experimental frequency), the Fresnel reflection amplitudes
at either side of the uniform layer are equal in magnitude
and opposite in sign (Sa = S = -Sb, Pa = P = -Pb), and the
reflection amplitudes for the bare layer become

S( 1- Z)
r = exp( 2iqaza) 1-s 2

I rpo = exp(2iqaza) I - p2Z

(17)

Since p is zero at the Brewster angle 0B = arctan(eu/ea)1/ 2

(Ref. 6, Sec. 4), rp0 = 0 at this angle and the real and imagi-
nary parts of po = rpo/rSo together pass through zero. At OB

we have

Ea -e cK 2
Eaeu

S a= + = +
ea + fu (( Co a + Eu

CQa 2 1

Co @ Ea + EU

(18)

and Ba = Bb/Z'/ 2 = Ca/iQa = Cb/iQaZ"I2 = exp(iqaza). Thus
brp becomes

[(w/c)exp(2iqaza)/2i(ea + Eu) 2] [eaeu(La + ZLb) - (la + Zlb)]

- [(w/c)exp(2iq za)/2i(Ea + Eu)1/
2] [la + ZIb], (19)

where

(1 + Pa)(1 + PbZ)
Ca = iQa exp(iqaza) 1 +Pb

(1 - Pa)(1 - Pb)Z
Cb= 'Qb exp(iqaZa) 1 + PaPbZ

(12) I = EaCu dz(± - -'- - J dz(E - e()
J d O - )

J z(e -Ea) (Cu -
= dz

(13)

CU 

£ edZ I LIII: ( z
Za

(15)

(20)
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and the subscripts a and b indicate the region of integration.
Note that the last integral in Eq. (20) has an analytic form
similar to that of the integral invariant I,, which determines
the ellipsometric signal for an inhomogeneous transition
layer between two uniform media a and b [see, for example,
Ref. 3, Eqs. (3.37) and (3.46)], namely,

I = dz (e-ea)(EbE) (21)

From Eqs. (3), (5), and (6) we find that

r= (W/C)(Ea + fu)1 2 exp(2iqaz.) (1 + S)2

S 2ica (1 - S2Z)2

X 1(1 - SZ)21a + (1 - s)2 Zlbl. (22)

From Eqs. (17), (19), and (22) we find the ellipsometric ratio

plane as Z = exp(2iqAz) moves on the unit circle. Measure-
ments at general thicknesses (at least two in the case of one
film, at least four in the case of two films) are needed to
extract the integrals I and I by fitting relation (23) to the
experimental results. Our experience in comparing relation
(23) with exact results for a simple model (discussed in
Section 4) indicates that measurements are easiest in the
region near Z = -1, since there the ellipsometric ratio is least
sensitive to the thickness Az of the uniform layer and to the
angle of incidence a,. Experimentally, Az and 0 a can be
known only to a certain precision, and it is best to work in a
region where small changes in these variables produce zero
or small changes in the measured result. Near Z = 1 the
signal is largest, but most sensitive to the precise value of Z,
since the denominator of relation (23) rapidly changes in
magnitude as Z passes through 1. Near = Z - 1 the magni-

POO) = rp r 5 rp

2i /c ( I/2 Ia + ZIb)
2
i(ea + EJ)'1

s(1 - Z) (1 + s)2 (Ea + EU)12WIC I(1 - SZ)2 1a + (1

1 - SIZ (1 - S2 Z)2 2
iea

(23)

- S) 2Zlb1

Note that we have kept the 6rs term in the denominator; we
must do so because rso can be zero. This occurs when Z = 1,
that is, for qAz = nir (n = 0, 1, 2, ... .), which at OB happens
when

Eu -Az = nr. (24)
(ea + eu)1/2 C

At such thicknesses, p is a ratio of two terms that are each
first order in the film thickness; on using s = (Ea - eu)/(ea -
Eu), we find that

P(OB, Z 1= a a +b ~ (25)
, + EU la + lb

At this combination of angle of incidence and thickness of
the uniform layer it is thus possible to get a large ellipsomet-
ric signal, even for thin films. Note that P(OB, Z = 1) is real if
the films are nonabsorbing.

Another simple case occurs when Z = -1; at OB this hap-
pens when

Eu -A +1/n2 ) . (26)
(Ea + Eu)1/ C

In this case we can omit the br, term and obtain

_ Ea 2 + Eu2 W (a b)P(OB, Z =-1 / --- (la - b) (27)PWB,'--'----Ea 2
- f 2 2i(ea + Eu)

1
/2 (7

If similar (or identical) films are adsorbed on either side of
the uniform layer, the signal at Z = -1 will be very small,
owing to the cancellation evident in relation (27). On the
other hand, if a film is adsorbed on one side only (say, the
illuminated side a), measurements of p at Z = 1 and Z = -1
determine Ia/lla and la, and thus both characteristic integrals
can be found.

In general, p moves on a complicated path in the complex

tude of the denominator of relation (23) is maximum, and
although the signal is small, it is stable.

