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Brewster angles in reflection by uniaxial crystals
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Reflection by anisotropic media is characterized by the four reflection amplitudes r , , r,i rp ,, and rp. We show
that rpp can be zero at angles Opp, the anisotropic Brewster angles, and that a quantity related to Opp satisfies a
quartic equation. When the refractive index of the medium of incidence lies between the ordinary and the
extraordinary indices of the crystal, it is possible for r88 to be zero at an angle O., and there exist four equiva-
lent orientations of the crystal optic axis for which rp ,, r8,a and either rp, or r8p are simultaneously zero, at angle
of incidence equal to arctan (n0 /n1 ).

1. INTRODUCTION

It is well known 3 that a p-polarized wave has zero reflec-
tion from an isotropic material at the Brewster angle OB

given by tan OB = n/ni, where n is the refractive index of
the (nonabsorbing) material and n1 is the refractive index
of the medium of incidence. Special cases of the analo-
gous zero reflection of p-polarized incident waves into the
p polarization by uniaxial crystals are known2 4 ; here we
will examine the general case of arbitrary orientation of
the optic axis relative to the reflecting plane and to the
plane of incidence. We find that it is possible to find the
angles Opp, at which the rpp reflection amplitude is zero, by
solving a quartic equation. Surprisingly, the r38 reflection
amplitude also can be zero when the refractive index of
the medium of incidence lies between the ordinary and the
extraordinary indices. The angle 0,S at which this occurs
is found by solving a quartic equation, which is related to
the quartic equation that determines Opp. Further, for
particular orientation of the crystal optic axis and at an
angle of incidence whose tangent equals the ratio of the
ordinary index to the index of the medium of incidence,
rpp, r.8 , and one of rp,8 or r8, can be zero together.

2. REFLECTION BY A UNIAXIAL CRYSTAL

I will use the results of a recent paper5 on the optical
properties of uniaxial crystals. Let 0 be the angle of inci-
dence at which an incident plane wave strikes a planar
surface of a uniaxial crystal. The z axis is defined as the
inward normal to the reflecting surface, which lies in
the x-y plane. The x axis lies in the plane of incidence,
the y axis normal to it. Then the x components of the
incident, the ordinary, and the extraordinary wave vectors
kj, ko and ke are identical, with value

K = k sin 0 = nj-sin0. (1)
c

The z components of the incident and the reflected waves
are ±qj, where

q, = k1
2 -K 2 = k1

2 cos2 0. (2)

The wave vector k. of the ordinary wave inside the crystal

has magnitude

o Lko= no-,j (3)

and normal component qo given by

qo2 = ko - K2 . (4)

The extraordinary wave vector has components (K, 0, q,),
where

qe = q - ayKAe/e,, (5)

where AE = Ce - o= ne2 - n 2, the optic axis has direc-
tion cosines a, 3, and y relative to the x, y, and z axes,
respectively, and

(6)q-2 = e0[ecO 2 /c2
-K

2(,e - 2X

with ey = ny2 defined as

en= Eo + y2 AE. (7)

The reflection amplitudes found in Ref. 5 may be written
in the form a(q1 - q,) + b(q1-qe)

I a(q, + qo) + b(q, + qe)

a'(q + qo) + b'(qi + qe)
PP a(q + qo) + b(qi + qe)

2/3(aqo ± yK)(qo - qe)kiko2

,SA PS- a(q1 + qo) + b(q1 + qe)

(the plus corresponds to r, the minus to r , ), where

a = (aqo - yK)[a(k2qe + qtq 2) - yK(k 2 + qtqe)],

a' = (aq. - yK)[a(k.2qe - qeqo2) - yK(k 2 -qq)],

b = p 2k 2 (ko2 + qtqo), b' = p3
2k 2(k 2 -qtqo)

(8)

(9)

(10)

(11)

and q, = k 2/q1 . We note that the reflection amplitudes
are particularly simple when p = 0 (that is, when the op-
tic axis lies in the plane of incidence); then all b, b', rp, and
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rps are zero, and r and rpp simplify to

q - qo
q1 + q.

r" ( = ) Q -Q1
Q + Q1

with Q = ql/el, Q = qy/non, where

qy 2 = e (v2/c2 - K2.

