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Optical properties of isotropic chiral media
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Abstract. A review is given of the optical properties of isotropic chiral media, based on
the symmetrized constitutive relations of Condon. The review includes discussion of wave
propagation in chiral media, and derivation of the reflection and transmission amplitudes of an
isotropic optically active medium, and of a layer resting on a substrate. Boundary conditions
and energy conservation relations are derived. For the chiral layer, simple formulae are given
for the reflection and transmission coefficients at normal incidence, in the weak chirality limit,
near the critical angles, and for a thin layer. Analytic expressions are given for all the reflection
and transmission amplitudes in the general case. An ellipsometric method of measuring the
chirality of very small sample volumes is suggested.

Contents

1. Introduction 418
1.1. Historical sketch 418
1.2. Constitutive relations 418
1.3. Reflection and transmission amplitudes, conservation laws 420
1.4. Differential reflectance, ellipsometry 422

2. Wave propagation in chiral media 423
2.1. Inhomogeneous media 423
2.2. Homogeneous chiral media 424
2.3. Eigenstates of curl 425
2.4. Boundary conditions 426

3. Reflection from an achiral–chiral interface 426
3.1. Wavefunctions 426
3.2. Reflection and transmission amplitudes 427
3.3. The Brewster angles 429

4. Optical properties of a chiral layer 430
4.1. Electric and magnetic fields 430
4.2. Mode, phase and layer matrices 432
4.3. Normal incidence 433
4.4. First-order chirality corrections 434
4.5. Optical properties near the critical angles 435
4.6. Thin chiral layer 437

5. Ellipsometry of chiral media 437
5.1. Ellipsometric ratios 437
5.2. Achiral–chiral interface 438
5.3. Ellipsometry of a chiral layer 439

Appendix. General formulae for a chiral layer 441

0963-9659/96/040417+27$19.50c© 1996 IOP Publishing Ltd 417



418 J Lekner

1. Introduction

1.1. Historical sketch

Optical activity is the ability of some crystals, liquids and gases to rotate the plane of
polarization of light. Optical activity, or rotatory power, is caused by chirality, either of
the molecules making up the substance, or in the helical arrangement of the atomic or
molecular constituents in a crystal. (A chiral object is one which cannot be superimposed
on its mirror image.) In 1811 Arago found that a plate of quartz produced effects on light
polarized by reflection from a pile of glass plates which are now understood to arise from
the rotation plane of polarization of the light. In five memoirs presented to the Académie
des Sciences from 1812 to 1837, Biot showed that the rotatory power is proportional to the
thickness of the quartz plates (propagation is along the optic axis of the crystals), that the
rotation depends on the wavelength, approximately asλ−2, and that optical activity appears
in liquids and gases, as well as in crystals. Fresnel conjectured in 1822 that on entering an
optically active medium light is split into two beams of opposite circular polarization which
travel with different phase velocities. In 1848 Pasteur demonstrated that the optical activity
of a tartrate solution is related to the form that the crystals of the tartrate take: crystals of
opposite handedness dissolve to give solutions with opposite rotatory power. References
to these early works and further details may be found in the thorough historical account
given by Lowry in his book onOptical Rotatory Power[1]. Other historical outlines may
be found in [2–4], and a selection of papers on natural optical activity is given in [5].

1.2. Constitutive relations

Modern electromagnetism begins with Maxwell and the electromagnetic theory of light,
but although he considered the propagation of light in crystals [6], Maxwell did not treat
chiral media. In current notation, the propagation of light in isotropic non-chiral media is
describable in terms of a dielectric functionε and a magnetic permeabilityµ which relate
the fieldsD to E andB to H via D = εE andB = µH. The curl equations of Maxwell
in non-chiral media are

c∇ × E = −∂B/∂t c∇ × H = ∂D/∂t (1)

and all researchers seem to agree that these are retained in chiral media. All researchers do
not agree on the constitutive relations in chiral media, namely on what to replaceD = εE
and B = µH by. The results given in this paper are based on the symmetrized Condon
set [7]

D = εE − g∂H/∂t B = µH + g∂E/∂t (2)

as advocated by Silverman [8]. (Condon omitted theµ; hence the adjectivesymmetrized.)
Silverman [8] has shown that the constitutive relations due to Born [9], namely

D = εBE + gB∇ × E B = µBH (3)

lead to reflectances in excess of unity in the vicinity of critical angles. Another choice,
known as the Drude–Born–Fedorov relations, is discussed in section 1.2.1 of [4]:

D = εDBF(E + b∇ × E) B = µDBF(H + b∇ × H) . (4)

From the curl equations (1) it is clear that (2) and (4) are equivalent to first order ing andb.
For monochromatic waves in which the fields have a time dependence given by the

factor exp(−iωt), the relations (2) become, withγ = ωg,

D = εE + iγH B = µH − iγE . (5)
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The Drude–Born–Fedorov relations become, with the use of (1) and on settingχ = ωb/c,

D = εDBF(E + iχB) B = µDBF(H − iχD) . (6)

These relations are equivalent to (5) if the dielectric constants and permeabilities differ by
a term second order in the chiral indexγ :

εDBF = ε − γ 2/µ µDBF = µ − γ 2/ε χ = γ

εµ − γ 2
. (7)

The inverse relations are [10, 4]

ε = εDBF

1 − εDBFµDBFχ2
µ = µDBF

1 − εDBFµDBFχ2
γ = εDBFµDBFχ

1 − εDBFµDBFχ2
. (8)

Bassiriet al [2] use the relations

D = εBPEE + iξB H = iξE + B/µBPE . (9)

This form was deduced by them from the work of Jaggardet al [11], who calculated the
properties of a medium composed of short wire helices. (The effect of the scattered fields
of the helices on each other was neglected.)

The Born relations (3) can be eliminated on physical grounds: they predict reflectances
in excess of unity in the vicinity of critical angles, and also a difference in the normal
incidence reflectance of the two circular polarizations which is first order in the chirality
parametergB, and in disagreement with experiment [12, 13].

As we shall see in section 3.3, the relations (5) lead to normal incidence reflectances from
an achiral–chiral interface which are independent of the chiral indexγ , while the relations
(9) give reflectances which contain terms of second order in the chiral parameterξ . In
section 4.3 it is shown that the chiral indexγ is related to the rotationδ of the plane of
polarization on passing normally through a chiral plate of thicknessd by

γ = λδ

2πd
. (10)

The specific rotationδ/d for AgGaS2 is large, for example, 0.95◦ perµm atλ = 0.485µm,
yet even this relatively large value givesγ ≈ 1.28 × 10−3. The differential reflectance
measurement reported in [13] was onα-LiIO 3 crystals cut normal to the optic axis, with
δ/d = 86.8◦/mm at λ = 0.63 µm andγ ≈ 1.52 × 10−4. No difference in the normal
incidence reflectance of the two circular polarizations was detected to within 10−7, but an
effect of orderγ 2 is smaller than this. Thus experiment does not yet rule out or confirm
normal incidence differential reflectances which are of second order in the chirality index.

The specific rotationδ/d which follows from (9) is related toξ via

ξµBPE = λδ

2πd
(11)

([2], equation (72)). Comparison of (5) and (9) identifiesξµBPE with γ , and substitution of
ξ = γ /µBPE into (9) gives

D = (εBPE + γ 2/µBPE)E + iγH B = µBPEH − iγE . (12)

Thus equations (5) and (9) are in agreement if

µBPE = µ εBPE = ε − γ 2/µ ξ = γ /µ (13)

that is if the Bassiri, Papas and Engheta dielectric function is made to depend on the square
of the chirality indexγ . If indeed we setεBPE = ε − γ 2/µ in the formulae of [2], we
find that for the achiral–chiral interface the normal incidence reflection and transmission
amplitudes become independent ofγ .
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In this paper we henceforth adopt the constitutive relations (2) and (5) advocated by
Silverman [8], withε and µ independent of the chiral indexγ . This is also the choice
made in the monograph [4], and is consistent with experiment: Silvermanet al [12] have
used optical phase modulation to measure chiral asymmetries in specular reflection from a
gyrotropic medium, and have found agreement with the reflection amplitudes calculated by
Silverman [8] using equation (2).

