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Analytic inversion of ellipsometric data for an unsupported
nonabsorbing uniform layer
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The dielectric constant of a uniform unsupported or embedded layer is shown to satisfy a cubic equation with
coefficients determined by the angle of incidence and the measured complex ellipsometric ratio p = rpIr,. Analytic
inversion is thus possible. The consequence of measurement errors on the deduced dielectric constant and layer
thickness is explored.

INTRODUCTION

One of the main uses of ellipsometry' is the determination of
the refractive index and thickness of a layer (assumed uni-
form) by measurement of the ellipsometric ratio p = rp/r,.
The usual procedure is numerical.2 Here it will be shown
that, in the restricted case of an unsupported or embedded
uniform layer (the key property needed is that the dielectric
constants of the media bounding the film be the same),
analytic inversion is possible. The unknown dielectric con-
stant of the layer is shown to satisfy a cubic equation with
coefficients determined by the angle of incidence and the
measured ellipsometric ratio p = r/rp, which is variously
written as

p = x + iy = tanT exp(iA). (1)

CUBIC EQUATION FOR THE DIELECTRIC
CONSTANT

The ellipsometric ratio p = rp/r, for a uniform layer of thick-
ness Az and dielectric constant e embedded in a medium of
dielectric constant co (for example, a film in air) is1'3 4

p 1-s2Z Z = exp(2iqAz), (2)

where s and p are the Fresnel reflection amplitudes of the s
and p polarizations:

qo-q Q-Qo
S q +q' I- Q+Q 0 - (3)

Here qo = 4i(w/c)cos 00, q = (/c)(c - co sin2 Go)1 /2, Qo = qo/co,
Q = q/e, and 00 is the angle of incidence. Equation (2) can be
solved for Z:

Z= ps-p (4)
ps(pp -s

Z and thus Az can be eliminated from the equations if q is
real (no absorption in the layer and sin 2 00 < r/co) because
then ZZ* = 1, and thus

(pS - p)(p*s - p) = p
2 2

(pp - S)(p*p - S). (5)

Equation (5) determines the unknown dielectric constant e

in terms of 0O and the measured real and imaginary parts of
p. It will be shown that it reduces to a cubic equation for e/
co. First rewrite Eq. (5) in the form

IP2 ( + *) I 1- s)2 p2 1 -S4 

S 1-p 4 S - p4

From Eqs. (3), we can verify the identities

p 1-s 2 = 1- (1 + f)sin2 O0 - F,s 1-p 2

p +s
2

S 1 +p 2

2p 1 - (pS) 2
-

S 1-p
4

(6)

(7)

1 + f - 2f sin2
00

(8)
1 +f- (1 + f)sin2

0o'

(1 + f)[2- (1 + f)sin2 00]

1 + f-(1 + 2)sin2 0
(9)

where f = eo/e. Note that these identities eliminate the
radical (e - o sin 2 Go)1/2, which appears in the Fresnel reflec-
tion amplitudes p and s through q. Substituting into Eq.
(6), we find that f = o/c satisfies a cubic equation, and thus
so does g = c/co. This is

ao + al g + a2g2 + a3g3
= 0.

In writing the coefficients ak, we use the notation

p=x+iy, sin200= a.

The coefficients are

ao = a 2(1 - 2 -x),

(10)

(11)

a, = cT[-2 + 7cr - 4cr 2 + 3x(1 - r) -X2 - y
2
],

a2 = (1- o-)(1 -5 + 2 2) -x(2-6 + 3r 2
) + x2 + y

2,

a3 = (1-a)[1-a-x(2-a) + X2 + 2]. (12)

The cubic equation [Eq. (10)] has real coefficients and thus
has either one or three real roots; of physical interest are real
positive roots. However, we should not throw away complex
roots from the start, since (owing to experimental or model
errors) the solution relevant to the physical system on which
measurements are made may have a small imaginary part.
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We thus calculate all three roots for g = C/CO by standard
techniques5 : we form the quantities

u = (3ala3 - a2
2)/9a 3

2 ,

v = (9ala2a3 - 27a0a3
2

-2a 2
3)/54a3

3 (13)

and define w to be one of the roots of W2
= U

3
+ V

2
. Then in

terms of

t, = (v + w)1 3 , t2 = (-w)/, (14)

the values of g = C/co that satisfy Eq. (10) are

S - a2 /3a3 , -s/2 - a2/3a3 1 i(1 3/2)d, (15)

where s = tl + t2 and d = t-t 2 . If w2 > 0, there is one real
root. If w2 < 0 (which implies u < 0 and V2

<-U 3
), there are

three real roots, which can be compactly expressed in the
trigonometric formula

C 2 (-u)1 /2 cOs( + ) +a3 (15')
CO 3 / 3a3'(1'

where m = 0, 1, or 2 and cos =/(-3)1/2.

