
John Lekner Vol. 14, No. 6 /June 1997 /J. Opt. Soc. Am. A 1359
Reflection ellipsometry of uniaxial crystals
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A method is proposed to determine the optical constants of uniaxial crystals by ellipsometry. The same
scheme works for absorbing and nonabsorbing crystals. The quantities measured are ratios of the four re-
flection amplitudes rss , rsp , rps , and rpp , and angles. The common zeros of rsp and rps determine the sym-
metry direction (optic axis in the plane of incidence) at which rpp /rss is measured to obtain one equation link-
ing the ordinary and extraordinary dielectric constants eo and ee , and the inclination x of the optic axis to the
normal to the reflecting plane. Measurement of rpp /rss at right angles to the symmetry direction, and of
rsp /rps away from the symmetry direction gives two more equations for the unknowns. The method can be
used on microscopic crystal faces. © 1997 Optical Society of America [S0740-3232(97)02006-1]
1. INTRODUCTION
The purpose of this paper is to propose a simple scheme
for determining the dielectric constants and the orienta-
tion of the optic axis of a uniaxial crystal by reflection el-
lipsometry. The optic axis direction is specified by two
angles x and f relative to the laboratory frame (defined in
Section 2); x, f and the ordinary and extraordinary dielec-
tric constants eo and ee are the four unknowns to be
found, and I shall show how these can be determined from
ratios of the four reflection amplitudes rss , rsp , rps , and
rpp . If the crystal is nonabsorbing, the reflection ampli-
tudes are all real and four real numbers are determined
by the measurement of four real quantities (three reflec-
tion amplitude ratios and one angle). When the crystal
is absorbing, the dielectric constants eo 5 no

2 and eo
5 ne

2 are complex, the reflection amplitudes are also
complex, and both real and imaginary parts are needed.
The same method will, however, work for both absorbing
and nonabsorbing crystals.
Biaxial crystals are not covered by the proposed

scheme, which begins by setting an experimental crite-
rion in terms of the sp and ps reflection amplitudes for
whether the crystal is uniaxial or not.

2. REFLECTION BY A UNIAXIAL CRYSTAL
The reflection geometry is shown in Fig. 1. The medium
of incidence, of refractive index n1 5 Ae1, occupies z
. 0. The reflecting face of the crystal is the xy plane,
the z axis is the inward normal, the zx plane is the plane
of incidence, and u is the angle of incidence. The optic
axis, along the unit vector

c 5 ~a,b,g! a2 1 b2 1 g2 5 1, (1)

may be equivalently expressed in terms of the polar and
azimuthal angles x and f relative to the laboratory xyz
frame:

c 5 ~sin x cos f, sin x sin f, cos x!. (2)

The reflection amplitudes rss , rsp , rps , and rpp deter-
mine the reflection properties completely. (The sub-
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scripts s and p refer to electric field components normal
and parallel to the plane of incidence: rsp , for example,
gives the reflected electric field amplitude in the plane of
incidence when the incident light wave is polarized nor-
mal to the plane of incidence.) Ellipsometry of aniso-
tropic media is discussed in Refs. 1 and 2; the latter
shows that each of the four usual ellipsometric arrange-
ments measures one of the ellipsometric ratios

rP 5
rpp 1 rsp tan P
rps 1 rss tan P

, rA 5
rpp 1 rps tan A
rsp 1 rss tan A

, (3)

where P is the angle between the polarizer easy axis and
the incident p direction, and A is the angle between the
analyzer easy axis and the reflected p direction. The
angles P and A are measured from the p toward the s di-
rections, with the vectors p, s, and k (the wave vector)
forming a right-handed triplet.
For uniaxial crystals the reflection amplitudes are

known analytically.3,4 We shall not need the full formu-
las here, only the following results: rsp and rps are iden-
tically zero for isotropic reflectors, and for uniaxial crys-
tals they have the form (F is the same for rsp and rps)

rsp 5 b~aqo 1 gK !F rps 5 b~aqo 2 gK !F (4)

where K 5 n1(v/c) sinu is the x component of the wave
vector of the incident, the reflected, and the transmitted
waves, and qo 5 @eo(v/c)

2 2 K2#1/2 is the normal compo-
nent of the ordinary wave vector in the crystal. For the
ss and pp amplitudes, we shall need the values taken
when the optic axis lies in the plane of incidence, where
b 5 0, sin f 5 0. These are3–5

rss~b 5 0 ! 5
q1 2 qo
q1 1 qo

rpp~b 5 0 ! 5
Q 2 Q1

Q 1 Q1
(5)

where q1
2 5 e1(v/c)