1.3. Reflection and transmission amplitudes, conservation laws

The optics of stratified chiral and/or anisotropic media can be quantified in terms of four
reflection and four transmission amplitudes. These can be of two kinds, depending on
whether the wave description is in terms of planar or circular polarization.

In the case of plane polarized states, the electric field components of the incident,
reflected and transmitted waves are resolved along thep andp′ directions which lie in the
plane of incidence, and thes(= s′) direction perpendicular to the plane of incidence. If
propagation is in thezx plane (the plane of incidence) and in the direction of positivex,
with wavevector components in the (homogeneous) medium of incidencek1 = (K, 0, q1),
an s-polarized wave of unit electric field magnitude will be

Es = (0, 1, 0) exp i(Kx + q1z) . (14)

If θ1 is the angle of incidence, the reflected wave electric field will be (by definition of the
reflection amplitudesrss andrsp)

E′ = (rspcosθ1, rss, rspsinθ1) exp i(Kx − q1z) . (15)

For an incident p-polarized wave the incoming and reflected waves are

Ep = (cosθ1, 0, − sinθ1) exp i(Kx + q1z) (16)

E′ = (rpp cosθ1, rps, rpp sinθ1) exp i(Kx − q1z) . (17)

(The reflection amplitude for thex component isrpp, while for thez component it is−rpp:
see equations (26) and (27) of section 1–2 of [14].)

The cause of the reflection is assumed to be a general planar-stratified layer (which may
be chiral and anisotropic) resting on a homogeneous achiral isotropic substrate, in which
the wavevector of the transmitted wave isk2 = (K, 0, q2). Note that the component of the
wavevector along the stratification (thex componentK) is a constant of the motion, because
of translational invariance in thex direction. The transmitted wave when the incident wave
is s-polarized is

E′′ = (tspcosθ2, tss, −tspsinθ2) exp i[Kx + q2(z − d)] (18)

where θ2 is the angle of refraction in the substrate andd is the total thickness of the
chiral (and possibly anisotropic) layer. The corresponding transmitted electric field when a
p-polarized wave is incident is

E′′ = (tpp cosθ2, tps, −tpp sinθ2) exp i[Kx + q2(z − d)] . (19)

These relations define the transmission amplitudestss, tsp, tpp and tps.
If the chiral layer is non-absorbing, the reflected plus transmitted fluxes of energy

must add up to the incident flux. The energy density of a plane electromagnetic wave
in a medium with dielectric constantε and permeabilityµ is proportional toε|E|2 and
the speed isc/

√
εµ; thus the energy flux is proportional to

√
ε/µ|E|2. The amount of

energy in the primary wave which is incident on a unit area of the interface in unit time
is proportional to

√
ε1/µ1 cosθ1, the amount reflected to

√
ε1/µ1 cosθ1 times the absolute
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square of the reflected field, and the amount carried away by the transmitted wave similarly
to

√
ε2/µ2 cosθ2 times the absolute square of the transmitted electric field. (See figure 2.1

of [14] for the geometry leading to the factors cosθ1 and cosθ2.) Thus energy conservation
reads, for incident s and p polarizations,√

ε1

µ1
cosθ1(1 − |rss|2 − |rsp|2) =

√
ε2

µ2
cosθ2(|tss|2 + |tsp|2)√

ε1

µ1
cosθ1(1 − |rpp|2 − |rps|2) =

√
ε2

µ2
cosθ2(|tpp|2 + |tps|2) .

(20)

These relations hold for arbitrary non-absorbing stratifications. When there is absorption,
the difference between the left- and right-hand sides gives the absorption in the stratification.

An alternative characterization of polarization states is in terms of positive and negative
helicities (opposite circular polarizations). For circularly polarized incident light we need
the reflection and transmission amplitudesr++, r+−, r−+, r−− andt++, t+−, t−+, t−−, where,
for example,r+− gives the complex amplitude of the light reflected with negative helicity
when positive helicity light is incident. (We avoid the left and right circular polarization
terminology, because two opposite conventions are in use.) Let(p, s, k1) denote a right-
handed triplet of vectors for the incident light, withp ands being unit vectors perpendicular
to the direction of propagation, and, respectively, parallel and perpendicular to the plane
of incidence. Similarly, let(p′, s′, k′

1) be a similar triplet for the reflected light (the
choices′ = s then implies thatp′ → −p at normal incidence, andp′ → p at glancing
incidence). Then(p + is)/

√
2 represents an incident wave of positive helicity and unit

magnitude. We have chosen thezx plane as the plane of incidence, withs = (0, 1, 0) =
s′, p = (cosθ1, 0, − sinθ1) andp′ = (− cosθ1, 0, − sinθ1). From equations (15) and (17),
an electric field of unit magnitude alongs reflects torsss

′ − rspp
′, and an electric field of

unit magnitude alongp reflects to−rppp
′ + rpss

′. The reflected field is therefore

[(−rpp − irsp)p
′ + (rps + irss)s

′]/
√

2 (21)

from which we extract the coefficients of positive and negative helicity, namely of
(p′ ± is′)/

√
2, to find

r++ = 1
2(rss− rpp) − 1

2i(rsp + rps)

r+− = − 1
2(rss+ rpp) − 1

2i(rsp − rps) .
(22)

Similarly, when the incident wave is(p − is)/
√

2 (negative helicity), the reflected field is

1√
2

[(−rpp + irsp)p
′ + (rps − irss)s

′] (23)

and the corresponding reflection amplitudes are

r−+ = − 1
2(rss+ rpp) + 1

2i(rsp − rps)

r−− = 1
2(rss− rpp) + 1

2i(rsp + rps) .
(24)

For all the cases considered in this review,rsp = rps and sor+− = r−+.
The transmission amplitudes as characterized by helicity are found as follows. Let

(p± is)/
√

2 represent the electric fields of incident waves of positive and negative helicity,
and likewise(p′′ ± is′′)/

√
2 for the transmitted helicities. When(p + is)/

√
2 is incident,

the transmitted field is

[(tpp + itsp)p
′′ + (tps + itss)s

′′]/
√

2 . (25)
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The coefficients of positive and negative helicity in (25) give

t++ = 1
2(tpp + tss) + 1

2i(tsp − tps)

t+− = 1
2(tpp − tss) + 1

2i(tsp + tps) .
(26)

Similarly, for negative helicity incident we find

t−+ = 1
2(tpp − tss) − 1

2i(tsp + tps)

t−− = 1
2(tpp + tss) − 1

2i(tsp − tps) .
(27)

The inverse relations are as follows:

rss = 1
2(r++ + r−−) − 1

2(r+− + r−+)

rpp = − 1
2(r++ + r−−) − 1

2(r+− + r−+)

rsp = 1
2i(r++ − r−−) + 1

2i(r+− − r−+)

rps = 1
2i(r++ − r−−) − 1

2i(r+− − r−+)

(28)

tss = 1
2(t++ + t−−) − 1

2(t+− + t−+)

tpp = 1
2(t++ + t−−) + 1

2(t+− + t−+)

tsp = − 1
2i(t++ − t−−) − 1

2i(t+− − t−+)

tps = 1
2i(t++ − t−−) − 1

2i(t+− − t−+) .

(29)

Energy conservation relations may also be written down in terms of the helicity reflection
and transmission amplitudes. For incident waves of respectively positive and negative
helicity, energy conservation implies√

ε1

µ1
cosθ1(1 − |r++|2 − |r+−|2) =

√
ε2

µ2
cosθ2(|t++|2 + |t+−|2)√

ε1

µ1
cosθ1(1 − |r−−|2 − |r−+|2) =

√
ε2

µ2
cosθ2(|t−−|2 + |t−+|2) .

(30)

1.4. Differential reflectance, ellipsometry

Chiral media in general reflect opposite circular polarizations differently. When a wave
of unit amplitude and positive helicity is incident, the amplitudes of the reflected waves of
positive and negative helicities arer++ andr+−, respectively. If the detector is polarization-
insensitive, the reflected intensity is proportional toR+ = |r++|2 +|r+−|2. (This result may
be verified by expressing the reflected wave asr++(p′ + is′)/

√
2 + r+−(p′ − is′)/

√
2 =

(r+++r+−)p′/
√

2+i(r++−r+−)s′/
√

2, with |E′|2 given by(|r+++r+−)|2+|r++−r+−|2)/2.)

