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Exact results are derived for the reflection and transmission of acoustic compressional waves 
by an arbitrary stratification. These results include conservation and reciprocity theorems, 
low-frequency and high-frequency limiting forms, and analytic solutions for two special 
stratifications, both having exponential variation of density with depth, and linear or 
exponential variations of sound speed. 
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INTRODUCTION 

The purpose of this paper is to bring together exact re- 
sults in the reflection and transmission of compressional 
waves by stratified media. In some cases we give generaliza- 
tions of results recorded in acoustical texts, •-• in others an 
adaptation of techniques and results developed for electro- 
magnetic and particle waves; 6 most of the results are new to 
acoustics. This paper is restricted to compressional wave 
propagation in planar stratifications. Although shear waves 
in the lower bounding medium can be incorporated into the 
formalism if the boundary is sharp, 7'8 we have excluded 
shear waves here. (Extensions of the theorems to include 
shear wave effects may be the subject of a future publica- 
tion. ) The linearized equation for the acoustic pressure p is 
accordingly 9'2 

yep_ lvp.Vp_ 1 D2p --0, (1) 
p c 2 r•t 2 

where c: is the adiabatic derivative of the hydrostatic pres- 
sure with respect to the density. For planar stratifications, p 
and c are functions of the depth z only; c(z) is usually re- 
ferred to as the local value of the phase velocity, but this is 
literally true only if the medium changes little in one "wave- 
length" ("speed"/frequency)--see Reft 10. For a plane mo- 
nochromatic wave propagating in the zx plane, solutions of 
( l ) have the form 

p(z, x, t) = e i(t•x -ø")P(z), (2) 
where co is the angular frequency of the wave and K is the x 
component of the wave vector, which is a constant of the 
motion. The angle O(z) between the normal to the wave 
front and the z axis, and the local speed of sound c(z) are 
related to K via the generalized Snell's law, 

K = [o/c(z) ]sin O(z) = const. (3) 

(The grazing angle is 90' - 0. ) The differential equation for 
P(z) is 8'6 

P•zz • +q2P=0, q•(z)- c2(z ) K •, 
(4) 

where q(z) is the normal component of the wave vector. 
In this paper we consider bounded stratifications, ex- 

tending between z = a and z = b, with uniform media (for 
z < a and z > b) above and below. Acoustic parameters relat- 
ing to these bounding media will be labeled by the subscripts 
a or b; thus qa = (o/ca)cos 0, is the value of the normal 
component of the wave vector in medium a. When sound is 
incident from medium a and transmitted, via the stratifica- 
tion, to medium b, the pressure variable P(z) takes the forms 

P• = e iq•z d- r•e •q'•, z<a, 

Pab =tob eiq'•, z•b, (5) 

in media a and b. When sound is incident from below, the 

forms taken by P(z) in media a and b are 

Pba =tboe iqaz, z<a, 

Pv• =e-iq'• d- rvoe 'q'•, z•>b. (6) 
In the next section we derive general relations linking the 
reflection amplitudes %b, %0 and the transmission ampli- 
tudes to•, tbo, and their relation to the appropriate acoustic 
reflectances and transmittances. 

I. GENERAL RESULTS FOR THE REFLECTION AND 
TRANSMISSION AMPLITUDES 

Let F(z) and G(z) be two solutions of (4), and consider 
their Wronskian 

W(F,G) = FG' -- F'G, (7) 

where the prime denotes differentiation with respect to z. 
The derivative of Wis W' = FG" - F"G, which from (4) 
can be written as 

W' = (p'/p) W. (8) 

Thus W/p is a constant: The Wronskian of the two solutions 
is proportional to the local density. 