2 2 K2, and Q1 5 q1 /e1 , and Q
5 qg /none with

q ġ
2 5 eg~v/c !2 2 K2, eg 5 eo 1 g2~ee 2 eo!. (6)

From Eq. (5) we obtain the quantity
1997 Optical Society of America
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r1 [ S rss 2 rpp
rss 1 rpp

D
b50

5
e1qoQ 2 q1

2

q1~qo 2 e1Q !
. (7)

We shall also use the value of the same ratio when cos f
5 0 (a 5 0):

r2 [ S rss 2 rpp

rss 1 rpp
D

a50

5
@~1 2 g2!eo 1 g2e1 sin

2 u#@e1qoqe 2 eoq1
2#

q1@~1 2 g2!eo~eoqe 2 e1qo! 1 g2e1~eoqo 2 e1qe!sin
2 u#

(8)

where (when a 5 0)

qe
2 5

eo
eg

@ee~v/c !2 2 K2# . (9)

3. DETERMINATION OF THE CRYSTAL
PARAMETERS
The crystal is mounted on a support stage which can be
rotated about the z-axis (the normal to the reflecting
face). It is important that the stage can be adjusted so
that the angle of incidence does not change on rotation.
The reflection amplitudes rsp and rps are determined
first. (Actually the ratios rsp /rss and rps /rss are found:
see Appendix A.)

1. If the ratios are zero at all values of the azimuthal
angle f, the crystal is isotropic (in which case the known
inversion6 of rp /rs obtained from ellipsometry can be
used), or reflection is from the basal face (the one perpen-
dicular to the optic axis). For reflection from the basal
plane, with the optic axis coinciding with surface normal,
x 5 0 and g 5 1, and the formulas (5) apply, with

Q2 5
ee~v/c!

2 2 K2

eoee
. (10)

Measurement of the ratios r1 and r2 then gives two equa-
tions in the two remaining unknowns, eo and ee . (If the

Fig. 1. Reflection by a uniaxial crystal: xy is the reflecting face
and zx is the plane of incidence, with the inward normal along
the z-axis. The optic axis c (long-dashed line) is at angle x to
the normal, and the plane containing c and the z-axis cuts the
xy plane at angle f to the x axis.
crystal is absorbing, rss and rpp will be complex and so
will r1 and r2 , which then determine the complex dielec-
tric constants eo and ee .)
2. If the reflection amplitudes rsp and rps are not

identically zero, from Eq. (4) they will have two common
zeros as the uniaxial crystal is rotated through 360°.
These zeros occur at b 5 0, i.e., at f 5 0 and p. (If rsp
and rps are not zero together twice in a full rotation, the
crystal is not uniaxial.) When the crystal is aligned so
that rsp and rps are both zero, the optic axis lies in the
plane of incidence, and Eq. (7) (with Q 5 qg /none) gives
the experimental value r1 of (e1qoQ 2 q1

2)/q1(qo
2 e1Q), while Eq. (8) relates the experimental value r2
to the same unknown quantities eo , ee and g 5 cos x.
If the crystal is now rotated away from the b 5 0 (f

5 0 or p) direction, the ratio rsp /rps can be measured.
From Eq. (4),

r3 [
rsp 1 rps
rsp 2 rps

5
aqo
gK

5 tan x cos f
qo
K
. (11)

In the final expression of Eq. (11), K 5 n1(v/c)sin u is
given by the angle of incidence, and f is a known rotation
angle. (Since x lies between 0 and p/2, tan x is positive,
and the sign of r3 removes the 0, p ambiguity in f.) We
thus have three relations, arising from the equations for
the theoretical values of the experimentally determined
ratios r1 , r2 , and r3 , so that the unknowns eo , ee and g
5 cos x can be found numerically. We can solve Eq. (11)
for cos2 x 5 g 2 in terms of qo and r3 :

g 2 5
~qo cos f!2

~qo cos f!2 1 K2r3
2 , (12)

substitute into r1 and r2 (which do not depend on the sign
of g), and then solve for eo and ee .
I have not been able to obtain analytic solutions for eo

and ee in terms of the measured ratios r1 , r2 , and r3 ,
which enter into Eqs. (7) and (8) after the substitution in
Eq. (12) is made. It is possible to eliminate one of the un-
knowns and obtain a polynomial equation for the other,
however: We solve Eq. (7) for Q and square and solve
r2 for qe and square. Using Eq. (9) and qg

2 5 qo
2

1 g2(ee2 eo)(v/c)
2, respectively, we obtain two equa-

tions, z15 0 and z2 5 0. Both are linear in ee . We
solve these for ee and equate the two values. This gives
an equation Z 5 0. Z reduces to a polynomial of the
tenth degree in qo on substituting qo

2 1 K2 for
eo(v/c)

2. I have not been able to factor this polynomial
to isolate the physical root, but it is useful in the estima-
tion of inversion errors, to be discussed in Section 4.