Similarly, a wave of unit amplitude and negative helicity produces a reflected intensity
proportional toR− = |r−−|2 +|r−+|2. The differential circular reflectance (DCR) is defined
as [8]

DCR = R+ − R−
R+ + R−

. (31)

If linearly polarized waves of s or p polarization are incident, and the detector is
polarization-insensitive, the reflected intensities will be proportional toRs = |rss|2 + |rsp|2
or Rp = |rpp|2 + |rps|2, respectively. Differential linear reflectance (DLR) is defined as [12]

DLR = Rs − Rp

Rs + Rp
. (32)



Optical properties of isotropic chiral media 423

Measurements on chiral media of DLR [12] and DCR [15–18] have been made by Silverman
and collaborators.

The reflection amplitudesrpp, rss, rps and rsp can be used to calculate the reflection
ellipsometric signal, which in the common experimental configurations is one of the ratios
ρP or ρA, where [19]

ρP = rpp + rsp tanP

rps + rsstanP
ρA = rpp + rps tanA

rsp + rsstanA
(33)

whereP is the angle between the polarizer easy axis and the incident p direction, while
A is the angle between the analyser easy axis and the reflected p direction. (The p or TM
directions lie in the plane of incidence and are perpendicular to the incoming or reflected
beams, the s or TE direction is perpendicular to the plane of incidence.)

We note in passing that at the polarizing Brewster angle defined byrpprss = rsprps

(see section 3.3),ρP and ρA become independent of the orientations of the polarizer and
analyser, and take the respective valuesrpp/rps andrpp/rsp. For the cases considered in this
paper,rsp = rps, soρP andρA are equal at the polarizing angle.

Ellipsometry of chiral media will be discussed in more detail in section 5.

2. Wave propagation in chiral media

2.1. Inhomogeneous media

We will henceforth assume the validity of the two curl equations (1) and of the constitutive
relations (2). At first we will consider a general inhomogeneous medium, whereε, µ and
γ are all functions of position. Since the equations are linear in the fields, we can deal
with one Fourier component at a time; we assume a time dependence e−iωt , so that we can
use (5) and

c∇ × E = iωB c∇ × H = −iωD . (34)

The fieldsB, H and D can be eliminated from (5) and (34) by substitution ofB =
(c/iω)∇ × E into H = (B + iγE)/µ, and then of the latter expression intoD =
(ic/ω)∇ × H = εE + iγH. The result is a second-order equation forE, namely

µ∇ ×
(

1

µ
∇ × E

)
= (

εµ − γ 2
)ω2

c2
E + ω

c

[
γ∇ × E + µ∇ ×

(
γ

µ
E

)]
. (35)

The equation forH has the same form, with the roles ofε andµ interchanged.
When the medium isz-stratified,ε, µ and γ are functions ofz only. Let us assume

also that there is a plane wave incident on the stratification, propagating in thezx plane.
Because of the assumed translational invariance in thex and y directions, there will be
no y dependence in any field component, and thex dependence of all field components
is contained in the factor exp(iKx). K is the x-component of the wavevector, and is a
constant of the motion because of the translational invariance in thex direction. For az-
stratified chiral medium, the three componentsEx, Ey andEz satisfy the coupled ordinary
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differential equations

E′′
x − µ′

µ
E′

x + (εµ − γ 2)
ω2

c2
Ex − ω

c

{
2γE′

y +
(

γ ′ − γ
µ′

µ

)
Ey

}
− iK

(
E′

z − µ′

µ
Ez

)
= 0

E′′
y − µ′

µ
E′

y +
[(

εµ − γ 2
) ω2

c2
− K2

]
Ey

+ω

c

{
2γE′

x +
(

γ ′ − γ
µ′

µ

)
Ex

}
− 2i

ω

c
γKEz = 0[

(εµ − γ 2)
ω2

c2
− K2

]
Ez − iKE′

x + 2i
ω

c
γKEy = 0 .

(36)

(The primes denote differentiation with respect toz.)

2.2. Homogeneous chiral media

Finally, we specialize to a homogeneous chiral medium. In this caseε, µ andγ are constant
within the medium. We look for plane wave eigenstates, in which all field components have
the variation exp(iqz), whereq is the z-component of the wavevector. The differential
equations (36) then reduce to the three homogeneous linear algebraic equations[

(εµ − γ 2)
ω2

c2
− q2

]
Ex − 2i

ω

c
γ qEy + qKEz = 0

2i
ω

c
γ qEx +

[
(εµ − γ 2)

ω2

c2
− K2 − q2

]
Ey − 2i

ω

c
γKEz = 0

qKEx + 2i
ω

c
γKEy +

[
(εµ − γ 2)

ω2

c2
− K2

]
Ez = 0 .

(37)

A solution with non-zeroE is possible only if the determinant of the coefficients ofEx, Ey

andEz in this set of equations is zero. This gives the condition∣∣∣∣∣∣∣∣∣
k2
γ − q2 −2i

ω

c
γ q qK

2i
ω

c
γ q k2

γ − q2 − K2 −2i
ω

c
γK

qK 2i
ω

c
γK k2

γ − K2

∣∣∣∣∣∣∣∣∣ = 0 (38)

where

k2
γ = (εµ − γ 2)

ω2

c2
. (39)

(A similar eigenvalue equation forq is obtained for anisotropic media: compare (38) with
equation (20) of [29], for example.) Equation (38) is a quartic inq, with solutions±q+
and±q−, where

q2
± = (√

εµ ± γ
)2 ω2

c2
− K2 . (40)

The four possible plane waves in the chiral medium have wavevectors

(K, 0, ±q+) and (K, 0, ±q−) . (41)

(Two are for waves propagating in the+z direction, two for waves propagating in the−z

direction.) The square of the wavevector is thus

K2 + q2
± = (√

εµ ± γ
)2 ω2

c2
≡ k2

± ≡ n2
±

ω2

c2
. (42)
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Thus there are two effective indices for the chiral medium,

n± = √
εµ ± γ ≡ n ± γ (43)

which correspond to waves of positive and negative helicity, as we shall see shortly. The
average of the two indices isn = √

εµ, and their product isεµ − γ 2 = (ckγ /ω)2. (The
refractive indices are those of Silverman [8] but differ from the Condon [7] expressions by
terms proportional to second and higher powers ofγ .)

The electric field eigenstates which correspond to the eigenvaluesq± given in (42) are
obtained from equations (37) by substitutingq± for q. We find, for the waves propagating
in the +z direction

E+ ∼ (q+, ik+, −K) E− ∼ (q−, −ik−, −K) (44)

wherek± = n±ω/c. The corresponding wavevectors arek± = (K, 0, q±), and we see that,
for each mode, the electric field eigenstate is perpendicular to the wavevector. The fields
given in (44) have a phase difference of 90◦ between theiry and zx components. Also
k2
± = K2 + q2

±, so the two eigenstates correspond to circularly polarized light of positive
and negative helicity.

The other fields can be found fromE by means ofB = (c/ω)k×E, H = (B+iγE)/µ

andD = εE + iγH. They are

B+ = −in+E+ B− = in−E−

H+ = −i
√

ε

µ
E+ H− = i

√
ε

µ
E−

D+ = n+
√

ε

µ
E+ D− = n−

√
ε

µ
E− .

(45)

The Poynting vectors have the appropriate directions: for example,E+×H∗
+ is proportional

to k+. The corresponding fields for plane waves propagating in the−z direction are obtained
by replacingq+ by −q+ andq− by −q− in k± and in (44). The helicities are then negative
for E+ ∼ (−q+, ik+, −K) and positive forE− ∼ −(q−, ik−, K).

