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Abstract
Any free-particle wavepacket solution of Schrödinger’s equation can be
converted by differentiations to wavepackets rotating about the original
direction of motion. The angular momentum component along the motion
associated with this rotation is an integral multiple of h̄. It is an intrinsic angular
momentum: independent of origin and unchanged by Galilean boosts along the
quantization direction. An example is given based on the three-dimensional
Gaussian wavepacket, suitable for presentation to an undergraduate class on
quantum mechanics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ohanian [1] has argued that spin is essentially a wave property, due to some kind of rotation
within the wave. Unaware of Ohanian’s paper, I showed that exact pulse solutions of Maxwell’s
equations can have an intrinsic angular momentum, unchanged by Lorentz boosts along the
direction of net momentum of the pulse and invariant to change of spatial origin [2]. Likewise,
acoustic pulses can carry angular momentum [3]. Here we show that any wavepacket solution
of the free-particle Schrödinger equation

ih̄∂t� = − h̄2

2m

(
∂2
x + ∂2

y + ∂2
z

)
� (1)

can be converted by differentiations to wavepackets which rotate about their direction of
motion. (By wavepacket we mean a localized normalizable function of space and time which
satisfies (1).) Specifically, we consider net motion along the z-axis, so that the transverse
momenta px and py have zero expectation values, and use cylindrical coordinates (ρ, φ, z)

where ρ2 = x2 + y2. Then (1) reads as

ih̄∂t� = − h̄2

2m

(
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
φ + ∂2

z

)
� (2)

and the z-component of the angular momentum operator is

Jz = xpy − ypx = −ih̄(x∂y − y∂x) = −ih̄∂φ. (3)
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Clearly � has to have azimuthal dependence for Jz to have non-zero expectation value. For
example, the Gaussian wavepacket solution [4] of Schrödinger’s equation,

�0(ρ, z, t) = (2π)−3/4

[
b +

ih̄t

2mb

]−3/2

exp

{
ik

(
z − 1

2
ut

)
− ρ2 + (z − ut)2

4b
[
b + ih̄t

2mb

]
}

(4)

(where u = h̄k/m) has no φ-dependence and 〈Jz〉 = 0.
We shall first show how any free-particle solution which is independent of the azimuthal

angle φ can be transformed into other exact solutions that do depend on φ and evaluate
the resultant angular momentum. Then we shall use (4) to explicitly construct a spinning
wavepacket.

2. Wavepackets which rotate about their direction of motion

Let �0 be any solution of (1) which has no azimuthal dependence, not necessarily the Gaussian
packet (4). The derivatives of �0 with respect to x, y or z are also solutions of (1), as we can
see by differentiating (1) with respect to any of x, y and z. Thus, for example,

�1 = (∂x + i∂y)�0 (5)

is a solution. Since

∂x = cos φ∂ρ − sin φ

ρ
∂φ, ∂y = sin φ ∂ρ +

cos φ

ρ
∂φ, (6)

we have

∂x + i∂y = eiφ

(
∂ρ +

i

ρ
∂φ

)
. (7)

Hence, for �0 independent of φ, (5) reduces to

�1 = eiφ ∂ρ�0. (8)

This solution of Schrödinger’s equation is an eigenstate of Jz:

Jz�1 = h̄�1. (9)

Note that no assumptions have been made in deriving this result, which is independent of all
of the parameters defining �0, or indeed of its functional form. The eigenvalue is thus also
unchanged by Galilean boosts along z (which, for example, change k and u = h̄k/m in (4)).
Thus 〈Jz〉1 = h̄ holds in all frames, including the ‘rest’ (zero-momentum) frame, and can be
regarded as an intrinsic angular momentum.

Likewise the operator ∂x − i∂y = e−iφ
(
∂ρ − i

ρ
∂φ

)
will produce a rotating packet with

eigenvalue −h̄ for Jz. Higher 〈Jz〉 values can be obtained by more differentiation:

�2 = (∂x + i∂y)
2�0 = (∂x + i∂y)�1 = eiφ

(
∂ρ +

i

ρ
∂φ

)
eiφ ∂ρ�0 = e2iφ

(
∂2
ρ − 1

ρ
∂ρ

)
�0

(10)

has 〈Jz〉2 = 2h̄ and so on. In general, for �n = (∂x ± i∂y)
n�0, the eigenvalue of Jz is ±nh̄.

At this point the quantum mechanics class might be invited to show that �1 is not an
eigenstate of Jx or of Jy , but that 〈Jx〉1 = 0 = 〈Jy〉1 etc, and to experiment with other
derivatives. For example, the wavepacket based on ∂x�0 has zero expectation value for all
components of J. Likewise, the combination (∂x + i∂y)(∂x − i∂y) = ∂2

x + ∂2
y = ∂2

ρ + 1
ρ
∂ρ + 1

ρ2 ∂
2
φ

operating on �̃0 produces a wavepacket without azimuthal dependence and thus with
zero 〈Jz〉.
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Figure 1. Probability density isosurface of �0, shown at one-half of its maximum value at
t = 0. The isosurfaces are spheres. At t = 0 the packet is at its most compact, with
〈r2〉 = 3b2. The packet is in motion upward along the z-axis, and will expand as it propagates:
〈r2〉t = 3b2 + (k2 + 3

4b2 )( h̄t
m

)2.

Clearly, a procedure which gives integer spin cannot describe the electron. The usual route
to spin 1

2 is via a relativistic formulation (the Dirac equation), as discussed in most quantum
mechanics texts. However, the key step is actually the linearization of the Schrödinger
equation [5], namely the derivation of an equation which is linear in the spatial as well as the
time derivatives. This results in a four-component (spinor) wavefunction for a spin 1

2 particle,
with the correct g-factor, in a completely non-relativistic formulation.

