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Properties of a chiral slab waveguide
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Abstract. The symmetrized constitutive relations of Condon are used to find possible solutions
in a waveguide formed from an isotropic chiral slab. Two eigenstates are found, related
to positive and negative helicity plane-wave modes in an unbounded chiral medium. These
eigenstates propagate along the slab, but are standing waves across the slab. Combinations of
these eigenstates satisfy the boundary conditions when the slab is bounded by parallel conducting
plates. The combinations are not transverse electric or transverse magnetic, but near cut-off
these combinations correspond closely to TE or TM modes in achiral parallel-plate waveguides.
Equations defining the dispersion relations are derived, and analytic solutions are obtained near
cut-off and at high frequencies. At high frequencies one of the helicity eigenstates dominates,
for all modes. Chirality of the slab medium splits the TE–TM degeneracy, but crossings of the
dispersion curves are possible (and are demonstrated for a particular case).

A dielectric-clad waveguide is also considered. Analytic results are obtained for the low-
frequency dispersion relations of the two fundamental modes. One of these modes approaches
zero dispersion when the refractive index of the cladding tends to one of the indices of the two
helicity eigenstates in the slab.

1. Introduction

The propagation of electromagnetic waves in waveguides filled with a chiral (optically
active) medium has been examined in the papers [1–14]. Of these publications, [1, 7, 11]
deal with a chiro-waveguide formed by parallel conducting plates. We re-examine this
problem and explore the properties of the propagating modes and of their dispersion
relations. We obtain analytic expressions for the wavevectorK near the cut-offK = 0
(which occurs at different frequencies for different modes), and also at high frequency. We
find that near cut-off the modes have predominantly transverse magnetic (TM) or transverse
electric (TE) character. We verify Mahmoud’s [7] assumption that the electric fields of
the modes are either even or odd when expressed in terms of a coordinate centred midway
between the conducting plates, and also his numerical deduction that one helicity always
dominates at high frequency. (Which one dominates depends on the sign of the chirality.)
We also find that crossings of the dispersion relations (wavevector versus frequency curves)
are possible for modes of different symmetry, and discuss when these can occur.

Although the assumption of ideal conducting plates is adequate at microwave
frequencies, the attenuation at optical frequencies would be considerable. Section 6 explores
the properties of a chiral slab clad with dielectric. Analytic results are obtained for the
dispersion relation at low frequency. We show that the fundamental modes bifurcate at
zero frequency. When the chiral index is small compared to the difference in the slab
and cladding refractive indices, the modes are TE and TM in character. Index matching
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enhances the effect of chirality, and one mode disappears when the chirality index is equal
to the difference in slab and cladding indices.

As our basis electromagnetic relations we use the two curl equations

c∇ ×E = −∂B/∂t c∇ ×H = ∂D/∂t (1)

and the symmetrized Condon [15] gyrotropic constitutive relations

D = εE − g∂H/∂t B = µH + g∂E/∂t (2)

which have been selected by Silverman [16] as the most likely to be the correct choice among
the ones in use. The equations are linear, so we can deal with one Fourier component at a
time; we assume a time dependence e−iωt , and setωg = γ , the chirality index. (The index
of refraction of the two modes of positive and negative helicity isn+ γ andn− γ , where
n = √εµ [16, 17].) The equations (1) and (2) simplify to

c∇ ×E = iωB c∇ ×H = −iωD (3)

D = εE + iγH B = µH − iγE . (4)

The result of eliminatingB,H andD is [17]

µ∇ ×
(

1

µ
∇ ×E

)
= (εµ− γ 2

) ω2

c2
E + ω

c

[
γ∇ ×E + µ∇ ×

(
γ

µ
E

)]
. (5)

The equation forH is similar, with ε andµ changing roles:

ε∇ ×
(

1

ε
∇ ×H

)
= (εµ− γ 2

) ω2

c2
H + ω

c

[
γ∇ ×H + ε∇ ×

(
γ

ε
H

)]
. (6)