2.3. Eigenstates of curl

An elegant alternative approach to propagation in homogeneous chiral media is in terms of
two related linear combinations of theE andH fields [21] (see also [22] and [4])

F± = E±iηH η = (µ/ε)1/2 . (46)

Provided thatη is constant in space, the curl equations (34) and the constitutive equations (5)
together imply thatF+ andF− are eigenstates of the curl operator

∇ × F± = ±k±F± (47)

wherek± = n±ω/c = (n ± γ )ω/c as before. If we write (47) collectively as∇×F = kF
(with F = F± andk = ±k±), plane wave propagation in thezx plane, withF proportional
to exp i(Kx + qz), is possible if

−iqFy = kFx iqFx − iKFz = kFy iKFy = kFz . (48)

These are three homogeneous equations in the field components(Fx, Fy, Fz) and a non-zero
solution will exist only if the determinant of their coefficients is zero, namely if∣∣∣∣∣∣

k iq 0
−iq k iK

0 −iK k

∣∣∣∣∣∣ = 0 . (49)
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This determinant factors tok(k2 − K2 − q2). The two values ofk are ±k±, and thus we
regain (42). From equation (45) we see that for the positive helicity waveH+ = E+/(iη)

and soF+ = 2E+. For the negative helicity waveH− = E−/(−iη) andF− = 2E−. Thus
for plane wave eigenstates in homogeneous chiral media, (47) reads

∇×E+ = k+E+ ∇×E− = −k−E− (50)

(or the same equations withE± replaced byH±).
For inhomogeneous media the positive and negative helicities are coupled: equation (47)

is replaced by

∇×F± = ±[
k±F± + (2η)−1∇η×(F+ − F−)

]
. (51)

2.4. Boundary conditions

The boundary conditions at an interface between chiral media are the continuity of the
tangential components ofE andH. For az-stratified medium and plane waves propagating
in the zx plane, the curl ofE is

∇ × E = (−E′
y, E

′
x − iKEz, iKEy) . (52)

Since the time derivative ofB, which by (1) is proportional to∇ × E, is expected to be
free of singularity at the interface, it follows thatE′

x andE′
y are non-singular, and thus that

Ex andEy are continuous across the interface. Likewise, since the time derivative ofD,
which is proportional to the curl ofH, is expected to be free of singularity at the interface,
Hx andHy should be continuous across the boundary.

The continuity ofEx also follows directly from the last equation in (36), while the terms
containing derivatives in the first two equations of (36) can be written as iω/c times

µH ′
y + iγE′

y and µH ′
x + iγE′

x . (53)

Thus the continuity ofEx andHx follows from the differential equations for the components
of E, whereas these differential equations allow discontinuities inEy and Hy across the
interface, providedµH ′

y + iγE′
y remains non-singular. The possibility of discontinuities

1Hy and1Ey satisfyingµ1Hy + iγ1Ey = 0 is eliminated by the differential equations
for Hx, Hy andHz. These have the same form as those for the components ofE, with Hx

replacingEx , etc, andµ interchanged withε. They imply thatεE′
x + iγH ′

x andεE′
y + iγH ′

y

are non-singular, and thatHx is continuous at the boundary. Discontinuities inEy and
Hy would then have to satisfy bothµ1Hy + iγ1Ey = 0 andε1Ey + iγ1Hy = 0. The
determinant of the coefficients of1Ey and1Hy is εµ + γ 2, which is normally non-zero,
thus implying1Ey = 0 and1Hy = 0. We conclude that the continuity of the tangential
components ofE andH follows from the differential equations.

3. Reflection from an achiral–chiral interface

Reflection by a chiral medium was considered by Silverman [8] and Bassiriet al [2];
extensions to reflection at a chiral–achiral interface are given in [23, 24]. Here the reflection
and transmission amplitudes are derived and their properties discussed.

3.1. Wavefunctions

Let a plane wave be incident from an optically non-active medium (dielectric and
permeability constantsε1 and µ1), at an angleθ1 to the interface normal. We wish to
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find the four reflection amplitudesrss, rsp, rpp and rps which completely characterize the
reflection properties of the interface.

Inside the optically active medium the two plane wave eigenstates which propagate in
the +z direction have electric field vectors

E+ = (cosθ+, i, − sinθ+) exp i(Kx + q+z)

E− = (cosθ−, −i, − sinθ−) exp i(Kx + q−z)
(54)

where

cosθ± = q±/k± sinθ± = K/k± (55)

andθ± are the angles of refraction for the two plane waves of opposite helicity. For incident
s (TE) plane-polarized waves, the incoming and reflected waves have electric fields given
by (14) and (15). Thus the electric field in medium 1 is

E1 = (rspcosθ1 e−iq1z, eiq1z + rsse−iq1z, rspsinθ1 e−iq1z) eiKx . (56)

The magnetic fieldH1 in medium 1 is given by

H1 = B1/µ1 =
(

c

iωµ1

)
∇ × E1 . (57)

At the boundaryz = 0 this is

H1(z = 0) = n1

µ1

(−(1 − rss) cosθ1, −rsp, (1 + rss) sinθ1
)

eiKx . (58)

Inside the optically active medium, the electric and magnetic fields are

E = ts+E+ + ts−E− H = −i
√

ε

µ
(ts+E+ − ts−E−) (59)

wherets+ and ts− are the transmission amplitudes for the two circularly polarized waves in
the chiral medium.

3.2. Reflection and transmission amplitudes

The continuity of the tangential components ofE andH across the interface atz = 0 gives
four relations, which can be solved for the four unknownsrss, rsp, ts+ andts−. We find, with

c1 = cosθ1 c± = cosθ± =
√

1 − (n1 sinθ1/n±)2 m =
√

εµ1

µε1

D = c2
1 + c1(c+ + c−)(m + m−1)/2 + c+c−

(60)

that the reflection and transmission amplitudes when s-polarized light is incident are given
by

rss = [
c2

1 − c1(c+ + c−)(m − m−1)/2 − c+c−
]
/D

rsp = −ic1(c+ − c−)/D

ts+ = −ic1(c1 + c−/m)/D

ts− = ic1(c1 + c+/m)/D .

(61)

For p polarization incident (a TM wave) the incoming and reflected waves have electric
fields

(cosθ1, 0, − sinθ1) exp i(Kx + q1z)

(rpp cosθ1, rps, rpp sinθ1) exp i(Kx − q1z) .
(62)
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The electric fieldE1 is the sum of these; the magnetic fieldH1 given by (57) takes the
value at thez = 0 boundary

H1(z = 0) = n1

µ1
(rpscosθ1, 1 − rpp, rpssinθ1) eiKx . (63)

The fields inside the chiral medium are now

E = tp+E+ + tp−E− H = −i
√

ε

µ
(tp+E+ − tp−E−) . (64)

The reflection and transmission amplitudes when p-polarized light is incident are

rpp = −[c2
1 + c1(c+ + c−)(m − m−1)/2 − c+c−]/D

rps = −ic1(c+ − c−)/D

tp+ = c1(c1/m + c−)/D

tp− = c1(c1/m + c+)/D .

(65)

These formulae are in accord with those of Silverman [8], but are not identical to those
of Bassiri et al [2], unless we make the identification (13). We note thatrsp = rps. When
the chirality is zero,rsp andrps are also zero, whilerss andrpp reduce to the usual Fresnel
amplitudes. From equations (61) and (65) we find

1 − r2
ss = c1(c+ + c− + 2c1m)[c1(c+ + c−)m + 2c+c−]/mD

1 − r2
pp = c1((c+ + c−)m + 2c1)[c1(c+ + c−) + 2c+c−m]/mD .

(66)

Since the right-hand sides of (66) are non-negative, the ss and pp reflectivities cannot exceed
unity. Also the magnitude ofrsp = rps is less than unity, by inspection.

At normal incidenceK → 0 and the cosinesc1 andc± tend to unity; the reflection and
transmission amplitudes then take values independent of the chirality parameterγ :

rss, rpp → 1 − m

1 + m
rsp, rps → 0

tp± → 1

1 + m
ts± → ∓i

1 + m
.

(67)

The transmission amplitudes for positive and negative helicities follow from the
definitions of ts± and tp± in (59) and (64). An incident wave with electric field vector
p ± is transmits totp+E+ + tp−E− ± its+E+ ± its−E− = (tp+ ± its+)E+ + (tp− ± its−)E−.
Therefore

t++ = tp+ + its+ t+− = tp− + its−
t−+ = tp+ − its+ t−− = tp− − its− .