Consider first the Wronskian of Po,(z)and P•(z). 
From (5) and (6) we see that in medium a this takes the 
value -- 2iqa t•a, and in medium b the value -- 2iq• to,. Since 
W/p is a constant, we have shown that 

Q•tbo = Q•ta•, (9) 

where Q denotes the normal component of the wave vector 
divided by the density: 
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Q •_ q/p. (10) 

The derivation of (9) assumes that there is no attenuation in 
media a and b [otherwise the forms (5) and (6) would, with 
complex qa or qb, show unacceptable exponential growth ]. 
Total internal reflection is excluded for the same reason. It 
has not been assumed that the stratification between the uni- 

form media a and b is free from attenuation. The equality 
{9) demonstrates that the (complex) transmission ampli- 
tudes t• b and t• carry the same phase. It also implies that 
the transmittance (the fraction of acoustic intensity trans- 
mitted through the stratification) is the same from above 
and from below, 

Tab = 

where 

Tab ---- (Q•/Qa)ltaol 2, r• -- (Qa/Q•)lt•l 2. (11) 

To see that the transmittance is Ta• = (Q•/Qa)lt•b 12, 
consider the situation in Fig. 1, in which a beam incident 
from medium a insonifies a strip of unit width on the z = a 
boundary. The energy density of a plane wave with complex 
acoustic pressurep is proportional to Ipl2/pc 2, so the intensi- 
ty is proportional to [p}2/pc. For the case shown, the amount 
of energy in the primary wave that is incident on a unit area 
of interface in unit time is proportional to cos 0•/p• c•, while 
the energy reflected away in unit time is proportional to 
[ro, I • cos Oa/pac,. The energy transmitted in unit time is 
proportional to Ito• 12 cos O•/pbc•. It follows that 

= Irbl 

Ta• = pøc• cos 0• Q• 

We next consider the Wronskian of P,b and P •, as- 
suming the absence of attenuation everywhere [ifPis a solu- 
tion of (4), so is P* provided q2 is real]. This Wronskian 
takes the value 2iq• r• t • in medium a, and -- 2iq, t•, • in 
medium b. Since V//p is constant, we have the result 

z=a 

z=b 

•.0•1 I >X 

•.. c, oS08•'• z 

FIG. I. A strip of unit width on the stratification is insonified by a beam of 
width cos 0•; the transmitted beam has width cos 0• (the reflected beam is 
not shown). 

Q, ra•t • --- - Q•tab•. (13) 

With (9), this shows that 

• = -- {t •/t• )r•, (14) 

which in turn implies the equality of the reflectances 
Ra• = Ir•b I • and R• = Ir• I •. Note that r•uired r•lity of 
q [for •. (9) ] also excludes total internal refi•tion: e.g., ff 
the wave is totally internally reflect• from m•ium b, q• is 
imaginary. 

Under the same conditions, the Wronskian of 

P• and P• is •ual to --2iqo(l --Iraqi in m•ium a, 
and -- 2iqo It• • in medium b; the const•cy of the Wrons- 
klan divid• by the density thus implies 

Q•(1 - Irol = Qolt,l (15) 
which is the energy conservation law 

R•o + T• = 1. (16) 

(•e same equ•ity links R• and To•.) The analogous re- 
sults for electromagnetism and quantum m•hanics are de- 
rived, by different meth•s, in Sec. 2-1 of Reft 6, where refer- 
ences to mrlier work may be found. 

•e differential •uation (4), to • satisfi• by the 
acoustic pr•sure variable P(z), is linmr and of the second 
order. Thus, in a general stratification, (4) has two lin•rly 
independent solutions, say F(z) and G(z), and P is a line• 
combination of these within the stratifi•tion: 

P= uF + oG. (17) 

Consider the refl•tion-transmission problem, in which 
s•nd is incident from m•ium a. Then in media a and b Pis 

given by (5), while within the inhomogeneous layer it is 
given by (17). The •unda• conditions at z = a and z = b 
•e the continuity of P and of p-• dP/dz. (Note that th• 
•nditions are implied by the differential equation (4), and 
a• not additional physic• input.) The• boundaw •ndi- 
tions give four equations in the four unknown •nstants u, o, 
r, and t: 

e • + re- • = uF• + oGo, ufo + oGu • te •, 

+ =iot 
(18) 