2. Propagation in a homogeneous chiral slab

The above equations hold for an arbitrary inhomogeneous medium. We now assumeε, µ
andγ are constant within the slab, that the wavefront propagates in thex direction and that
the field components are independent ofy. Then all fields carry the factor ei(Kx−ωt); apart
from this factor, the spatial dependence is onz only. Let primes denote differentiation with
respect toz, and let

k2
γ =

(
εµ− γ 2

)
ω2/c2 = k+k− (7)

wherek± = n±ω/c = (n ± γ )ω/c, with n = (εµ)1/2. Then the coupled equations (5) for
the components ofE reduce to

E′′x + k2
γ Ex − 2γ

ω

c
E′y − iKE′z = 0

2γ
ω

c
E′x + E′′y +

(
k2
γ −K2

)
Ey − 2iγ

ω

c
KEz = 0

−iKE′x + 2iγ
ω

c
KEy +

(
k2
γ −K2

)
Ez = 0 .

(8)

These differential equations have constant coefficients, and thus have sinusoidal solutions.
We seek standing wave solutions, and note that in each equationEy andEz always differ
by one derivative fromEx . Thus a standing wave solution has to be of the form (we omit
the e−iωt time dependence)

E = [X sin(qz + φ), Y cos(qz + φ), Z cos(qz + φ)]eiKx . (9)
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Substitution of (9) into the set (8) gives three equations linear and homogeneous inX, Y

andZ. A non-zero solution exists only if the determinant of coefficients is zero:∣∣∣∣∣∣∣∣∣∣
k2
γ − q2 2γ

ω

c
q iKq

2γ
ω

c
q k2

γ − q2−K2 −2iγ
ω

c
K

−iKq 2iγ
ω

c
K k2

γ −K2

∣∣∣∣∣∣∣∣∣∣
= 0 . (10)

This reduces to a quadratic equation forK2+ q2, with solutions(
K2+ q2

)
± ≡ k2

± =
(√
εµ± γ )2

ω2/c2 . (11)

Thus, just as in an unbounded chiral medium, there are two effective wavenumbers
k± = n±ω/c in the slab, with corresponding indices

n± = √εµ± γ ≡ n± γ . (12)

The associated electric field eigenvectors are given by (9), with [X, Y,Z] proportional to

[q+, k+, iK+] or [q−,−k−, iK−] . (13)

3. Dispersion relations for a chiral slab between conducting plates

We take the conducting plates to be atz = 0 andz = d, and assume zeroE andB inside
the plates (ideal conductors). The boundary conditions are that the parallel components(Ex
andEy) of E and the normal component(Bz) of B are zero at the plates.

The solutions (9), (13) do not permit these boundary conditions to be satisfied for either
of the pure positive or negative helicity eigenstates. The boundary conditions can be satisfied
by a mix of eigenstates ifq+ andq− are such thatK+ andK− take a common value:

k2
+ − q2

+ = K2 = k2
− − q2

− . (14)

Then combining the two helicity eigenstates with amplitudes 1 andA gives an electric field
with components[

q+s+ + Aq−s−, k+c+ − Ak−c−, iK(c+ + Ac−)
]

eiKx (15)

wheres± = sin(q±z + φ±), c± = cos(q±z + φ±). The conditionsEx = 0 andEy = 0 at
z = 0 andz = d are satisfied if

q+ sinφ+ + Aq− sinφ− = 0 k+ cosφ+ − Ak− cosφ− = 0

q+ sinχ+ + Aq− sinχ− = 0 k+ cosχ+ − Ak− cosχ− = 0
(16)

whereχ± = q±d + φ±. (Bz is proportional toEy from equation (3) for the curl ofE, and
will be zero at the boundaries ifEy is zero there.) Thus

A = −q+ sinφ+
q− sinφ−

= k+ cosφ+
k− cosφ−

= −q+ sinχ+
q− sinχ−

= k+ cosχ+
k− cosχ−

. (17)