(68)

The helicity reflection and transmission amplitudes for an achiral–chiral interface are all
real when the chiral medium is non-absorbing:

r+− = c1(c+ + c−)(m − m−1)/2D = r−+
r++ = (c1 − c+)(c1 + c−)/D r−− = (c1 + c+)(c1 − c−)/D

t++ = c1(c− + c1)(1 + m−1)/D t+− = c1(c+ − c1)(1 − m−1)/D

t−− = c1(c+ + c1)(1 + m−1)/D t−+ = c1(c− − c1)(1 − m−1)/D .

(69)

The normal-incidence limiting values are

r++, r−− → 0 r+−, r−+ → m − 1

m + 1

t++, t−− → 2

1 + m
t+−, t−+ → 0 .

(70)
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At glancing incidence(c1 → 0) all the transmission amplitudes go to zero,r++ andr−−
tend to−1, r+− and r−+ tend to zero,rpp → 1 andrss → −1. The probability for photon
spin-flip is zero at both normal and glancing incidence. (Helicity is reversed at normal
incidence because of the reversal of the direction of travel of the light on reflection.)

Reflection near the critical anglesθ±
1 given by sinθ±

1 = n±/n is discussed in section 4.5,
together with the chiral layer case. The off-diagonal reflection amplitudesrsp, rps and
r+−, r−+ are proportional to the square root of the chiral indexγ .

The energy conservation conditions to be satisfied by the reflection and transmission
amplitudes follow from arguments along the lines given in section 1.3, and were first written
down by Silverman and Badoz [15]. The helicity amplitudes satisfy√

ε1

µ1
cosθ1(1 − |r++|2 − |r+−|2) =

√
ε

µ
(cosθ+|t++|2 + cosθ−|t+−|2)√

ε1

µ1
cosθ1(1 − |r−−|2 − |r−+|2) =

√
ε

µ
(cosθ+|t−+|2 + cosθ−|t−−|2) .

(71)

Since plane-polarized waves are not eigenstates within the chiral medium, the corresponding
relations involvingrss, rsp, rps andrpp are of a hybrid form:√

ε1

µ1
cosθ1(1 − |rss|2 − |rsp|2) = 2

√
ε

µ
(cosθ+|ts+|2 + cosθ−|ts−|2)√

ε1

µ1
cosθ1(1 − |rpp|2 − |rps|2) = 2

√
ε

µ
(cosθ+|tp+|2 + cosθ−|tp−|2) .

(72)

The reason for the factor of 2 on the right-hand sides of (72) lies in our definition of the
electric fields and of the transmission amplitudes: from equation (54) we see that|E±|2 = 2,
while the incoming s-polarized or p-polarized electric fields are normalized to unity (see
equations (14) and (16)).

3.3. The Brewster angles

At the boundary between two non-chiral media, zero reflection of a p-polarized incident
wave occurs at the Brewster angleθB, where

tan2 θB =
(

ε

ε1

) (
εµ1 − ε1µ

εµ − ε1µ1

)
= εµ(m2 − 1)

εµ − ε1µ1
. (73)

(Whenµ = µ1 this simplifies to the more familiar tan2 θB = ε/ε1.)
For the achiral–chiral interface we can ask for the angleθpp at which rpp is zero, in

analogy with the anisotropic crystal case [25]. From (65) we see that this occurs when

2(c+c− − c2
1)m = c1(c+ + c−)(m2 − 1) . (74)

The squares of the cosines of the angles of incidence and refraction can be expressed in terms
of s2

1 = sin2 θ1 (by use of Pythagoras’ theorem, and of Snell’s lawn1 sinθ1 = n± sinθ±):

c2
1 = 1 − s2

1 c2
± = 1 −

(
n1

n±

)2

s2
1 . (75)

Thus if we square both sides of (74), isolate the productc+c−, and then square again, we
will obtain an algebraic equation fors2

1. This turns out to a quartic ins2
1, or equivalently

a quartic int2
1 = tan2 θ1, one of the solutions of which gives tan2 θpp. When we substitute

(43) into the quartics, we find that tan2 θpp is given by the right-hand side of (73) plus a
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term of orderγ 2. Becauseγ is small for natural optically active media, the second-order
correction to (73) is usually not of experimental interest.

Another possible definition of a Brewster angle is that used by Bassiriet al [2] and others
(see section 3.5.4 of [4]): it is the angle at which a monochromatic plane wave of arbitrary
polarization becomes linearly polarized on reflection. For a linearly polarized wave, the
angleα between the electric field vectorE and thep direction is given by tanα = s·E/p·E,
wherep and s are unit vectors as before. For the reflected wave the azimuthal angle is
given by tanα′ = s′ · E′/p′ · E′, whereE′ = (p · E)(rppp

′ + rpss
′) + (s · E)(rspp

′ + rsss
′).

Thus

tanα′ = rps + rsstanα

rpp + rsp tanα
. (76)

The condition forα′ to be independent ofα is

rpprss− rpsrsp = 0 . (77)

The condition (77) thus guarantees that the same polarization azimuthα′ will result for all
incident azimuthsα, namely

tanα′ = rps

rpp
= rss

rsp
. (78)

For isotropic non-chiral media, the condition (77) reduces torpprss = 0, which forµ = µ1

is satisfied byrpp = 0 at θB given by tan2 θB = ε/ε1, and gives an s-polarized reflected
wave. For chiral media (77) implies

2(c2
1 + c+c−)m = c1(c+ + c−)(m2 + 1) . (79)

The same method that we outlined for therpp = 0 case reduces (79) to a quadratic in
sin2 θ1, or equivalently, to a quadratic in tan2 θ1. As we found for tan2 θpp, the Brewster
angle determined by (79) is given by (73) plus a term of second order in the chirality
parameterγ . Thus measurement of either kind of Brewster angle is not a viable method of
determiningγ . The full formula for the angle of incidence at which the reflected light is
linearly polarized is

tan2 θB = (m2−1)
{
(m2−1)[2n2

+n2
−−n2

1(n
2
++n2

−)]+2(m2+1)n+n−[(n2
+−n2

1)(n
2
−−n2

1)]
1/2

}
4m2(n2+−n2

1)(n
2−−n2

1)

(80)

wheren1 = (ε1µ1)
1/2, n± = (εµ)1/2 ± γ andm = (εµ1/ε1µ)1/2.

4. Optical properties of a chiral layer

The optical properties of a chiral layer are discussed in [2, 4, 24, 26], among others. Here
we give a first-principles derivation of the reflection and transmission amplitudes, with a
discussion of special cases. The appendix gives (for the first time) analytic expressions for
the exact reflection and transmission amplitudes.

4.1. Electric and magnetic fields

We consider reflection and transmission by an optically active layer of thicknessd, between
the medium of incidence with index of refractionn1 = (ε1µ1)

1/2 and the substrate with
index n2 = (ε2µ2)

1/2. The layer lies betweenz = 0 and z = d, and is characterized
by two indicesn± = (εµ)1/2 ± γ . Because of multiple reflections within the layer, the
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electromagnetic field inside is made up of four eigenstates or modes, two propagating in the
positivez direction, and two in the negativez direction; for each direction of propagation
there are two possible helicities. The electric fields have the space and time dependence

E
f
± exp i(Kx + q±z − ωt) Eb

± exp i(Kx − q±z − ωt) (81)

where the superscriptsf andb denote forward and backward propagation inside the slab,
andq± are given by (40).

The reflection and transmission amplitudes are found by applying the continuity of the
tangential (x andy) components ofE andH at the two boundariesz = 0 andz = d of the
chiral slab. The s wave in the medium of incidence has electric and magnetic fields given
by (56) and (58). The electric field inside the slab is

E = f+E
f
+ + f−E

f
− + b+Eb

+ + b−Eb
− (82)

whereE
f,b
+ andE

f,b
− are given by (with upper and lower signs corresponding tof andb)

E
f,b
+ = (± cosθ+, i, − sinθ+) exp i(Kx ± q+z)

E
f,b
− = (± cosθ−, −i, − sinθ−) exp i(Kx ± q−z) .