Here a = q•a, • = qub, r and t are the refi•tion and trans- 
mission amplitud• for insonification from m•ium a (we 
will drop the ab subscript from now on), F• is sho• for 
F(z• ), F, is shorn for the derivative of Fat z = a divided by 
the value ofp just inside the stratification, and so on. (•is 
notation allows for •ssible discontinuity of density at either 
interfax). Solving (18) we find 

r= •'•[Q•Q•(F,G) + iQ•(F,•) 
+ iQu (F,G) -- (F,G) ]/D, 

t = e•(•-a•2iQ, (Fo•u -- •uG, )/D, 

u = e•2iQ• (G• -- iQu G, )/D, 

o = -- e•2iQ• (• - iQ, Fo )/D, { 19) 

where (F,G)•F•G, -- G•F,, (F,•)•F• -- G•u etc., 
and the common denominator of all four expr•sions is 
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D = QaQb(F,G) + iQa (F,•) -iQb (•,G) + (•,•). 
(20) 

If the density p is continuous across the interfaces at z = a 
and z = b, the equations linking the derivatives across the 
boundaries simplify, and the above equations may be re- 
placed by a set in which Qo., --'qa,0 and F, G-,F',G '. 

In the absence of attenuation or total internal reflection, 
q is real everywhere. Then Fand G may be chosen to be real, 
being the solutions of a real differential equation, and 

[QaQ(F,a) - (F,a)]: + + Q(Za)] 
[Q,•Qb(F,G) + (F,G) ] 2 + [Qa (F,•) -- Q•,('•,G) ] 2' 

(21) 

T= Qo lt12 
4Q,,Qt,(F•,•, - 7•,G•, ) 2 

[ Q,, Q•, (F,G) + (?,•) ]• + [ Q,, (F,•) - Q•, (?,G) ]2' 
(22) 

By using the identity 

(F,G) (F,G) -- (F,G) (F,G) 

(23) 

and the fact that W/p is a constant, the conservation law 
(16) is seen to follow from (21) and (22). It also follows 
from (23) that R<I, as can be seen by writing (21) in the 
form I -- 4QaQ• ( W/p)2/JD I 2. 

In total internal reflection, q• = (o)/%) 
2 2 I/2 X (c•/c• -- sin 2 0 a ) is imaginary, and r takes the form 

e'i"(iA -- B)/(iA + B), so that I r[ 2 = 1. But note that this is 
true only in the absence of attenuation, which makes the 
reflection less than perfect even if q, is pure imaginary. 

At grazing incidence (from medium a) the normal com- 
ponent q• = (w/ca)cos 0a of the wave vector tends to zero. 
It follows from (19) and (20) that 

r-. - 1, t-•0 as go --,90 ø. (24) 

[Fand Gare functionals ofq 2 (z) = o)2/c 2 (z) - K 2, and thus 
depend on the angle of incidence through K = (•o/ca)sin 0•; 
however, this dependence cannot override the effect of 
Qa--,0 in (19) and (20)]. Thus there is perfect reflection 
and zero transmission at grazing incidence. The reflected 
wave is then 180 ø out of phase with the incident wave. These 
statements hold whether or not there is attenuation in the 
stratification and/or the bottom medium, and also hold 
when there is total internal reflection (qu imaginary). 

The reflection and transmission amplitudes for insonifi- 
cation "from below" may be obtained by applying the 
boundary conditions to (6) and (17). They are 

r•a = e- 2ia [ QaQb (F,G) 

-- iga (F,•) - igo (•,G) - (F,G) I/D, 

tt• = ei("-m2iQ, ( W/p)•/D, (25) 
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and satisfy the reciprocity theorems (9) and (14). The cor- 
responding solution for the constants in P = uF + oG is 

u = e-i•2iQ•(• + iQ•G•)/D, 

v = -- e - ia 2iQ, (• + iQaFa )/D. (26) 

The general expressions for reflection and transmission 
amplitudes derived here will be used in the next three sec- 
tions to obtain low- and high-frequency limiting forms, and 
solvable models. 