4. EXAMPLE

We compare the theoretical expression (23) with exact calcu-
lations for the simple case of uniform thin films attached to
either side of a uniform layer. In this example we take
dielectric constants corresponding to films of water on glass
(with refractive indices 4/3 and 3/2), the system being in air.
The water film thicknesses are (1/C)6Za,b = 0.05, 0.01 or vice
versa, which corresponds to water layers about 5 and 1 nm
thick when Xa = 633 nm. The glass thickness Az is variable
in Fig. 2, and the angle of incidence 0a is variable in Fig. 3.

The exact p for this problem can be found by multiplying
together the three layer matrices corresponding to the three
uniform layers, water-glass-water, as given in Sec. 12-2 of
Ref. 3. (An equivalent matrix method, but with imaginary
off-diagonal elements, is given in Sec. 1.6.2 of Ref. 7.) For
the s and p waves the layer matrices have the form

sin qozq sin qbz
cos qbz, Cos q6z- ---,(8

I Q
sin q~~~5Z L- , (28)

-q sin q6z cos q6z -Q sin qbz cos qfz

and the product M3M2M, of three such matrices has the
elements

n1 = CIc2 c3 - pr 2c3 - CIp2 r3 - P1C2r3,

' = rIC2C3 + clr2C3 + CIC2r3 - rIP2 r3,

M = plr 2p 3 - C1c 2p3 - C1p2C3 -PC 2 C3,

n22 = cc 2 c - rIp2c 3 - rc2 p3 -cr 2 P3 , (29)
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Fig. 2. Imaginary part of p = rd/r8 at OB = arctan(Eu/efJ1 /2 , for a
three-layer system. The central layer is glass; the outer layers are
water. The central-layer thickness Az varies through one period
[defined by Eq. (24)], during which Z = exp(2iqAz) moves once
around the unit circle in the complex plane, from Z = 1 to Z = 1.
Solid curves show the exact values; dashed curves show the pertur-
bation-theory values given by relation (23); asterisks give the Z = -1
values, approximated by relation (27).
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5,40 560 5 80 600

Fig. 3. Imaginary part of p = rp/r, as a function of the angle of
incidence, for the model described in the text and the caption of Fig.
2. The thickness of the glass layer is fixed at a value such that Z =
-1 [(Az is given by Eq. (26)]. Solid curves give the exact results;
asterisks represent results calculated from relation (27). Note that
the difference between the two curves is nearly constant.

where cn = cos qn3zn, Pn = qn sin qnbzn, and rn = qn-
1 sin qnbzn

for the s wave. For the p wave Cn has the same meaning, but
Pn = Qn sin qnbzn and rn = Qn-1 sin qnbZn. The reflection
amplitudes r, and rp are found from Eqs. (12.48) and (12.52)
of Ref. 3.

In Fig. 2 the exact and approximate [relation (23)] values
of Im p at OB are shown as a function of Az, which varies
through one period [from Z = 1 to Z = 1, as given by Eq.
(24)]. We see that there is slow variation in Im P(OB) near Z
= -1, that is, for thicknesses given by Eq. (26). In this
region the accuracy of the perturbation theory is also best.
Near the end points, where Z = exp(2iqAz) = 1, there is
rapid variation in Im p(OO), and the perturbation-theory

expression (23), which predicts the entirely real signal (25),
fails to give the imaginary part of p. The real part is given
accurately (not shown in Fig. 2) but would be difficult to
measure, since it too varies rapidly with Z.

Figure 3 shows the sensitivity of the imaginary part of p to
the angle of incidence 0a, at a value of Az given by Eq. (26),
where Z = -1. We see that there is a steady variation of
Im p but that this can largely be eliminated by illuminating
the sample alternately from one side and then from the other
and taking the difference between the Im p values.

5. DISCUSSION

We have derived general expressions for the s- and p-wave
reflection amplitudes off a uniform layer with adsorbed thin
films on one or both sides. The general formulas predict a
complicated variation of the ellipsometric ratio, which is
difficult to interpret experimentally except in the special
case of like media on either side of the sample, illuminated at
the Brewster angle for the uniform layer. At this angle of
incidence, and provided that the thickness of the layer is not
such that the s-wave reflection for the layer is near zero, the
theory indicates that ellipsometry of adsorbed thin films on
finite layers is possible, at least in the sense that rp/r, is free
of rapid variation with the thickness of the uniform layer or
with the angle of incidence.

It is interesting that the predicted ellipsometric ratio [re-
lation (27)] is of similar form and of the same order of
magnitude as in the case of a transition layer between semi-
infinite media a and u, where the imaginary part of p at the
angle where the real part is zero is given by

Imp = (Ea + Eu)1/2 co dz (E - Ea)(Eu- )
2 (Eu - Ea) c J E

(30)

When Ib = 0, this is equal to Im p as given by relation (27),
multiplied by (Eu + ea)2 /(eU

2 + (a
2
). A qualitative correspon-

dence of this kind was noted by Beaglehole. 1
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