It follows that the dispersion relations (expressingK as a function ofk) are contained in

q+
k+

tanφ+ + q−
k−

tanφ− = 0 (18)

q+
k+

tanχ+ + q−
k−

tanχ− = 0 . (19)
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In the achiral limit there are TM and TE modes:

TM: φ± → 0, A→ 1, E ∼ [q sinqz, 0, iK cosqz]eiKx (20)

TE: φ± → π/2, A→−1, E ∼ [0, sinqz, 0]eiKx . (21)

In both casesqd = mπ with m an integer(m = 0 is possible only for the TM case, which
then becomes a TEM mode), so the achiral wavenumber is obtained fromk = nω/c by

K = (k2− q2)1/2 = [k2− (mπ/d)2]1/2 . (22)

The TM and TE modes are degenerate form > 1 in the achiral limit: figure 1 shows
the dispersion relations, which in this case are straight lines of unit slope in theK2 versus
k2 diagram, originating at the pointsk = mπ/d, K = 0. We expect chirality to remove the
degeneracy, in which modes with different fields have the same dispersion relation, except
for the nondegenerate TEM mode.

Figure 1. Dispersion relations for propagating modes in a parallel-plate waveguide filled with an
achiral medium. The wavevector isK, the angular frequency isck/n, wheren is the refractive
index of the slab. The spacing between the conducting plates isd, and we plot(Kd/π)2 versus
(kd/π)2 = (2d/λ)2. The straight lines originate atkd = mπ , and form > 0 represent both TM
and TE modes.

The equations (17) are satisfied by

χ± = (`π + q±d)/2 φ± = (`π − q±d)/2 (23)

for zero or integer̀ , provided
q+
k+

tan(`π/2± q+d/2)+ q−
k−

tan(`π/2± q−d/2) = 0 . (24)

For zero or eveǹ the dispersion relation is determined by
q+
k+

tan(q+d/2)+ q−
k−

tan(q−d/2) = 0 (25)

and the mixing ratio is

Atan= k+ cos(q+d/2)
k− cos(q−d/2)

= −q+ sin(q+d/2)
q− sin(q−d/2)

. (26)
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For even ` we have c± = cos(q±ζ ) cos(`π/2) and s± = sin(q±ζ ) cos(`π/2) where
ζ = z − d/z. Thus the transverse components of the electric field(Ey andEz) are even
in ζ , the displacement from the plane midway between the conducting plates bounding the
chiral slab.

For odd` the relation betweenK andk (i.e. between the propagation wavevector and
the frequency) is found from

q+
k+

cot(q+d/2)+ q−
k−

cot(q−d/2) = 0 . (27)

For odd ` we havec± = − sin(q±ζ ) sin(`π/2), s± = cos(q±ζ ) sin(`π/2), and so the
transverse components of the electric field are odd inζ . Thus the modes may be classified
into even and odd, as was assumed by Mahmoud [7]. The mixing ratio for odd` is

Acot = k+ sin(q+d/2)
k− sin(q−d/2)

= −q+ cos(q+d/2)
q− cos(q−d/2)

. (28)

4. Properties of the dispersion relations

In the chiral slab at the cut-offK = 0 we haveq+ = k+ and q− = k−. The conditions
(18) and (19) then imply tan(k+d) + tan(k−d) = 0, which is solved bykd = mπ , since
k± = k(1± γ /n). Thus all modes made up from the two chiral eigenstates have dispersion
relations which start atK = 0 with the zero-chirality valuesk = mπ/d.