II. LOW-FREQUENCY REFLECTION AND 
TRANSMISSION 

The low-frequency regime is attained when the dimen- 
sionless parameter (•o/c•)Az is small compared to unity, 
Az = b - a being the thickness of the stratification. Since 
this parameter is equal to 2rr Az/Aa, the low-frequency limit 
is equally well characterized as a thin-layer or long-wave- 
length limit. We first note that the reflection and transmis- 
sion amplitudes tend to the sharp-transition values 

ro = e2•q•a [ ( e• _ Q• ) / ( Q• + Q•)], 

t o = e"q"-"'•[2Q•/(Qa + Q•)]. (27) 
(These are obtained by matching Pandp- • dP/dz at z = a, 
the boundary between the uniform media a and b.) The fact 
that (27) gives the low-frequency limit of (19) is intuitively 
plausible: At long wavelengths the wave is mainly affected 
by the changes in the acoustical parameters, and is not sensi- 
tive to details in the transition between the two uniform me- 

dia. An important question is: What are the corrections to 
(27) and to the reflectance and transmittance? It is natural 
to express the corrections as power series in fiz (more cor- 
rectly, as power series in a dimensionless parameter like 
to•zlc• ): 

r=ro+rt +r2+ '". (28) 

A variety of techniques for extracting r• and the higher-or- 
der corrections are developed in Reft 6 (see in particular 
Chap. 3 and Sec. 12-5). Here we will make use of the results 
in an accompanying paper, •t in which expressions for rand t 
are given in terms of the matrix elements rn o of a profile 
matrix M: 

r = e 2i• g•Qorn'2 + iQ•rn:2 - iQorn,, + m2, , 
QaQ•rn,2 + iQ•rn•2 + iQom,, -- m2! 

2iQ• detM 
t = e "•-m (29) 

g•Qom•2 + iQam22 + iQom• -- m2• 

[a = qoa and • = q,b as in (19), to which the above ex- 
pressions bear a close resemblance]. In Ref. 11 the matrix 
elements m u are found up to second order in the layer thick- 
ness. They are 

m•=l- dzp(z) j• _p•.-1-12, 
m• = dzp(z)•I. 
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• q2(z) = -- JI, mz,= -- dZ p(z) - 
m n = 1 -- dz q•(z) d•p(•)-• 1 --J2. (30) 

p(z) 
The integrals I, and J• are of first order in Az = b -- a, while 
12 and Jz are of second order in Az. It is known that TM 
I2 q- J2: [i J1, so the determinant of the profile matrix M is 
unity plus a fourth-order term: 

det M = I + It/2. (31) 

The corrections to the reflectance R = Irl 2 depend on 
whether there is attenuation or not. If the attenuation is neg- 
ligible within the stratification and in the uniform media, 
and in the absence of total internal reflection, all matrix ele- 
ments and wavevectors are real, the first-order correction to 

Ro -- Irol z is zero, and the second-order correction to Ro is 

[ 4Q•Qb/(Qa q- Q•)4] [ OZoQ•rn• 2 q- mz•] 

4 2 2 2 

= [4Q•Q•/(Q• + Qo) ](QaQ•I] 
q- J• - 2QZ•Jz - 2Q•lz). (32) 

The low-frequency approximation to the reflectance, name- 
ly Ro plus the expression (32), is shown compared to the 
exact reflectance in Fig. 2, for a stratification in which both 
density and sound speed vary exponentially with depth. For 
this stratification, all the integrals needed in (32) may be 
found analytically. The exact reflectance is calculated from 
the formulas of Sec. IV. Also shown is the high-frequency 
approximation of Sec. III. 