(12)

(13)

These expressions are manifestly invariant to changes in
the sign of the direction cosines. The angle of incidence
now appears only through K = k sin2 , but K2 is inside
a square root in the variables ql, qt, q, and q. Consider
the effect of changing to the variable e defined by

ecs2/C2 = qtq. or e/el = q0 /ql. (19)

In this case the Brewster angle (at which rpp is zero) is
found by solving Q = Ql, which gives

The variables dependent on the angle of incidence may be
written in terms of e:

tan2 (3 = 0) = eOee - ElEy
1ey- e)

(14)

This formula contains as special cases two known re-
sults4'5 for the Brewster angle when the optic axis coin-
cides with the x and the z axes:

tan2 Opp(a2 = 1) = 6.(e6 - el) (15)
'6(.- el)

tan 2 Opp(2 = 1) = 'e(e- el) (16)

These two expressions give bounds on the Brewster
angle.6

3. DETERMINATION OF Opp

The Brewster angle Op is that angle at which the numera-
tor of Eq. (9) is zero. This numerator contains the angle
of incidence in the variable K, which appears linearly in q,
and a' and also inside a square root in q q, q, and qt.
An algebraic equation can be obtained by use of a symme-
try of rpp and by introducing a variable related to K2

through a bilinear transformation.
The reflection amplitudes rpp and r are unchanged by

change of sign of any of the three optic axis direction co-
sines a, 3, and y. Reversal of the sign of any one of the
direction cosines of the optic axis is equivalent to reversal
of the appropriate x, y, or z axis. It is clear from Eqs. (5)
and (8)-(11) that r 8 and rpp can depend only on the sign of
ay, and the invariance of r 8 and rp to the sign of ay fol-
lows from the algebraic identity

q-2 = 2 + [a2 q0
2 + 32k 2 + 2K 2 (a'Y)2K2Ae/e]Ae/e

(16a)

The numerators and the denominators of rpp and r as
given by Eqs. (8) and (9) can be split up into invariant (I)
and variant (V) parts, namely those that are even and odd
in ay. Both r and r are thus of the form

r+v'_ (i+v'rr (I/V'+i\ V'
I + V 1 + V/I) I t I/V + 1 V (1)

For an expression of this type to be invariant we must
have V/I' = V/I, and the value of Eq. (17) is thus
r/I = V/. When the latter form is used, the r and rpp
reflection amplitudes reduce to

(cK) = el(e2- ele)

co ) 2 e- el2 
(cql 2 el2(e -el)

k l e2 _ el2

(20)

Note that qlq 0 expressed in terms of e does not involve a
square root. The numerator of rpp now simplifies to
(e + e 1)w

4/c4 times

(e - e)(e - el)(q + qqc 2/W2 + (e -e)(e. - el)
+ [2eo(e 0 - el) + 32e(e -)(e - el)

- y 2e 1(e2 - e'e 0)]Ae/e7. (21)

The remaining square roots are all in the first term. To
find the equation determining Opp we set expression (21)
equal to zero, isolate the first term, square, and use
Eqs. (6), (20), and

(q + q )2 = (el + e)(E - el) 02 (22)

The resulting equation is a quartic in e, namely,

a + ale + a2e2 + a3 e3 + a4e4 = 0,

aO =-el 2ef{e 0
2 (e0 - El)(,/2 + y2)

+ [3 2e - y2e,)2 + e(e - el)y2 ]Ae},

a = 2/32ele0 (e0 (e.2 -
2)

+ {e 0[e + El(2,j 2
-1)] - 2y 2e1

2 }Ae),

a 2 = (e-e)e[e(leO- 5/2) + 1
2

(y
2

- 32)

- e 0
2(1 - v2)] + ((e - l)

2(e + Ei)y2

- 0{2E5(/3
2eo - y2el)(p32 + Y2)

+ [ + el(23 2 )]2})Ae,

a3 = 2 32e0 {e 2
- e1

2 + [e,(2 l32 + 2 2 - 1) + e 0]Ae},

a 4 = (e - el)[E 0(1 - 232 - 2) - el(1 -/2)]
+ [(e. - el)2- e(32 + 72)2]Ae. (23)