4. EXAMPLE AND DISCUSSION
We have seen how the dielectric constants and the optic
axis orientation of a uniaxial crystal may be determined
by ellipsometry. If the crystal is absorbing, the complex
reflection amplitudes must be measured. If the crystal is
not absorbing, there will be a Brewster angle upp at which
rpp(b 5 0) is zero. This angle is given by4

tan2 upp~b 5 0 ! 5
eoee 2 e1eg

e1~eg 2 e1!
, (13)



John Lekner Vol. 14, No. 6 /June 1997 /J. Opt. Soc. Am. A 1361
and at this angle of incidence r1 5 1 for all transparent
uniaxial crystals. The equation r1 5 1 does contain in-
formation, however, so there is no need to avoid measure-
ment at the Brewster angle. Angles to be avoided are
those at which r1 and r2 give the same information, for
example normal incidence, since there r3 becomes infinite
and r1 and 2r2 tend to the same quantity, namely,
n1no(ng 2 ne)/(no

2ne 2 n1
2ng). Highly oblique inci-

dence is likewise not recommended, since at glancing in-
cidence rsp and rps go to zero, while rss → 21 and
rpp → 1. Finally, f should not be a multiple of p/2 in the
measurements of rsp and rps [cos f 5 61 makes both am-
plitudes zero, while cos f 5 0 annihilates r3.
Figure 2 shows the reflection amplitudes for reflection

from a cleavage face of calcite, as a function of the azi-
muthal angle f, at 45° angle of incidence. The calcite
cleavage faces are parallelograms with angles A
5 101°558 and 180° 2 A 5 78°58. The optic axis
makes equal angles with all faces at a blunt corner.7

Thus the optic axis is at angle x to each face normal,
where

g 5 cos x 5
1

A3
tan~A/2!, (14)

which gives g 5 0.7119 and x 5 44.61° 5 44°378. The
f 5 0, p direction lies along the bisector of A at the blunt
corners of each face. The direction cosines of the optic
axis are a, b, and g, where

a 5 N cos f, b 5 N sin f, N 5
A1 1 2 cos A

A3 cos~A/2!

(15)

(N 5 0.7023 for calcite). The refractive indices at the
He–Ne wavelength of 633 nm are no 5 1.655 and ne
5 1.485.
We note that rps(f 1 p) 5 rsp(f). This holds for re-

flection from all uniaxial crystals and follows from the
general formulas derived in Ref. 3. Expressed in terms
of the direction cosines a, b, and g of the optic axis, the
relation reads

rps~2a, 2b, g! 5 rsp~a, b, g!. (16)

(This relation is consistent with Eqs. (4) but does not fol-
low from them, since it must also be shown that the func-
tion F is independent of the signs of the direction cosines.
The latter result follows by methods similar to those used
in Ref. 4.)
We also note that rss and rpp repeat twice as f ranges

through 2p, in accord with the fact that rss and rpp are
invariant with respect to the change of sign of any of the
direction cosines.4 Thus rss(f 1 p) 5 rss(f), rpp(f
1 p) 5 rpp(f), in contrast to rsp and rps , which have a
period of 2p in f.
Finally, we note the magnitudes of the reflection ampli-

tudes. Bounds on the reflection amplitudes have been
discussed in Ref. 5; in general, the sp and ps amplitudes
are small, and hence an accurate value of the ratio (rsp
1 rps)/(rsp 2 rps) in Eq. (11) may be difficult to deter-
mine. Thus the angle x between the optic axis and the
normal to the reflecting surface may be difficult to deter-
mine accurately by this method.
Sensitivity to experimental error is explored in Figs. 3
and 4, for calcite and for strongly absorbing selenium. In
both cases the inversion is robust, with 10% errors lead-
ing to errors of the same magnitude or smaller, except
that the deduced values of eo for selenium are very sensi-
tive to errors in r2 .
It is concluded that the method proposed here is suit-

able for rapid but not highly accurate determination of
uniaxial crystal parameters, with the advantages over
orthodox8–10 methods and recently proposed11 methods
that measurements can be made on crystals of micro-
scopic size, that the same technique is applicable to ab-
sorbing as well as to transparent crystals, and that im-