(83)

The corresponding magnetic field is

H = −i
√

ε

µ

{
f+E

f
+ − f−E

f
− + b+Eb

+ − b−Eb
−
}
. (84)

The transmitted fields are, for s polarization incident,

E2 = (tspcosθ2, tss, −tspsinθ2) exp i[Kx + q2(z − d)]

H2 = n2

µ2
(−tsscosθ2, tsp, tsssinθ2) exp i[Kx + q2(z − d)]

(85)

where θ2 is the angle of refraction in the substrate, given byn2 sinθ2 = n1 sinθ1. The
continuity of Ex, Ey, Hx andHy at z = 0 gives

rspc1 = f+c+ + f−c− − b+c+ − b−c−
1 + rss = i(f+ − f−) + i(b+ − b−)

−
√

ε1

µ1
(1 − rss)c1 = −i

√
ε

µ
{f+c+ − f−c− − b+c+ + b−c−}

−
√

ε1

µ1
rsp =

√
ε

µ
{f+ + f− + b+ + b−} .

(86)

At z = d the boundary conditions read

tspc2 = f ′
+c+ + f ′

−c− − b′
+c+ − b′

−c−
tss = i(f ′

+ − f ′
−) + i(b′

+ − b′
−)

−
√

ε2

µ2
tssc2 = −i

√
ε

µ

{
f ′

+c+ − f ′
−c− − b′

+c+ + b′
−c−

}
√

ε2

µ2
tsp =

√
ε

µ

{
f ′

+ + f ′
− + b′

+ + b′
−
}

(87)

where

f ′
± = f± eiq±d b′

± = b± e−iq±d . (88)

The eight equations (86) and (87) determine the eight unknownsrss, rsp, tss, tsp, f+, f−,
b+, b−.
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Before discussing the solution, we will note the case of incoming p polarization, for
which the incident plus reflected fields are given by (62) and (63), and the transmitted fields
are

E2 = (tpp cosθ2, tps, −tpp sinθ2) exp i[Kx + q2(z − d)]

H2 = n2

µ2
(−tpscosθ2, tpp, tpssinθ2) exp i[Kx + q2(z − d)] .

(89)

The fields inside the chiral layer have the same form as for the s polarization, namely as
given in (82) and (84), but with different values of the forward and backward amplitudes
f± andb±.

4.2. Mode, phase and layer matrices

Thus both the incident s and p polarization cases can be solved with the same matrices, as is
the case for anisotropic layers [27]. We define the mode matrixM and the phase matrixP ,

M =


c+ c− −c+ −c−
1 −1 1 −1
c+ −c− −c+ c−
1 1 1 1



P =


eiq+d 0 0 0

0 eiq−d 0 0
0 0 e−iq+d 0
0 0 0 e−iq−d


(90)

and also the vectors

a =


f+
f−
b+
b−

 rs =


c1rsp

−i(1 + rss)

−ic1(1 − rss)/m

−rsp/m

 ts =


c2tsp

−itss

−ic2tss/m′

tsp/m′



rp =


c1(1 + rpp)

−irps

ic1rps/m

(1 − rpp)/m

 tp =


c2tpp

−itps

−ic2tps/m′

tpp/m′


(91)

wherem = (εµ1/ε1µ)1/2 as before, andm′ = (εµ2/ε2µ)1/2. In terms of these matrices and
vectors, the s-wave equations (86) and (87) read

rs = Ma ts = MPa . (92)

The amplitude vectora can be eliminated, leaving four equations linking the reflection and
transmission amplitudes:

ts = MPM−1rs . (93)

The reflection and transmission amplitudes for incident p polarization are similarly given
by

tp = MPM−1rp . (94)

Thus the optical properties of the layer are determined by the 4× 4 layer matrix

L = MPM−1 (95)
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and by the constantsm andm′. The elements ofL are independent of the polarization of
the incident wave; they depend on the angle of incidence through the cosines of the angles
of refraction of the two waves of positive and negative helicity, cosθ± = c±, where

c2
± = 1 −

(
n1

n±

)2

sin2 θ1 = 1 −
(

n1

n±

)2

(1 − c2
1) . (96)

Note thatP has unit determinant, soL is unimodular also. The determinant ofM is 16c+c−;
thus M becomes singular at the two critical anglesθ±

1 , wherec± = 0. The elements of
L also depend on the phase shifts e±iq±d that the four modes experience on traversing the
layer.

The equations (93) and (94) can be solved for the reflection and transmission amplitudes.
It is always true thatrsp = rps. We will discuss some special cases in the following sections;
the general formulae are given in the appendix.

4.3. Normal incidence

The simplest special case is normal incidence, for which we obtain

rss = rpp = r + r ′Z+Z−
1 + rr ′Z+Z−

rps = rsp = 0

tpp = tss = (1 + r)(1 + r ′)(Z+ + Z−)/2

1 + rr ′Z+Z−

tps = −tsp = i(1 + r)(1 + r ′)(Z+ − Z−)/2

1 + rr ′Z+Z−

(97)

where r and r ′ are the normal-incidence reflection amplitudes at the first and second
interfaces

r = 1 − m

1 + m
r ′ = m′ − 1

m′ + 1
(98)

andZ+ andZ− are the phase factors for waves of positive and negative helicity traversing
the layer:

Z± = exp(iq±d) . (99)

At normal incidenceq± = n±ω/c, from (40) and (42). From equations (22), (24) and (97)
we find that, at normal incidence,

r++ = r−− = 0 r+− = r−+ = −rss = −rpp . (100)

At normal incidence the transmission amplitudes characterized by helicity reduce to (on
using (26), (27) and (97))

t++ = (1 + r)(1 + r ′)Z+
1 + rr ′Z+Z−

t−− = (1 + r)(1 + r ′)Z−
1 + rr ′Z+Z−

(101)

t+− = t−+ = 0 .

A chiral slab will thus transmit a normally incident pure circularly polarized wave without
mixing in any of the opposite circular polarization. A linearly polarized wave can
be regarded as an equal mix of the two opposite circular polarizations (for example
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p = (p + is)/2 + (p − is)/2). After transmission through the slab, the positive and
negative helicities are phase-shifted by different amounts, so that a wave of unit amplitude
initially linearly polarized alongp will after transmission through the slab have amplitude

[(p + is)t++ + (p − is)t−−]/2 = (1 + r)(1 + r ′)
1 + rr ′Z+Z−

[p(Z+ + Z−) + is(Z+ − Z−)]/2

= (1 + r)(1 + r ′)
1 + rr ′Z+Z−

exp(inωd/c)[p cosδ − s sinδ] (102)

wheren = (n+ + n−)/2 = √
εµ, and

δ = 1

2
(n+ − n−)

ωd

c
= γ

ωd

c
= γ

2πd

λ
. (103)

The plane of polarization is thus rotated byδ. For propagation along the optic axis of
crystalline quartz, for example, the rotation is 18.8◦ per mm atλ = 633 nm, so that
n+ − n− ≈ 6.6×10−5 andγ ≈ 3.3×10−5.

We note that at normal incidence the multiple reflections within the slab have no effect
on the rotation of the plane of polarization, although they do affect the amount of light
transmitted. The situation is more complicated at oblique incidence: the ratio oft++ to t−−
is no longer equal toZ+/Z−, and alsot+− and t−+ are not zero.

4.4. First-order chirality corrections

An optically inactive layer has the reflection and transmission amplitudes

rss = s + s ′Z2

1 + ss ′Z2
rsp = 0

rpp = p + p′Z2

1 + pp′Z2
rps = 0

tss = (1 + s)(1 + s ′)Z
1 + ss ′Z2

tsp = 0

tpp = m′

m

(1 − p(1 − p′)Z
1 + pp′Z2

tps = 0

(104)

whereZ = exp(iqd), q2 = εµω2/c2 − K2, and s, s ′, p and p′ are the Fresnel reflection
amplitudes at the front and rear boundaries of the layer:

s = c1 − mc0

c1 + mc0
s ′ = m′c0 − c2

m′c0 + c2
p = c0 − mc1

c0 + mc1
p′ = m′c2 − c0

m′c2 + c0
. (105)

The quantitiesm = (εµ1/ε1µ)1/2 andm′ = (εµ2/ε2µ)1/2 become ratios of refractive indices
in the non-magnetic case, whenµ1 = µ = µ2; c0 is the common value ofc+ andc− when
γ = 0.