The coefficients a, and a3 are zero when the optic axis lies
in the plane of incidence (, = 0). The quartic then re-
duces to a quadratic in e2, with roots

y2e1eo
l- (1 - )Eo

e.e(e - el) + e(E- )
CY -el~~~~~~~~ (24)

r8 = (q1 - q)[(q. + -q)(k2 + qtq0 ) + (k2k0
2 q0 + y2K2 q,)Ae/ej] - f32 k2 (k 2 + qq,)Ae/ey

(qi + q.)[(q. + q)(k.2 + q~q.) + (a2 k0
2q0 + y 2K2q')Ae/e'] + /32k. 2(k.2 + qtq.)Ae/e,

(q - q)[(q. + q)(kV2 - qtq.) + ( 2k.2q. - y2K2qt)Ae/e ] + /3 2k 2(k 2
- q q)Ae/e,

(q1 + q)[(q 0 + q)(k 0 + qtqo) + (a2 k0
2q. + y 2K2 qt)Ae/e7 ] + p 2k0

2(k 2
+ qq 0)Ae/e* (18)

(cqo2= E2(Eoe1)

W 6k 2 _ el2-
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Only the latter value of e is a physical root: the other
value does not make expression (21) zero. Since, from
Eqs. (20),

tan 2 0 ee 0 (25)
e(e - el)

the second value of 2 in expression (24) reproduces
Eq. (14) and thus also the a2

= 1 and y 2
= 1 0,, expres-

sions given in Eqs. (15) and (16). When p2 = 1, the roots
of Eq. (23) are el, e, e, and . Again e =el does not
make expression (21) zero. The (double) physical root is
e0, and for this root Eq. (25) gives

tan2 6ppQ32 = 1) = (26)

(This value also holds when a2 e. = Y2el, for any /3.) Thus
when the optic axis is normal to the plane of incidence, the
zero of rpp occurs at the Brewster value for an isotropic
medium of refractive index n, OB = arctan(n./nl), as is
known. 4 5

An algorithm for the algebraic solution of a general
quartic equation is known,7 and so it is possible in prin-
ciple to give an analytic general solution of expression (21).
I have been unable to simplify this algebraic solution to a
form short enough to be useful or to find factors of ex-
pression (21) (which would allow the degree of the equa-
tion to be reduced). It is possible, however, to give a
simple form for the solution to first order in the anisotropy
Ae = e, - e0 by expanding about e = e,, which is the
physical root of expression (21) in the isotropic case. The
result is

e e + (a2 e - y2 ei)E/2e 0. (27)

The resulting value of tan2 6,, as given in Eq. (25), to first
order in Ae, is

tan 2 O eO _ (a2 e - y 2 E)Ae (28)
el el(e0 - el )

This approximation gives the exact Brewster angle when
a 2 = 1 (optic axis coincident with the intersection of the
plane of incidence and the reflecting surface), when /32 =

1 (optic axis perpendicular to the plane of incidence) and
also when a2e0 = y2el, for any ,3. Expression (28) is least
accurate when y2

= 1 (optic axis normal to the reflecting
surface); for calcite in air expression (28) then gives 0,,g 
60.190, whereas the exact value from Eq. (16) is 60.720, an
error of 0.9%. Figure 1 shows the exact Opp [Eq. (14)] and
the approximate Brewster angles of expression (28) when
the optic axis lies in the plane of incidence, for calcite
in air.

A better approximation to the Brewster angle is one
that contains the ,B = 0, p2

= 1, and a2 e, Y2 el known
solutions (14) and (26) as special cases, namely,

This expression for the Brewster angle would show zero
error in Fig. 1, and for calcite in air it has , errors be-
tween -0.2% and +0.4%.