Attenuation changes the low-frequency behavior dra- 
matically: Whereas the correction (32) is second order in 
the small parameter roAz/c•, attenuation makes one of the 
first-order contributions to the matrix elements complex: 

ff [k(z)• -- K 2 ] J•= dz 
p(z) 

ff (k•Z -k•-KZ + 2ik, k•) = dz , (33) 
P 

where a•/c(z) =k(z) = k, (z) + ik• (z). The consequence is 

Oo3' 

O.1 

o 
o 

%% 

exac• x • x high froquoncy 

low frequency N N • 

I I N I 

•&z/c a 

FIG. 2. Reflectance of a stratification in which density and speed vary ex- 
ponentially: exact (--) from See. IV; low-frequency approximation 
Ro + (32) (--); and high-frequency approximation of Eq. (52) (---). 
The parameters used arepa = 2po, ca = (4/3)co withp and c continuous at 
z = a and b, and angle of incidence 30' (60' grazing angle). 

a first-order correction to the reflectance: ]r[ z contains the 
term 2 Re(ro•), and from (29) we have 

ro=eZ•'(Q• - Qa)/(Q• + Qo), 

r• = eZ•[2iQo/(Q• + Q• ) ] (J, -- Q•I,). (34) 
The reflectivity is thus, to first order in c• Az/c•, 

R=Ro 8Q•(Q•- Qa) ff k,(z)k•{z) - az p(z) 

Sin• k, and k•, the real •d ima•nary pa•s ofa/c(z), a• 
both non-negative, the refl•t•ce is decreased from R o if 
Q• > Q•, •d increas• from Ro if Q• < Q•. On using 
Q = a c• •/• and the const•cy ofK = • sin •/c (Snell's 
law), we find that Q• > Q• if 

tan• > [ (p•c•)• - (p•%)•]/[p• (c• - c•) ] . (36) 

For stratifications in which p and c incr•se together, the 
right-hand side of (36) is negative, and so Q• > Qo and at- 
•nuation in the stratification d•rea• the reflectan• of 

long waves from R o at all angles of incid•ce. We note in 
p•sing that the equality Q• = Q•, which makes R o = 0, re- 
quires equality in (36), the angle at which this happens •ing 
Green's •gle •a, the acoustical analog of Brewster's angle 
in optics (see Ref. 6, Sec. 1•). At Green's angle (if it exists) 
the first-order co•ection to the reflectrice vanishes. This is 

not true of the transmittan• T= (Q•/Q•)It •, which from 
(29), (30), •d (33) is, to fi•t order in •/c•, 

4Q•Q• 1 4 dz kr(z)ki(z) T-- (Q• + Q•)• Q• + Q• p(z) ' 
(•7) 

•us there is a first-order correction to the transmittan• at 

all angles, •d the low-frequency attenuation co•ection •- 
ways decreases the transmittance, as exited. [•e •ond- 
order corr•tion to T, in the absence of attenuation, is the 
negative of (32), since then R + T= 1.] 

The degree ofatt•uation required for it to dominate the 
low-frequ•cy corr•tions may be estimat• from (32) and 
(35) or (37). •e first- and s•nd-order terns are, resp•- 
tively, of magnitude k• and (o•/c) •, k• and c here rep•- 
senting average values within the stratification. Attenuation 
is correspondingly important in the low-fr•uency case un- 
less 

k• • (•/c) [ (o/c) •]. (38) 

If there is attenuation in the •ond medium b, this will • 

im•mnt at all fr•uencies, manifesting it•lfin the fomu- 
las via a complex Q•. 

III. HIGH-FREQUENCY LIMITING FORMS 

Reflection and transmission at high-frequency (or 
short-wavelength) acoustic waves is intrinsically more com- 
plicated than at the low-frequency end, because short waves 
are sensitive to details of the stratification while long waves 
are influenced by average properties as expressed in a few 
integrals. Nevertheless it is possible to give explicit formulas 
in some simple cases. 