We now seek the corrections to (104) to first order in the chirality parameterγ . From
n± = n ± γ and

c2
± = 1 − (n1/n±)2 sin2 θ1 (106)

we find, to first order inγ ,

c± = c0 ± γ (n1 sinθ1)
2/n3c0 ≡ c0 ± 0 . (107)

The first-order corrections to the reflection and transmission amplitudes involve terms of
the type1q/q and1qd, whereq is the common value ofq± whenγ → 0, and1q stands
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for q+ − q or q− − q. The terms proportional to1qd can be large for thick films, even
though the chirality is weak. From equation (40) or (107) we find

q± = 2π

λ
(nc0 ± γ /c0) + O(γ 2) . (108)

Thus the phase factors for waves of positive and negative helicity on traversing the layer
are

Z± = Z(1 ± 2π iγ d/λc0) + O(γ 2) . (109)

From equations (107) and (109) we see that the chirality corrections will be of two kinds,
proportional to

0 = γ (n1 sinθ1)
2/n3c0 or 1 = γ 2π id/λc0 . (110)

The second kind of term will be dominant for layers which are much thicker than a
wavelength. Note that both terms are inversely proportional to the cosine of the angle
of refraction, and thus diverge at the critical angle for total internal reflection. Reflection
near the critical angle will be considered separately in the next section.

We will denote by the superscripts0 and1 the coefficients of0 and1 in the expansions
of the reflection and transmission amplitudes in powers ofγ . We find that there are no
first-order terms inrpp or rss, and that

r0
ps = r0

sp = 2imc1(1 − p′s ′Z2)(Z2 − 1)

(c1 + mc0)(mc1 + c0)(1 + pp′Z2)(1 + ss ′Z2)
(111)

r1
ps = r1

sp = 8imm′c1c0(c
2
0 − c2

2)Z
2

(c1 + mc0)(m′c0 + c2)(mc1 + c0)(c0 + m′c2)(1 + pp′Z2)(1 + ss ′Z2)
. (112)

There are likewise no first-order corrections totpp or tss. The first-order corrections totps

and tsp are

t0ps = 4im′c1(mc2
0 − m′c1c2)(Z

2 − 1)Z

(c1 + mc0)(mc1 + c0)(m′c0 + c2)(c0 + m′c2)(1 + pp′Z2)(1 + ss ′Z2)
(113)

t0sp = 4im′c1(mc1c2 − m′c2
0)(Z

2 − 1)Z

(c1 + mc0)(mc1 + c0)(m′c0 + c2)(c0 + m′c2)(1 + pp′Z2)(1 + ss ′Z2)
(114)

t1ps = 4im′c1c0(1 + sp′Z2)Z

(mc1 + c0)(m′c0 + c2)(1 + pp′Z2)(1 + ss ′Z2)
(115)

t1sp = −4im′c1c0(1 + ps ′Z2)Z

(c1 + mc0)(c0 + m′c2)(1 + pp′Z2)(1 + ss ′Z2)
. (116)

We note that the first-order amplitude corrections proportional to the layer thickness (i.e.
those with superscript1) are not singular at the critical angle, because they all have the
factor c0 cancelling thec−1

0 in 1.

4.5. Optical properties near the critical angles

Enhancement of chirality effects in the vicinity of the critical angles has been noted in
[15, 16, 18]. Here we give the reflection amplitudes, first for a bulk chiral medium, and then
for a chiral layer.

If the medium of incidence has refractive index greater than one or both of the indices
of the chiral layer, there will be an angle of incidence at which only one of the helicities
can propagate within the chiral medium. Supposeγ > 0, i.e.n+ > n−. Then the negative
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helicity wave will be the first to decay exponentially within the bulk chiral medium, at
angles of incidence greater than the critical angleθ−

1 given by

sinθ−
1 = n−

n1
. (117)

At this critical angle of incidencec− = cosθ− is zero, and

c+ = cosθ+ = 2

n+
(γ n)1/2 ≈ 2

(γ

n

)1/2
(118)

wheren = (n+ + n−)/2 as before. The reflection amplitudes for the bulk medium have the
following form at θ−

1 :

rss = 2mc1 + c+(1 − m2)

2mc1 + c+(1 + m2)
= 1 − mc+

c1
+ O(c2

+)

rpp = −2mc1 − c+(1 − m2)

2mc1 + c+(1 + m2)
= −1 + c+

mc1
+ O(c2

+) (119)

rps = rsp = −2imc+
2mc1 + c+(1 + m2)

= − ic+
c1

+ O(c2
+) .

Similar formulae hold atθ+
1 : c− replacesc+ in the above formulae, and the sign of therps

andrsp resulting expression is changed. Thusrps andrsp are proportional to the square root

of the small chirality parameterγ . Sincec1(θ
−
1 ) =

√
1 − (n−/n1)

2, index matching will
increase the coefficient of

√
γ in rsp andrps.

The corresponding positive and negative helicity reflection amplitudes are (atθ−
1 )

r+− = r−+ = c+(m2 − 1)

2mc1 + c+(1 + m2)
= (m2 − 1)c+

2mc1
+ O(c2

+)

r++ = 2m(c1 − c+)

2mc1 + c+(1 + m2)
= 1 − (m + 1)2c+

2mc1
+ O(c2

+) (120)

r−− = 2m(c1 + c+)

2mc1 + c+(1 + m2)
= 1 − (m − 1)2c+

2mc1
+ O(c2

+) .

We now look at the amplitudes for a chiral layer at the critical angleθ−
1 for waves of

negative helicity. We shall giver++ etc, since the helicity classification gives somewhat
simpler results than the p and s polarization characterization. We give the results to zeroth
order inc+, which is equal to 2(γ n)1/2/n+ at θ−

1 :

r+− = r−+ = −m′(m2 − 1)c2

2imm′c1c2k+d − [mc1 + m′c2 + mm′(m′c1 + mc2)]
+ O(c+)

r++, r−− = m[2im′c1c2k+d − c1(1 + m′ 2) ± 2m′c2]

2imm′c1c2k+d − [mc1 + m′c2 + mm′(m′c1 + mc2)]
+ O(c+)

(121)

wherek+ = n+ω/c, so thatk+d = 2πn+d/λ. For thick films for whichk+d is large but
c+k+d is still small compared to unity,r+− and r−+ are small compared tor++ and r−−,
which tend to 1 (compare with (120)). The corresponding transmission amplitudes are

t++
t+−
t−+
t−−

 = −c1m
′

D−


(1 + m)(1 + m′)
(1 + m)(1 − m′)
(1 − m)(1 + m′)
(1 − m)(1 − m′)

 + O(c+) (122)
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whereD− is the denominator appearing in (121). We see that the strongest transmission
amplitude whenc− = 0 is t++, and the weakest ist−−, but that no amplitude is zero at the
critical angle for waves of negative helicity. However, onlyt++ and t−+ give amplitudes
of waves propagating through the chiral slab; inside the slab the waves of negative helicity
propagate along the surface atθ−

1 .

4.6. Thin chiral layer

We consider the optical properties of a thin chiral layer between achiral media with constants
ε1, µ1 andε2, µ2. By ‘thin’ we mean that the dimensionless quantityωd/c = 2πd/λ is small
compared to unity. We find that the reflection amplitudes have the following expansions to
orderωd/c:

rss = m′c1 − mc2

m′c1 + mc2
+ imc1[m′ 2(n+c2

+ + n−c2
− − c2

2(n+ + n−)]ωd/c

(m′c1 + mc2)2
+ O

(
ωd

c

)2

rpp = m′c2 − mc1

m′c2 + mc1
− imc1[n+c2

+ + n−c2
− − (m′c2)

2(n+ + n−)]ωd/c

(mc1 + m′c2)2
+ O

(
ωd

c

)2

(123)

rsp = rps = −mm′c1[n+c2
+ − n−c2

− − c2
2(n+ − n−)]ωd/c

(mc1 + m′c2)(m′c1 + mc2)
+ O

(
ωd

c

)2

.