We first examine the ‘TEM’ mode, the chiral analogue of them = 0 TM case which
hasK = k. It is clear that (25) cannot be satisfied if bothq+ andq− are real and less than
π/d. We writeG for γ /n; thenk± = k(1±G) and

q2
± = k2−K2+ (±2G+G2)k2 . (29)

We take (for the moment) the chiral indexγ to be positive. Thenq+ will be real and
q− = i|q−| will be imaginary, with

q2
− = (1+G)2k2−K2 |q−|2 = K2− (1−G)2k2 (30)

and

q2
+ + |q−|2 = 4k2G . (31)

Equation (25) now reads

q+
k+

tan(q+d/2) = |q−| tanh(|q−|d/2)
k−

. (32)

At small kd this has the solution

K2 = k2
{
1−G2

[
1− (kd)2(1−G2)/3

]}+O
{
G4(kd)6

}
(33)

andq+ and |q−| are both equal tok(2G)1/2 to lowest order inG.
At largekd we see from (32) thatq+d must tend toπ from below; we setq+d = π − δ

in (31) and (32) and solve forδ:

δ = π 1−G
1+G

(
kd
√
G
)−1+O

(
kd
√
G
)−2

. (34)

Thus the asymptotic behaviour of the dispersion relation is

K2 = k2
+ −

π2

d2

{
1− 1−G

1+G
2

kd
√
G

}
+O(kd

√
G)−2 . (35)
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This relation is in agreement with the numerical finding of Mahmoud [7] that, when the
chirality index is positive, the high-frequency limit of each mode has the propagation
wavevector approachingk+.

As k→ 0 we find from (30), (33) and (26) that

q2
+ → 2G(1+G)k2 |q−|2→ 2G(1−G)k2 A→ 1+G

1−G . (36)

Thus the ratio of negative to positive helicity in them = 0 mode tends to unity as the
chirality index tends to zero, which justifies the label ‘TEM’ for this mode. At largekd we
have, using (36),

q+ → π/d |q−| → 2k
√
G A→ 0 . (37)

Thus the positive helicity eigenstate dominates in this mode at high frequency, in accord
with the resultK → k+ deduced from (35).

We now look at the modes that start in pairs atkd = mπ , with m > 1. In the achiral
limit these occur in degenerate pairs, the TMm and TEm modes, with negative to positive
helicity field ratiosA = 1 andA = −1, respectively. For the achiral modes starting at
kd = mπ , K2 = k2− (mπ/d)2, so thatqd is fixed atmπ . For the chiral slab we find from
equations (25) and (27) that nearkd = mπ ,

K2 = [k2− (mπ/d)2] (1−G2)2

1−G2± (−)m2G sin(mπG)/mπ
+O

[
k2− (mπ/d)2]2

(38)

where the minus sign applies to the tangent relation (25) and the plus sign to the cotangent
relation (27). Thus the transverse wavenumbersq±, defined byq2

± = k2
± −K2, are

q± = (1±G)mπ/d +O
[
k2− (mπ/d)2] . (39)

From this result and equations (26) and (28) we find that atk = mπ/d the modes satisfying
the tangent relation (25) have mixing ratio

Atan→ 1+G
1−G

cos[(1+G)mπ/2]

cos[(1−G)mπ/2]
= 1+G

1−G(−)
m (40)

while those satisfying the cotangent relation (27) have ratio of negative to positive helicity
amplitudes

Acot→−1+G
1−G

cos[(1+G)mπ/2]

cos[(1−G)mπ/2]
= −1+G

1−G(−)
m . (41)

Thus for evenm the` = even (tangent) modes are ‘TM’, and the` = odd (cotangent) modes
are ‘TE’, neark = mπ/d. For oddm the assignments of ‘TM’ and ‘TE’ characteristics are
reversed.

At largekd them > 0 modes become predominantly of positive helicity character, if the
chirality indexγ = Gn is positive. We look at the tangent relation (25) first. Atkd = mπ ,
q±d = (1±G)mπ (both real form > 0); askd increases we expectq+d/2 to tend to an odd
multiple of π/2 from below, andq− to become imaginary. We setq+d = (2M + 1)π − δ
in (25) and solve for the small quantityδ to find

q+d → (2M + 1)π

{
1− 1−G

1+G
(
kd
√
G
)−1
}
. (42)

Thusq2
+ tends to a constant andK2 = k2

+ − q2
+ differs from k2

+ by a constant, in the limit
of largekd. In the same limit,q2

− = k2
− − K2 = q2

+ − (k2
+ − k2

−) = q2
+ − 4k2G decreases

linearly with k2, with slope−4G.
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In the case of the cotangent relation (27) we setq+d = 2Nπ − δ, since we needq+d/2
to approach a multiple ofπ from below. We find

q+d → 2Nπ

{
1− 1−G

1+G
(
kd
√
G
)−1

}
(43)

and againq2
− becomes negative and decreases linearly withk2 for large kd. In both the

even (tangent) and odd (cotangent) modes the positive helicity character dominates when
G > 0.