We first transform (4) by defining a new dependent 
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variableøp = (Pa/P)l/2p. The differential equation satisfied 
byp(z) is 9'5 

p• + [q2 + •(p,,/p) _ •(pVp)2]p = O. (39) 
At high frequencies the qe term is dominant and approxi- 
mate solutions of (39) are the Liouville-Green functions 
(see for example Ref. 6, Sec. 6-2) 

pñ(z)= qo) e•,•, •(z)= d•q(•). (40) 
The phase integral •(z) gives the accumulated phase at 
depth z; its derivative is •'= q. [The corresponding ap- 
proximations to the solutions of (4) are 
p • = (Q•/Q)ln exp( • i•).] The Liouville-Green func- 
tions satisfy 

(p• )" + [q• + •(q"/q) -•(q•/q)•]pe =0. (41) 
In the case of acoustic waves incident from medium a, the 

limiting fo•s ofp(z) are 

e •q• + re - iq•p(z) • (p•/p•) l/ere iq•. (42) 
The limiting fo•s of p* are 

eiq•p + (Z) • ( q•/q• ) •/ee i•q• + •' • (43) 
(We have chosen the lower limit in the integral defining • so 
as to make •(z)•q•z • z• - •.) We now multiply the 
differential equation for p by p*, that for p* by p, subtract, 
and integrate from -- • to + •. The result is the compari- 
son identi• 

1 dz 
r• 4i% • p 

2 2 

This holds for all stratifications; the reflection amplitude is 
given as an integral over the derivatives of 
q = (w/%) (c•/c 2 -- sin e 0 o ) i/2 and ofp. The functionp + is 
given by (40), whilep is unknown. A useful approximation 
to r at high frequencies is obtained by replacing p by p+ in 
(44): 

P 

-3(q'•2+ 3 (½) •] 2 \q ! •- ' (45) 
A closely related "weak reflection" or Rayleigh approxima- 
tion j2 is 

r R = - dz e •iv Q ' . (46) 
• 2Q 

This may be put in a form similar to (46) by changing to q as 
integration variable, integrating by parts, and then changing 
back: 

1 • aQ 

l I_• e2,V d( 

= • ;- o: dz e2i•ø(Q -'q-•Q')' 
= az 2 • tq p 

pq • 

Both approximations fail if q is zero or small anywhere, as 
happens at a "classical turning point", where 
c: = c:a/sin: •, or at grazing incidence, when qo • 0. 

As an application of (45) or (47), we will consider the 
high-frequency reflection amplitude from a stratification 
that is smooth except at a finite number of points z• where 
there are discontinuities in the derivative ofp or of c, or of 
both. Under these conditions the dominant te•s in the inte- 

grantis of (45) or (47) are delta functions at z•, a•sing from 
the second de6vatives ofp and q. Let the density de•vative 
p' change by •} as z passes through z•. This discontinuity in 
the de•vative cont•butes •}6(z - z• ) to p". A discontin- 
uity in the de•vative of q gives a delta function whose 
strength may be calculated from 

d• _ 1 dq 2_ • dc - • •: dc (48) 
dz 2q dz 2q dz qc 3 dz' 

A change Ac} in the derivative ofc as z passes through z• thus 
contributes -- (o:/q•c•)Acj6(z - z•) to q". The integrand 
near z1 thus contains the singular delta function term 
-- a•6(z -- z• ), where the (dimensionless) strength a• of the 

delta function is determined by the discontinuities in the de- 
rivatives of density and sound speed: 

• = Ap'/qp + o2Ac'/(qc) 3. (49) 
The phase factor exp(2i•) oscillates rapidly in the high-fre- 
quency limit. This ensures that smooth parts of the inte- 
grand average out to near zero, so that 

(50) 
4 • 

(qi being the value of the phase integral at z = z• ). Since a 
varies with frequency as o- •, the resulting reflectance is pro- 
po•ional to 0 -2, with oscillatou terns due to the phase 
factors exp (2iq•). 