4. EFFECT OF INDEX MATCHING

The reader may have noted that the bounds on the
Brewster angle 6,, given by Eqs. (15) and (16) tend to 00

and 90°, respectively, as el increases toward the smaller of
e, and ee. Figure 2 shows the Brewster angle for calcite
immersed in a liquid of refractive index 1.48, when the
optic axis lies in the plane of incidence. The Brewster
angle now ranges from 10.4° to 80.70, and the error in 0,,
as given by expanding to first order in the anisotropy Ae,
namely expression (28), now ranges to nearly -31%. [The
Brewster angle given by expression (29), exact for 3 = 0
and p 2

= 1, now has errors between -6% and +5%.]
The effect of index matching is thus to enhance the an-

isotropy, as could already be seen in expression (28), where
Ae is divided by E0 - el. Similar enhancement of anisot-
ropy by index matching has been calculated for optical
properties of a uniaxial substrate covered by an isotropic

54k
0 I

ePP

Fig. 1. Exact and approximate Brewster angles for calcite in air
at 633 nm (nO = 1.655, ne = 1.485). The curves show Opp for ,8 = 0
(optic axis in the plane of incidence) as a function of y2, the
square of the cosine of the angle between the optic axis and the
normal to the reflecting surface. The solid curve is from Eq. (14),
the dashed curve from expression (28).

900-

600

300

0P

(29)tan 2 PP e e y - e
E1(6E7 - )

ePP

0 2 1

where

Ey = eO + (a2 + y2)A1E = ee - /32AE.

Fig. 2. Brewster angles for calcite with optic axis in the plane
of incidence, immersed in a medium of refractive index 1.48, as a
function of _2. The notation is as for Fig. 1, but note the change

(30) of vertical scale. The curves cross at y2
= eO/(el + E 0 ).
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layer8 (for example, the effect of the anisotropy of ice is
enhanced a hundredfold by the presence of a water layer).

What happens when the index of the ambient medium
lies between the ordinary and the extraordinary indices?
Then e - el and e, - el have opposite signs, and neither
Eq. (15) nor Eq. (16) gives a real Brewster angle. From
Eq. (14) we see that, for a zero of r,, to be possible when
the optic axis lies in the plane of incidence, ey = eo + y2Ae
must lie between el and eOee/ei. This range is largest
when el is close to eo or ee, and it shrinks to zero when el
tends to the geometric mean of Go and e, i.e., to none.

When e1 is close to none there is extreme sensitivity to the
orientation of the optic axis relative to the normal to the
reflecting plane, since for a very small range of y 2 ex-
pression (14) then gives values of 0,, ranging from 0 to
900. Of these, only those smaller than the appropriate
critical angle O0, or 0ce are possible, since when either qo or
q is imaginary the rpp reflection amplitude is complex, and
expressions (14), (15), and (16) no longer apply. The criti-
cal angles 0a, and 0ce are here defined as those angles that
make q and q zero; from Eqs. (4) and (6) we thus have

pect a very rapid variation in the p to p reflectivity, from
zero to unity in a small range near grazing incidence.

One other unexpected phenomenon associated with
index matching is the occurrence of two zeros of r,,p at
different angles of incidence, for some crystal orientations.
The double Brewster angles are associated with q, becom-
ing complex for 0 > 0,c. [At {,e, q is zero, and for greater
angles of incidence q is imaginary; 0,c is given by Eq. (31).]
Figure 4 shows rpp for calcite immersed in a medium of
refractive index 1.51, with the squares of the direction
cosines of the optic axis a2

= 0.02, p2
= 0.67, y2

= 0.31.
Beyond 0ce the reflection amplitude r,,p is complex, and
both the real and the imaginary parts are shown. Note
that the second Brewster angle is just a bit less then 0ce
and that Irpp2 is not unity for 0 > 0ce except at grazing
incidence.

5. ANGLES AT WHICH rS = 0

An isotropic medium has zero r only when perfectly index
matched, in which case r is zero for all angles of incidence.

sin 0, = no, sin Oce = enI
nl nl n

(31) 900

where ny,, is the square root of e = GO + (
2 + y 2 )Ae.