3. A rotating wavepacket based on the Gaussian pulse

We shall consider the properties of the wavepacket �1 = eiφ∂ρ�0, where now �0 has the
Gaussian form (4). Differentiation with respect to ρ introduces the factor −ρ

2b[b+ih̄t/2mb] . Thus
�1 is a hollow pulse, with zero probability amplitude on the z-axis (ρ = 0). In addition,
�1 has the eiφ azimuthal dependence, and angular momentum density equal to h̄ times the
probability density:

2b2�∗
1(−ih̄∂φ)�1 = h̄2b2|∂ρ�0|2 (11)

(The factor 2b2 is inserted because
∫

d3r|�1|2 = 1/2b2; note that �0 is normalized to unity,∫
d3r|�0|2 = 1.) Thus, the probability density and angular momentum density are both zero

on the axis of symmetry. Figure 1 shows |�0|2, while figure 2 shows |�1|2, in both cases at
one-half of their maximum values.

It is interesting to compare key expectation values obtained for the wavepackets �0 and
�1, listed on the left- and right-hand sides in the following:

〈Jz〉0 = 0, 〈Jz〉1 = h̄, (12)

〈pz〉0 = h̄k, 〈pz〉1 = h̄k, (13)
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Figure 2. Probability density isosurface of �1, at one-half of |�1|2max at the focal point (t = 0).
The packet is hollow on the symmetry axis. At earlier or later times the packet is larger:
〈r2〉t = 5b2 + (k2 + 5

4b2 )( h̄t
m

)2. In addition to the vertical motion of the wavepacket, there is
circular motion about the z-axis.

〈
p2

z

〉
0 = h̄2

(
k2 +

1

4b2

)
,

〈
p2

z

〉
1 = h̄2

(
k2 +

1

4b2

)
(14)

〈p2〉0 = h̄2

(
k2 +

3

4b2

)
, 〈p2〉1 = h̄2

(
k2 +

5

4b2

)
, (15)

〈ρ2〉0 = 2b2 +
h̄2t2

2m2b2
, 〈ρ2〉1 = 4b2 +

h̄2t2

m2b2
, (16)

〈z2〉0 = b2 +
h̄2

m2

(
k2 +

1

4b2

)
t2, 〈z2〉1 = b2 +

h̄2

m2

(
k2 +

1

4b2

)
t2. (17)

Both �0 and �1 represent wavepackets that move at group velocity u = (0, 0, h̄k/m): both
have

〈r〉 = (〈x〉, 〈y〉, 〈z〉) = (0, 0, h̄kt/m). (18)

Both reach their focal region centred on r = 0 at t = 0. For the same parameters k and b, �0

and �1 have the same longitudinal spread, as measured by the mean-square deviation in z:

(�z)2 = 〈z2〉 − 〈z〉2 = b2 +

(
h̄

2mb

)2

t2. (19)

From (13) and (14) we have (�pz)
2 = 〈

p2
z

〉 − 〈pz〉2 = h̄2/4b2, so that the longitudinal
uncertainty product is the same for both �0 and �1:

�z�pz = h̄

2

√
1 +

(
h̄t

2mb

)2

. (20)

As expected, �1 has the larger transverse spread: from (15) we see that 〈ρ2〉1 = 2〈ρ2〉0 for the
same values of k, b and t. The main difference lies in the azimuthal flow: �1 has an azimuthal
component in its probability density current, proportional to Im(�∗

1∇�1). From (11) this is
proportional to ρ−1|∂ρ�0|2.
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4. Discussion

We have seen how any free-particle wavepacket solution of the Schrödinger equation can
be converted by differentiations to rotating wavepackets, which have angular momentum
component along the direction of motion equal to an integer multiple of h̄. (When seen in
their zero-momentum frames, the wavepackets still have an axis of symmetry, here the z-axis,
and thus we do not need motion to define the preferred direction.)

An example, based on Darwin’s Gaussian wavepacket (4), is discussed in detail. There
is ample opportunity for class projects, for instance study of wavepackets with higher angular
momenta, �n = (∂x + i∂y)

n�0. After �1 given by (8) the first few of these are, assuming as
before that �0 is independent of φ,

�2 = e2iφ

(
∂2
ρ − 1

ρ
∂ρ

)
�0, (21)

�3 = e3iφ

(
∂3
ρ − 3

ρ
∂2
ρ +

3

ρ2
∂ρ

)
�0, (22)

�4 = e4iφ

(
∂4
ρ − 6

ρ
∂3
ρ +

15

ρ2
∂2
ρ − 15

ρ3
∂ρ

)
�0. (23)

Among the relations to be checked in the calculation of expectation values is that (for example)
〈pz〉 and

〈
p2

z

〉
are independent of time, while 〈z2〉 depends quadratically on time (see [6] for a

derivation),

〈z2〉t = 〈z2〉0 +
(�pz)

2

m2
t2, (24)

where (�pz)
2 = 〈

p2
z

〉 − 〈pz〉2 is the mean-square deviation in pz.
We note finally that there are many parallels between the quantum particle case, discussed

here, and the electromagnetic and acoustic cases [2, 3]. One notable difference is that the
vector electromagnetic field can have angular momentum even in the absence of azimuthal
dependence in the pulse solution of the wave equation on which it is based [2]. Of course, the
unquantized electromagnetic and acoustic wavepackets can have any value of 〈Jz〉.
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