A simple and impo•ant special case is that of a stratifi- 
cation that is smooth except for discontinMties in the deriva- 
tives ofp and/or c at the boundaries z = a and b. The fomu- 
la (50) •ves 

•u• (i/4) (a•e :"v" + aoe2iq"), (51) 
with the reflectance 

R •l)= 16 (• + • + 2a•ao cos 2Aq), (52) 1 

where Aq is the increment in phase across the stratification: 
A• = • -- • 

dz q(z) dz sin • = =• 0•) . c• 
(53) 

Figure 2 showed the high-frequency reflectance (52) for the 
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exp-exp stratification discussed in See. IV, continuous in p 
and c at z = a and z = b. For this case 

p(z) =poe •'-a•//, c(z) = cae •-a•/t•, (54) 
where the lengths .d'and L are determined in terms of the 
stratification thickness Az = b -- a by 

•'= AzAog(p,/po ), L = Az/log(c,/ca ). (55) 

The strengths of the delta functions in this case are 

rr a = q•- •(•'-• +L-• sec 2 0o), 

a b = --q•'(F -1 +L-l[1 -- (c}/•)sin 2 0a]-l). 
(56) 

Assuming that the angle of incidence is less than the critical 
angle 0½ = arcsin(co/cb), so that q(z) remains real, the 
phase increment is 

Ap = L{K [ arctan (q,/K) -- arctan (qa/K) ] 
- (% - qa)}, (57) 

where K = (o/ca)sin 8a is the tangential component of the 
wave vector. At normal incidence K--, 0, 
qa -.to/cø, qb -,o/c,, and (56) and (57) reduce to 

Ca PbCb Cb log a',, = log •, o't, = --• 
coAz pac• toAz poc• 

Ap = (toL /c•}( l -- calco). (58} 

Figure 3 compares the exact reflectance with the high-fre- 
quency limiting form (52), to higher values of the parameter 
toAz/ca than were shown in Fig. 2. Note that the contribu- 
tions from the discontinuities in the derivatives ofp and c, 
which give the characteristic oscillatory decay with frequen- 
cy, become dominant at quite moderate values of toAz/co. 

Although this paper is concerned with exact results and 
exact limiting forms, it is interesting to show in Fig. 3 the 
Rayleigh approximation • that correctly incorporates the 
high-frequency limiting reflectance, and also is good at low 
frequencies, provided the reflection is not too strong. From 
(46) and (54) we find, at normal incidence, 

Re = • (1 + L/d')2{[Ci(a) -- Ci(•8) ]2 
+ [Si(a) -- Si(/g) ]2}, (59) 

R 

0.2 xx• •lel9h 

0 3 6 

cu•,z/c a 

FIG. 3. Reflectance of an exp-exp stratification. The notation and param- 
eters are as in Fig. 2, except that the results here are for normal incidence. 
The Rayleigh approximation is also shown (---}. 

where a = 2oL/ca, tg = 2oL/c•, and Ci and Si are the 
standard cosine and sine integrals. •3 The low-frequency lim- 
it of (59) is, in agreement with Eq. (34) of Ref. 12, 

R• --,l[1og(p•c,/p•co ) ]2, (60) 
which differs from the exact limit R o = 
(p,c, + poco )2 by an amount of fourth order in the quantity 
(p•c, -poco )/p•co = x: The leading term in the difference 
R e -- R o is x4/24. For the case shown in Fig. 3, the ratio 
p•cb/poc• is not close to unity (it is 8/3), and there is a 
substantial difference between Ro and the value given by 
(60). 