When the optic axis lies in the plane of incidence, ,3 = 0
and a 2 + y2 = 1, SO that

sin Oe(,p = 0) = 2
n 

From Eq. (14) we have that

sin2 0 (3 = 0) = EoEe - EY
Gee - 2

(32)

(33)

Since, as noted above, e must lie between el and eGee/el for
real 0,,, the condition 0,, (p = 0) 0e(,B = 0) holds for all
y for which Eq. (14) gives a real Brewster angle. For posi-
tive anisotropy (Ae = e - eo > 0), the condition 0, < ,'
is satisfied for

Y2 >° 2e(i - ) = 2 (34)

when el < nonie, and for Y2
< Ye2 when El> none. Thus

when e < el < eo, negative uniaxial crystals have 0,,
ranging from 0 to 90°, while positive uniaxial crystals
immersed in a medium such that e < el < e have 0,,
ranging from 0 to O,0. In either case the = 0 Brewster
angle exists only for a range of inclinations of the optic
axis to the normal, since the square of the direction cosine
y must lie between

60 Eland - .el _

co- e GEl Go- e

0

app

1

Fig. 3. Brewster angles for calcite immersed in a medium of
index n, = 1.51, for the optic axis in the plane of incidence. Note
that a zero of r,, exists only for a range of inclinations of the optic
axis to the surface normal (here between 220 and 66°) as given by
expressions (35). These bounding values of the square of the di-
rection cosine y are shown by vertical dashed lines.

(35)

Figure 3 shows 0,,(3 = 0) for calcite immersed in a liquid
of refractive index 1.51.

The fact that index matching can extend the range of
the Brewster angle from normal to grazing incidence has
interesting implications. At grazing incidence q - 0,
and we see from Eqs. (9) and (11) that rp - 1. Thus if 0,,
is close to 900 there is a conflict of limits, and we may ex-

400

app

760

opp

1

0.4

0

-- 0.2
Fig. 4. Reflection amplitude r,, for calcite immersed in a liquid
of refractive index 1.51 and direction cosines of the optic axis
given by a 2 = 0.02,432 = 0.67,y 2 = 0.31. Beyond 0,e there is an
imaginary part of r,, (dashed curve). The 0,, values are 54.03°
and 80.27°; the value of 0e is just 1 mdeg more than the larger 0,,.

_ . 1 1
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We now examine the possibility of zeros of r starting
from formulas (18). The procedure and the variables that
we use are as for the zeros of rpp, so we need state only the
final result, which is that when r is zero a quartic equa-
tion in e = elq0 /ql is satisfied. This quartic is almost
identical to the rpp quartic [Eq. (23)], the difference being
that the signs of the coefficients a, and a3 are reversed.
Now a, and a3 are proportional to 132, and thus solutions of
the rpp and r quartics are the same when p is zero. It is
not true, however, that r is zero at the angle given by
Eq. (14) when p = 0. This is not a physical root, and in
fact when 3 = 0, r = (q, - q)/(ql + q), which is not
zero at any angle unless n = nl, in which case it is zero
at all angles of incidence. When p62 = 1 the r quartic
factors to (e + e1)

2(E + eo)2(e, - el) times a constant, and
thus rS. can be zero only when el = e, for pB2 = 1, since e =

elqo/ql must be positive. The a = 1 and y = 1 roots
are simple but also nonphysical, being a subset of the
,3 = 0 roots.

When a 2E,, = y2el, the quartic factors to (e + e) 2 times
the quadratic

Both the rpp = 0 and the r = 0 quartics must be satisfied
by this value. Thus we must have, for e2 as given in
Eq. (38),

(aO + a2 e2 + a4e4)2 = (a, + a3e
2)e2 .

This condition is satisfied by e0 = el and by

a E0 = e 1 .

The latter is the physical root, leading to e =
from Eq. (25) to

tan 2 j = 0
El

(39)

(40)

e0 and thus

(41)

Thus the joint zero of rp and r can occur at one angle
of incidence, which is the same as the Brewster angle for
an isotropic medium of refractive index n, namely,
arctan(n./n).

