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Abstract
Some of the set of exact beam wavefunctions have logarithmically divergent
energy integrals, which limits their usefulness to the region close to the
beam axis.
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Solutions of the Helmholtz equation, (∇2 + k2)� = 0, may
be used to construct solutions of Maxwell’s equations for
monochromatic waves (with angular frequency ω = ck) via
the vector potential A. Sheppard and Saghafi [1–4] have
introduced and applied to optical beams the exact solution

�00 = j0(k R) = sin k R

k R
R2 = ρ2 + (z − ib)2. (1)

Ulanowski and Ludlow [5] have noted that this exact solution
is just the first of an infinite set built up from spherical Bessel
functions and associated Legendre polynomials,

��m = j�(k R)P�m

(
z − ib

R

)
e±imφ . (2)

Lekner [6] showed that �00 gives a divergent normalization
integral

∫ ∞
0 dρ ρ|�00|2 for the scalar (particle-beam) case,

and divergent energy integrals
∫ ∞

0 dρ ρu for the TM,
TE and ‘TEM’ beams constructed from �00. [6] also
showed that �10 = j1(k R)(z − ib)/R gives finite energy
integrals, as well as finite momentum integrals. In fact,
all ��m with odd � − m give the desired convergence
properties.

The question raised by the comment [7] is do the
divergences matter? For �00 the normalization integrand
ρ|�00|2 is, in the focal plane z = 0, proportional to
ρ sin2(k

√
ρ2 − b2)/(ρ2 − b2) ∼ ρ−1 sin2 kρ for ρ2 � b2.

Thus the divergence is logarithmic, as it is for the integral over
the (approximate) intensity in high-aperture optical systems,
as given in equation (1) of [7]. In the electromagnetic case,
again for �00, the energy integrand has asymptotic form
proportional to ρ−1 (leading to logarithmic divergence), while

the momentum integrand has its leading term proportional to
ρ−2 cos kρ sin kρ, giving the finite integral

c
∫ ∞

0
dρ ρ pz = A2

0

16π

× [1 − 1
2β−1(1 − e−2β)][1 − (2β + 1)e−2β]

[1 − e−2β]2
, β = kb

(3)

in the TM and TE cases, with a β/sinh β factor multiplying �00

to normalize it to unity at the origin. (This expression corrects
the misprinted equation (40) of [6].) In the �10 TM, TE and
‘TEM’ cases, both the energy and the momentum integrals
are finite, as given in [6]; the leading terms in the energy and
momentum integrands are ρ−3(β2 + sin2 kρ) and ρ−3 sin2 kρ,
respectively.

One can avoid the divergences associated with the �00

wavefunction by using a cut-off or a convergence factor,
with characteristic distance from the beam axis ρc. But any
finite ρc omits an infinite amount of electromagnetic energy
associated with the exact wavefunction. The usefulness of �00

thus appears to be limited to the region near the beam axis,
where it is an improvement over the approximate Gaussian
wavefunction, especially for values of kb � 2, i.e. in high-
aperture situations [8].
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