IV. EXACT SOLUTIONS FOR THE EXP-LIN AND EXP- 
EXP STRATIFICATIONS 

Several variations of the phase velocity are known for 
which analytic solution of the wave equation (4) is possible: 
Exponential decrease of sound speed with depth, •n linear 
variation Of speed, lø and linear variation of the reciprocal of 
sound speed. • Here we will give solutions for exponential 
variation of density, with either linear or exponential vari- 
ation of the sound speed. Only the latter case will be dis- 
cussed in detail. For exponential density variation, with den- 
sitiesp, atz=a + andp• atz = b -, 

p(z) = p•e {'-•/•, d'= Az/log(p•/pO. (61) 

When the density is continuous at the boundaries, Pl = Po 
and p• =Pb, and we regain (54) and (55). The function 
p = p- ;/: P satisfies (39), which for exponential variation in 
p reduces to 

p~ + [q•- (2•)-•]p = 0. (62) 
If the speed of sound c(z) is linear in depth, d/dz = (Ac/ 
Az) (d/dc), and (62) may be written as 

+ ylto I ) dc --'-T k-•c / [,-•- -- 4œ 2 p = 0. (63) 
Comparison with Eq. 9.1.49 of Ref. 16 shows that solutions 
of (63) are c I/2 (z)M,. [sc(z) l, where M• is any of the modi- 
fied Bessel functions I_+ • or K•, the order v and "slowness" 
parameter s being given by 

v2 = 1 - ø:( Az/Ac) •, 

s= [K 2 + (2F)-2] 1/2. (64) 

Since the order v changes from real to imaginary when the 
angular frequency increases through too = lAc/azl, two 
frequency ranges (0 to to o, and too to oo ) have to be consid- 
ered separately. The formulas (19) give r and t in terms of 
two linearly independent solutions F and G of {4), of the 
form (pc)'lZM•(sc). 

The remainder of this section will be concerned with the 

"exp-exp" stratification, in which the density varies accord- 
ing to (61) and the sound speed according to 

c(z) = c•e ½'-a•/œ, L = Az/log(c:/c,). (65) 

Equation (62} then reads, on transforming to the variable 
x ----- (a -- z)/L, 

d2P +L 2 e:t•--K 2-- (2F) -2 =0. (66) 
dx'- 
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Comparison with Eq. 9.1.54 of Ref. 16 then shows that solu- 
tions of (66) are Cv(ye•), where Cv is any of the Bessel 
functions Jñ v, Yv, and 

v = L [K 2 d- (2[)-2] I/2, y = Lto/c•. (67) 
When the order v is not an integer, Jv and J_ • are linearly 
inde•ndent. (J• and Y• are always linearly independent, 
but the computation of Y• when v is not an integer involves 
J-d: See Ref. 16. ) The simplest functions computationally 
are B. •, where 

B•(y)•(v+ 1 )J•(y) 

1.(v+ I) 

(//4)• ...). (68) + 1.2(v+l)(v+2) 
The Wronskian of B• (y) and B_ • (y) is - 2v/y. In the 
computation of the reflection and transmission amplitudes r 
and t via (19), we need B + ,• and their derivatives, evaluated 
at y• = wL/c• and at y2 = wL/%. The derivatives of B+ • 
may be found from Eqs. 9.1.27 of Reft 16; they are 

dB• v B• + • 

dy y v+ 
dB• 
• - B_• - •B_ <•+ •. (69) 

gy y 

Thus the computation of B • • and B • <• + • • at two points 
determines the reflection and transmission amplitudes. (In 
the event of g = n, an integer, Y,has to be computed via 
9.1.11 of Ref. 16.) 

The solutions of (4) when • is not an integer are 
F, G = p•/=B+ • (y•). The required functions and their de- 
•vatives are 

= = 
F• = •B•(y•) + (y•/L)[B•+• (y•)/(•+ 1)], 
G;=•B_,(y•)+(•y•/L)B_<•+• (y•), 

(70) 
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