5. Mode cross-over

Figure 2 shows the variation of the square of the wavevectorK versus the square of the
frequency. (We actually plot the dimensionless quantity(Kd/π)2 versus(kd/π)2; note that
k = nω/c = n2π/λ, so kd/π = 2nd/λ, whereλ is the vacuum wavelength.) We see that
the behaviour of the wavevector is in accord with the discussion of the previous section;
in addition we note two crossings of the dispersion relations for even and odd modes of
the samem. Thus it is possible for the two modes of different symmetry to have the same
phase speedωc/K at a given angular frequencyωc. This can happen whenq+d andq−d
are both integer multiples ofπ :

q+d = Pπ and q−d = Nπ (44)

with P andN both even, or both odd. We then have

k2
+ −K2 = (Pπ/d)2 and k2

− −K2 = (Nπ/d)2 (45)

Figure 2. Dispersion relations for a waveguide formed from a chiral slab between conducting
plates. The refractive indices of positive and negative helicity eigenstates aren(1± G). The
(Kd/π)2 versus(kd/π)2 curves are plotted forG = 1

2 . Modes with even transverse electric
fields have dispersion curves determined by the tangent relation (25) and are denoted by ‘+’.
Modes with odd transverse electric fields satisfy the cotangent relation (27) and are denoted by
‘−’. Note thatK2 tends tok2+ minus a constant for largeKd (whenG > 0).
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and sincek± = (1±G)k, the difference of the left-hand sides of (45) gives
k2
+ − k2

− = 4Gk2, so that cross-overs can occur when(
kd

π

)2

= P 2−N2

4G
(46)

whereP andN are integers. The two cross-overs in figure 2, which is drawn forG = 1
2,

occur at(P,N) = (5, 1) and(7, 1).

6. Chiral slab with dielectric cladding

Dissipation of energy in the bounding metal plates at optical frequencies will be high, so
we will now examine the case of a chiral slab with dielectric cladding. As above, we
will characterize the chiral medium by the constantsε, µ and γ , and we will assume the
bounding dielectric to be thick compared to the wavelength and be characterized byε1 and
µ1, andn = (ε1µ1)

1/2. The thickness of the chiral slab isd as before.
The previous analysis showed that the possible propagating modes within the chiral slab

havey and z components of the electric field which are even or odd in the displacement
from the mid-plane of the slab. We take the dielectric cladding to occupy|z| > d/2, and
look for exponentially decreasing (evanescent) electric field solutions of the form

E1 = [X1, Y1, Z1] exp
[
iKx − |q1|(z − d/2)

]
(47)

for z > d/2. From equations (8) withγ = 0 we have, withk1 = n1ω/c,

(|q1|2+ k2
1)X1+ iK|q1|Z1 = 0

(|q1|2+ k2
1 −K2)Y1 = 0

iK|q1|X1+ (k2
1 −K2)Z1 = 0 .

(48)

The determinant of the coefficients ofX1, Y1 andZ1 factors to(k2
1 + |q1|2 − K2)2k2

1, and
setting it to zero gives

|q1|2 = K2− k2
1 (49)

as expected for an evanescent wave withq1 = i|q1|. From equations (48) and (49) we see
that thex andz components ofE1 are related by

|q1|Z1 = iKX1 . (50)

The magnetic field in the cladding, fromB1 = µ1H1 and (3), is given by

H1 = c

iωµ1
∇ ×E1 = c

iωµ1
[|q1|Y1,−|q1|X1− iKZ1, iKY1] exp[iKx − |q1|(z − d/2)] .