The special crystal orientations for which this joint
zero can occur follow on substitution of Eq. (40) and its
consequence,

ae2 + be + c = 0:

a = (e 2 - el 2)[el2 + 623(e 2 + ele0 - )]

+ eo[e,2+ p32(e02+ 2eo - e12+ e12,32)]Ae,
b = 2e 0[e1(28 2 - 1) + 182e.][e0

2 - e1
2 + ( + 62 e,)DAe],

c = eOe1
2{(e2 - e 1

2)(e. + 32el) + [ 2(1 _ pl2 + p34)

+ 2e le0 13 (2132 - 1) + p8e21
2(4,l 2 - 3)]Ae}. (36)

Y 2= (1 p 2) C0 ,
el + 0

(42)

into the r = 0 quartic. This leads to a linear equation in
p62 and thus to the values

aj 2 =(el + eO)(e- el)/4eAe,

Pi2= (l - e.)[(el + e0)2 + (3e, + eJ)Ae]/4e12Ae,

The discriminant b2 - 4ac is zero when pB2
= Pd2, where

2
= (oe -e

2)[(e 0 + ei)2 + (3el + eJ)Ae]
Ae[e0

3 + 2e- 2 e -3ee 1
2 - 4e1

3 + eo(3el + eO)Ae]

(37)

I have given the details of the a 2e 0 = y2e1 solution because
it is the only simple root of the rs8 = 0 quartic known to me
and because this configuration will be seen (in Section 6)
to give the possibility of simultaneous zeros r00 and rpp.

Figure 5 shows r,, as a function of the angle of incidence
for the same system that was used to illustrate the exis-
tence of double Brewster angles in Fig. 4.

6. SIMULTANEOUS ZERO OF rpp AND r,,,

Since r38 as well as rpp can be zero when the refractive
index of the medium of incidence lies between the ordi-
nary and the extraordinary indices of the crystal, it is
natural to ask whether r and rpp can be zero at the same
angle of incidence. In this section I show that they can
(under certain conditions) and that when this happens,
one of rsp or rp0 will also be zero.

We equate the numerators of r00 and rpp in Eqs. (18) to
zero. From these two simultaneous equations, linear in
q, we can eliminate q and solve for e =eql/q. We find
that e is determined by an equation linear in e2 and inde-
pendent of Ae, the solution of which is

e2= elep22eO t Y2El)2. (38)
E,(2 p2

- 1) + ea 2

z2 eo(el + eO)(e- el)/4el 2 AE. (43)

Thus for crystal orientations (±Iaji,±1Jj 1, ±yji) and at
angle of incidence Oj = arctan(n./n), r and rpp will be
zero together. For such orientations to exist, each of the
squares of the direction cosines given in Eq. (42) must be
positive. This will be so if El lies between e0 and ee unless
the crystal has strong negative anisotropy (e < 0) with

lAdE > (l + e) 2/(3e, + e).

(These conditions would make ,Bj2 negative.)

600 700 6 I

(as I,

(44)

1

0

-1

Fig. 5. Reflection amplitude r88 for calcite immersed in a liquid
of refractive index 1.51 and direction cosines of the optic axis
given by a2 = 0.02,p2 0.67,y2 = 0.31. Beyond 0,e = 80.27°
there is an imaginary part of r88 (dashed curve). The reflection
amplitude is zero at 0. = 75.12°.
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Finally, note the surprising result that one of rp or r 8
will also be zero at Oj for the given crystal orientations.
This is because, from Eqs. (20), we see that when e ->E,

(cK leO

(J El + .
(c 2 C2

\( / e .+e (45)

and so q j e0/e = so2
/aj

2
, SO that, under the condi-

tions of rpp and r88 being simultaneously zero, we also have

af q 2 _ 2f2 = 0. (46)

From Eq. (10) we see that this implies that rps will be zero
if a and y have the same sign and r will be zero if they
have opposite signs. Thus three of the four reflection
amplitudes will be zero in this configuration. The square
of the remaining r or r reflection amplitude then takes
the value

(e l)(El- ) (47)
el2-e l e. + 3e + Co e

We see that even this can be made zero when the crystal is
immersed in a medium with index n0 or ne. For example,
when el = e, aj and yj are zero, f3j2 = 1 (optic axis normal
to the plane of incidence), and under these conditions all
reflection amplitudes are zero at angle of incidence equal
to arctan (O/ne).
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