Fig. 2. Theoretical reflection amplitudes for the cleavage faces
of calcite, as a function of the azimuthal angle f, at 45° angle of
incidence. The azimuthal angle goes from 0 to 2p as the crystal
is rotated a full revolution. The angle between the normal to a
cleavage plane and the optic axis is 44.61°. The refractive indi-
ces at 633 nm are no 5 1.655, ne 5 1.485. Note the common ze-
ros of rsp and rps at f 5 0 and p and also that the largest am-
plitude rss has been brought into the figure by adding 0.28.

Fig. 3. Deduced eo values for calcite and selenium at f 5 45°
and u 5 45°, assuming 10% errors in the measured values of
r1 , r2 , and r3 . The plotted values are obtained by varying r1 ,
r2 , and r3 by 10% in magnitude away from their exact values,
with eight different phases equally spaced around the unit circle,
so that ur 2 rexactu5 urexactu/10. The true values of eo are
(1.655)2 ' 2.739 for calcite at 633 nm and (3.38 1 0.65i)2

' 11.01 4.4i for selenium at 620 nm.
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mersion in liquids of similar refractive index is not
required.

APPENDIX A: EXTRACTION OF
REFLECTION AMPLITUDE RATIOS
Ellipsometry can determine the relative phases of re-
flected waves of orthogonal polarizations, since the com-
ponents of these polarizations along the analyzer easy
axis are superposed and brought into interference. Of
the two ellipsometric ratios given in Eqs. (3), the
polarizer-sample-compensator-analyzer and polarizer-
sample-modulator-analyzer configurations measure2

rP 5
rpp 1 rsp tan P
rps 1 rss tan P

. (A1)

(The configurations with compensator or modulator be-
fore the sample measure rA , which has the form of Eq.
(A1) with rsp and rps interchanged and A replacing P.)
Measurement of rP at N different values of the polar-

izer angle P gives N linear homogeneous equations for
the unknowns rss , rsp , rps , and rpp . Only the ratios of
the reflection amplitudes can be found from these experi-
mental values. Three measurements are thus sufficient
to determine the three independent ratios. For example,
we can set P 5 0, p/4, and p/2, so tan P takes the values
0, 1, and `, and measure the corresponding complex num-
bers r0 , r1 and r` . Solving for rsp , rps , and rpp in
terms of rss then gives

Fig. 4. Detail of the calcite error ovals, at f 5 45° and u
5 45° and 60°. The deduced eo values are obtained by taking
10% magnitude errors in r1 , r2 , and r3 , as in Fig. 3. The
curves are ellipses fitted to the two points on the real axis, one
focus being at the exact value eo 5 (1.655)2 ' 2.739. The el-
lipses all have small ellipticities, ranging from 0.037 for the r2
(60°) ellipse to 0.137 for the r3 (60°) ellipse. The r3 errors orbit
about the right focus, the others about the left focus.
rsp 5 r`rss rps 5
r1 2 r`

r0 2 r1
rss

rpp 5
r0~r1 2 r`!

r0 2 r1
rss . (A2)

Extra measurements provide a check on the accuracy of
the data. For example, if P is set to 2p/4 (so tan P
5 21), the resulting measurement r21 will be consistent
with the previous measurements r0 , r1 , and r` if

r21 5
r0r1 2 2r0r` 1 r1r`

2r1 2 r0 2 r`
. (A3)

In practice this consistency relation will not be satisfied
exactly, because of experimental error. In addition to the
solutions in Eqs. (A2) in terms of $r0 , r1 , r`%, there are
solutions sets for rsp /rss , rps /rss , and rpp /rss in terms of
$r21 , r1 , r`%, $r21 , r0 , r`%, and $r21 , r0 , r1%. For
measurements of rP at N > 3 values of P, there will be
N!/(N 2 3)!3! solution sets, which can be averaged to
give the reflection amplitude ratios. A simpler approach
is to measure repeatedly at three fixed values of the po-
larizer angle P and to average the rP values obtained at
each P, with occasional measurement at a fourth angle to
provide a consistency check.
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