(51)

The even modes in the chiral slab are made up, as before, from a mix of positive and
negative helicity eigenstates: from (9) and (13) we have

Ee = [q+s+ + Aq−s−, k+c+ − Ak−c−, iK(c+ + Ac−)] exp(iKx) (52)

wheres± = sin(q±z) andc± = cos(q±z) andq2
± = k2

± −K2. The modes withEy andEz
odd in z are

Eo = [q+c+ + Aq−c−,−k+s+ + Ak−s−,−iK(s+ + As−)] exp(iKx) . (53)

From equations (3) and (4), theH field is determined in terms ofE:

H = c

iωµ
∇ ×E + iγ

µ
E . (54)
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The boundary conditions, namely continuity of the tangential componentsEx,Ey,Hx and
Hy of the electric and magnetic fields, give four relations atz = d/2 (a similar set obtained
at z = −d/2 gives no new information, since even or odd symmetry has been assumed).
After eliminating the unknown coefficientsX1, Y1 andA from the four relations, we are
left with the dispersion relation linkingK to k = nω/c. For the even and odd modes, the
dispersion relations are, respectively,

|q1|(εµ1+ ε1µ)
ω2

c2
(T+ + T−)− 2k

(
k2

1T+T− + |q1|2
) = 0 (55)

|q1|(εµ1+ ε1µ)
ω2

c2
(C+ + C−)+ 2k

(
k2

1C+C− + |q1|2
) = 0 (56)

where

T± = q±
k±

tan(q±d/2) C± = q±
k±

cot(q±d/2) . (57)

For comparison, the even and odd mode equations for the chiral slab between conducting
plates, (25) and (27), can be written as

T+ + T− = 0 and C+ + C− = 0 . (58)

The equations (58) follow from (55) and (56) in the limit of perfectly conducting plates,
for which ε1 tends to minus infinity.

For an achiral waveguide(γ → 0) we haveT+ = T− and the left-hand side of (55)
factors to give

q tan(qd/2) = |q1|µ/µ1 q tan(qd/2) = |q1|ε/ε1 (59)

which are the known dispersion relations for even TE and even TM modes, respectively.
Likewise,C+ = C− in the achiral limit, and the left-hand side of (56) factors to give the
dispersion relations for odd TE and odd TM modes:

−q cot(qd/2) = |q1|µ/µ1 −q cot(qd/2) = |q1|ε/ε1 . (60)

Whenµ = µ1 equations (55) and (56) reduce to those of [6], where dispersion relations
are plotted for four values ofG ranging from 0.001 to 0.05.

One difference between metallic and dielectric cladding for the chiral slab is in the
cut-off frequencies: for metal plates the cut-off is independent of the chiral indexγ for the
constitutive relations (2) used here, withk = nω/c having cut-off valueskc = mπ/d with
integerm. In contrast, the dielectric cladding cut-offs, found from (55) and (56) by setting
|q1| equal to zero, are given by

k±c =
mπ/d√

1− n2
1/n

2±
(61)

(n2
1 < n2

± is assumed). The even modes have evenm and the odd modes have oddm. For
givenm greater than zero, equation (61) gives two different frequencies at which propagation
of guided waves begins.

Them = 0 mode bifurcates at zero frequency: in general, the dispersion relation (55)
has two solutions beginning atk = 0,K = 0. To examine the behaviour near zero frequency,
we set

K2 = k2[α2+ β2(kd)2+ · · ·] (62)
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and find thatα = n1/n (so thatK → k1 and |q1|2 = K2− k2
1 → 0 at zero frequency), and

thatβ satisfies a quadratic equation,

4(1−G2)β2− 2

(
ε1

ε
+ µ1

µ

)(
1−G2− n

2
1

n2

)
β

+n
2
1

n2

[
(1+G)2− n

2
1

n2

] [
(1−G)2− n

2
1

n2

]
= 0 . (63)