If there are three real values of /Co, one must decide
among them. Negative roots can be discarded, and usually
those with < o sin2 0 (these correspond to total internal
reflection, which can normally be excluded in the present
context) can be discarded also. Often two possible values of
e remain, and the choice between them can be made on
physical grounds, once the layer thickness has been evaluat-
ed from Eq. (4), as follows. In terms of the real and imagi-
nary parts of p = x + iy, Eq. (4) gives

Az = (2q)1 arctan y(p2 - 2) . (16)
pS(X2

+ y
2
) - (p

2
+ 

2
)X + pS

Each different value of e will lead to corresponding values of
q and of the Fresnel amplitudes p and s and thus to a
different thickness Az. Multiples of 7r will, in general, need
to be added to the arctangent until a positive and physically
reasonable value is obtained. For two or three e values, two
or three pairs of values of e and Az can then be compared and
the physically most reasonable one selected. For rigorous
verification without guesswork, note that a measurement at
another angle of incidence or at another wavelength will give
other (, Az) pairs, one of which should correspond (within
experimental error) to one of the original pairs. Figure 1
shows the inversion of computer-generated data calculated
for a layer of refractive index 1.5 ( = 2.25) and thickness
wAz/c = 0.3 (Az = 3Mo/207r). We see that the true root for
the dielectric constant and its corresponding thickness are
steady throughout the angular range, while the nonphysical
values are not.

EFFECT OF MEASUREMENT ERRORS
Experimental errors in ellipsometry are usually expressed as
errors in I and A, where p = x + iy = tan exp(iA). In
terms of the real and imaginary parts of p, errors 6 and A
lead to

ax = + x +Y2 x*- A,

= 2 + ,y
2

+
( x2 + y2) 12) + xaA. (17)

The currently attainable precision in T and A is given as6 bey
- S/2 1 mdeg. To demonstrate the effect of errors, we
will assume uncertainties of 100 times larger: as much as 0.1
deg in 6T and A/2. Figure 2 shows what the inversion
process produces, given a uniform spread of errors in 'I and
6A/2 about their true (calculated) values and using the same
parameters as in Fig. 1.

For an unsupported uniform layer, or more generally, one
that is bounded on both sides by media with the same dielec-
tric constant eo, both parts of p are zero at the Brewster angle
OB = arctan(c/cO) 1/2. This holds for any thickness Az of the
layer. Thus we expect the thickness to be indeterminate if a
measurement is made at the Brewster angle and to be noisy
for measurements made near OB. Figure 2 shows no indica-
tion of such an effect. The reason for this lies in the assump-
tion of 6'I and eA as the appropriate error parameters.
From Eqs. (17) we can see that near the Brewster angle ax 
x6T/lpl and by - ybTI/Ip, with the larger A error contribut-
ing nothing at B. Also, near B,

Y -s2 sin 2qAz

x 1 - S2cos 2qAz'
2 (e-Co 2

+ cO 
(18)

so lyl is small compared to IxI, thus leading to a small by at GB.
Beaglehole (Ref. 7 and personal communication, D. Beag-

lehole, Department of Physics, Victoria University of Wel-
lington, New Zealand) believes that a better representation
of error, both random and systematic, is obtained by assign-
ing to the real and imaginary parts of p independent errors
ax and by. Figure 3 shows the resultant scatter in the values
of the dielectric constant and of the thickness found by
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Fig. 1. Inversion of computer-generated values of p = x + iy for a
uniform layer of dielectric constant 2.25 and thickness parameter
wAz/c = 0.3. In this case there are three real roots of Eq. (10) for C/
co; one less than sin 2 G0 has been discarded. Of the two remaining,
one is nonphysical since it leads to variable and Az (dotted curves).
The input values of andAz are reproduced by the other solution
(solid lines).
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Fig. 2. Scatter in c/co and wAz/c values produced by solving Eqs.
(10) and (16) if random errors are introduced into the ellipsometric
data. Here uniformly distributed errors of up to 0.10 in I and 0.2°
in A were put in at the start of the inversion process. Note the large
scatter near normal incidence.
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Fig. 3. As for Fig. 2 but with random errors x and by (instead of *I
and 6A), uniformly distributed up to as 0.002.

inversion. Note the large uncertainty near GB (56.30) in the
determined thickness. Errors Ax and by approximately 100
times larger than Beaglehole's estimate7 of his uncertainty
have been used.

DISCUSSION
It has been shown that ellipsometric data can be inverted
analytically to find the dielectric constant and thickness of a
layer (assumed uniform and nonabsorbing), provided that

the bounding media have the same dielectric constant. A
related inversion for an absorbing film is known (Ref. 8 and
Sec. 9-2 of Ref. 3); it requires both p = rp/r, and r = tplt,, the
ratio of the transmission amplitudes.

The more general case (dielectric constants on either side
not equal) is as yet unsolved analytically. But we note that
it has been shown in Ref. 4 that the thickness can be elimi-
nated from the equations, so that a single equation can be
solved for the dielectric constant [Ref. 4, Eq. (34)]. All
values of c satisfying this equation are automatically consis-
tent with Z = exp(2iqAz) being on the unit circle. (This is in
contrast to the numerical inversion procedure9 in which a
value of c is chosen, and the resulting values of Z determined
from a quadratic are found, the one closer to the unit circle
being chosen to determine the thickness. A nearby value of
e gives another value of IzI, and Newton's method gives a
better value of c, i.e., with IzI closer to unity. Iteration then
closes in on IzI = 1 numerically.)

In conclusion, it should be noted that with the convention
used here, rp = r, at normal incidence. The opposite con-
vention has rp = -r, at normal incidence, and the conse-
quent change in sign of p = x + iy. Since the cubic equation
[Eq. (10)] has coefficients that depend on x and x

2
+ y

2 ,

experimenters using the latter convention should change the
sign of x in Eqs. (12).
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