WhenG is zero, the values ofβ satisfying (63) are

βTE = µ1

2µ

(
1− n

2
1

n2

)
βTM = ε1

2ε

(
1− n

2
1

n2

)
(64)

which correspond, respectively, to the achiral TE and TMm = 0 modes, for which the
dispersion relations were given in (59). The solutions of (63) are given by (64) plus terms
of even order in the chirality parameterG; whenµ = µ1 the second-order terms simplify
to

1βTE = 2(ε1/ε)
2G2

(1− ε1/ε)
2 1βTM = − (ε1/ε)[1+ 3ε1/ε − (ε1/ε)

2+ (ε1/ε)
3]G2

2(1− ε1/ε)2
. (65)

Thus for smallG the propagating modes are predominantly TE or TM. Note, however, the
denominators(1− ε1/ε)

2: these are small when the dielectric constant of the cladding is
close to that of the chiral slab. Thus index matching enhances the chirality effects, as has
been noted in other circumstances [17].

As |G| increases to the value 1− (ε1µ1/εµ)
1/2 = 1− n1/n, the TE or TM character is

lost: the roots of (63) are now zero and

n− n1

2n− n1

(
ε1

ε
+ µ1

µ

)
. (66)

The form of (66) indicates an equal mix of TE and TM atG = ±(1− n1/n). At this
value of |G| either k+ or k− becomes equal tok1: for example, ifG → 1− n1/n, k− =
(1−G)k→ n1k/n = k1. In fact, we can see directly from (55) that whenG = 1−n1/n, a
formal solution valid for allK is K = k1, because thenq1 andq− are both zero. However,
whenq1 is zero the fields in the cladding do not decrease with|z|, and so theβ = 0, q1 = 0
limit cannot be attained. An approach to this limit can be seen in the numerical explorations
of [6]: see, in particular, their figure 3.

7. Discussion

We have presented analytic results for a chiral slab waveguide, bounded by either conducting
plates, or by a dielectric cladding.

The conducting plate waveguide, which may find use at microwave frequencies, showed
that propagating modes of different symmetry may cross. The phase speedω/K is the same
for both modes at the cross-over frequency, which was given by (46).

In the case of dielectric cladding, cross-over is also possible: for givenk = nω/c we
look for solutions of (55) and (56) with commonq+ andq−. Since

C± =
(
q±
k±

)2

/T± =
(

1− K
2

k2±

)
/T± (67)

the cross-over condition arising from the simultaneous solution of (55) and (56) becomes a
quadratic inT+ (or in T−). I have not been able to find a simple criterion for cross-over
analogous to (46).
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We have also calculated the low-frequency dispersion relation in the form (62), from
which we can deduce the phase and group speeds of both of the modes in terms of the
coefficientβ given by the quadratic equation (63):

vp = ω

K
= ck

nK
= c

n1

[
1− 1

2

(
n

n1

)2

(βkd)2+ · · ·
]

vg = dω

dK
= c

n

dk

dK
= c

n1

[
1− 3

2

(
n

n1

)2

(βkd)2+ · · ·
]
.

(68)

An interesting situation arises when the chiral indexγ is close to the difference between
the average index of the chiral medium and the index of the cladding:

|γ | → n− n1 or |G| → 1− n1/n . (69)

In this special case, the analysis given in section 6 shows that for one of the even modes
β → 0, so dispersion tends to zero, both phase and group speeds tending toc/n1. The
limit of zero dispersion cannot be attained for the waveguide configuration discussed here,
but zero dispersion is perhaps achievable for more complicated chiral waveguides.

In all cases the propagating modes have predominantly TE or TM character close to the
cut-off frequency, provided the chirality is ‘small’. But in the dielectric-clad waveguide,
we have seen that the chiral indexγ is to be compared with the difference between the
slab and cladding indices,n − n1, which may itself be small. Thus chirality is enhanced
by index matching, and numerically small chiral indices can be made to have a large
effect.
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