We notem = (εµ1/ε1µ)1/2 andm′ = (εµ2/ε2µ)1/2 have the common factor(ε/µ)1/2, so
that the properties of the chiral layer cancel out in the zero-thickness limit, as they must.
The same applies to the transmission amplitudes, which have the expansions

tss = 2m′c1

m′c1 + mc2
+ im′c1[mm′(n+c2

+ + n−c2
−) + c1c2(n+ + n−)]ωd/c

(m′c1 + mc2)2
+ O

(
ωd

c

)2

tpp = 2m′c1

mc1 + m′c2
+ im′c1[n+c2

+ + n−c2
− + mm′c1c2(n+ + n−)]ωd/c

(mc1 + m′c2)2
+ O

(
ωd

c

)2

tsp = m′c1[m′(n+c2
+ − n−c2

−) + mc1c2(n+ − n−)]ωd/c

(mc1 + m′c2)(m′c1 + mc2)
+ O

(
ωd

c

)2

tps = −m′c1[m(n+c2
+ − n−c2

−) + m′c1c2(n+ − n−)]ωd/c

(mc1 + m′c2)(m′c1 + mc2)
+ O

(
ωd

c

)2

.

(124)

Note that

n+c2
+ − n−c2

− = (n+ − n−)[1 + (n1 sinθ1)
2/n+n−] . (125)

Thus all the polarization-switching reflection and transmission amplitudes (i.e. all those with
subscripts sp or ps) have first-order thickness terms which are proportional to the chirality
parameterγ = (n+ − n−)/2.

5. Ellipsometry of chiral media

5.1. Ellipsometric ratios

The usual ellipsometric configurations measure the ratios [19]

ρP = rpp + rsp tanP

rps + rsstanP
or ρA = rpp + rps tanA

rsp + rsstanA
(126)

where P is the angle between the polarizer easy direction andp, while A is the angle
between the analyser easy direction andp′.
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We will consider polarization modulation ellipsometry, which avoids the null
ellipsometry problems of stray light and shot noise. In the polarizer–modulator–sample–
analyser configuration, when the modulation angular frequency is�, the DC,� and 2�
parts of the intensity are, up to a common constant of proportionality [19]

DC : |ρA|2 cos2 P + 2Re(ρA)J0(M) sinP cosP + sin2 P

� : 4 Im(ρA)J1(M) sinP cosP sin�t

2� : 4 Re(ρA)J2(M) sinP cosP cos 2�t .

(127)

In the polarizer–sample–modulator–analyser configuration, the intensity components take
the same form, withρP replacingρA andA replacingP in (127). M is the maximum phase
shift between s and p components induced by the modulator;J0(M), J1(M) andJ2(M) are
Bessel functions.

Information about chirality is carried mainly by the off-diagonal amplitudesrsp andrps

(we saw that these are equal in the cases considered here), which are zero for isotropic
achiral media. By selecting zeroP or zeroA we measure

ρP=0 = rpp

rps
or ρA=0 = rpp

rsp
. (128)

By selectingP or A equal to±90◦, we measure

ρP=±90◦ = rsp

rss
or ρA=±90◦ = rps

rss
. (129)

In the polarizer–modulator–sample–analyser configuration we measureρA. In this
arrangement the polarizer easy axis should not be set with easy axis along thep or s
directions, because forP = 0 or ±90◦ only the DC part of the signal is non-zero. In the
polarizer–sample–modulator–analyser configuration we measureρP , and then the analyser
easy axis should not be set along thes or p′ directions.

Henceforth we assume thatrsp = rps, as is the case for reflection from a bulk isotropic
chiral medium, or from an isotropic chiral layer. Then the ellipsometric ratios in (128) take
the common value

ρ// = rpp

rsp
= rpp

rps
(130)

(where // stands for polarization parallel to the plane of incidence). The magnitude of
ρ// can be very large, sincerpp is being divided by the small amplitudesrsp = rps. The
ellipsometric ratios in (129) likewise take the common value

ρ⊥ = rsp

rss
= rps

rss
(131)

where⊥ stands for polarization perpendicular to the plane of incidence.
It appears at first sight that one should measure the large value ofρ//, but whenρ is

large the ratio of the� or 2� signals to the DC signal is proportional to Im(ρ)/|ρ|2 or
Re(ρ)/|ρ|2, respectively. (Taking the ratio to the DC signal eliminates unknown calibration
factors.) Thus there is usually no advantage to aρ of very large magnitude.

5.2. Achiral–chiral interface

We saw in section 4.5 thatrsp = rps are proportional to the square root of the small chirality
parameterγ when the angle of incidence is near the critical anglesθ±

1 = arcsin(n±/n1) for
a bulk chiral medium. These critical angles are generally very close together:n± = n ± γ

andγ is small. (For natural turpentine at the sodium D wavelength,γ = −0.606× 10−6.)
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The critical angle for the average refractive index isθc = arcsin(n/n1), and at this angle
we find thatρ⊥ takes the value

ρ⊥(θc) = −(1 + i)n1

[
2|γ |

n(n2
1 − n2)

]1/2

sgn(γ ) + O(γ ) . (132)

Note that index matching increases the effect of chirality, already maximized in the
neighbourhood of the critical angles. (Index matching is likewise known to increase
the effect of anisotropy: see [28, 29].) For example, if the medium of incidence is
glass with refractive index 1.50, and the chiral medium is turpentine (with index 1.47),
ρ⊥(θc) ≈ 0.004 56(1 + i), which is of a magnitude that would be easily measurable, were
it not for the fact that this relatively large magnitude is confined to a very narrow angular
range. This angular range is essentially the difference between the two critical angles,

θ+
1 − θ−

1 = arcsin(n+/n1) − arcsin(n−/n1) = 2γ

(n2
1 − n2)1/2

+ O(γ 2) . (133)

We see that this difference is enhanced by index matching, but that it would take a very close
match withn1 − n of order |γ |1/2 to make the angular range of order|γ |1/2, which is still
small. We conclude that reflection ellipsometry is not a viable way of measuring the chirality
of non-absorbing bulk weakly chiral media. Silverman and Badoz [24] have however shown
that for absorbing chiral layers, the ellipticity and differential circular reflectance (DCR) are
strongly enhanced. Measurements of DCR are presented in [17], and discussed in [3].

5.3. Ellipsometry of a chiral layer

We now look at the ellipsometry of a non-absorbing chiral layer. When the substrate is
optically identical to the medium of incidence (as for unsupported or embedded films,
for example), the zero-thickness value of all the reflection amplitudes is zero. From
equation (123) we find, withc2 = c1 andm′ = m, that the leading terms are independent
of the film thickness:

ρ⊥ = rsp

rss
= im

[
n+c2

+ − n−c2
− − c2

1(n+ − n−)
]

m2
(
n+c2+ + n−c2−

) − c2
1(n+ + n−)

+ O

(
ωd

c

)
ρ// = rpp

rsp
= i

[
(n+c2

+ + n−c2
− − (mc1)

2(n+ + n−)
]

m
[
n+c2+ − n−c2− − c2

1(n+ − n−)
] + O

(
ωd

c

)
.

(134)

As noted below (125), thersp amplitude leading term is proportional to the chirality
parameterγ = (n+ − n−)/2. Thus ρ// can be very large for thin films. We saw in
the discussion following (131) that a large ellipsometric ratio is not usually an advantage,
and here we shall concentrate onρ⊥. From equation (134) we find, using (43) and (75),
that

ρ⊥ = in1
(
n2

1 + n2
)
s2

1γ

n2
(
n2 − n2

1

) + O

(
ωd

c

)
+ O(γ 3) . (135)

We see that matching the (equal) indices of the medium of incidence and of the substrate
to the average index of the chiral layer enhances the ellipsometric ratioρ⊥, and that the
leading term ofρ⊥ increases with angle of incidence as sin2 θ1. We know from (A4) that
rsp is zero at grazing incidence, so that finite-thickness corrections must bringρ⊥ to zero
as s1 = sinθ1 → 1. Figures 1–3 show the real and imaginary parts ofρ⊥ for thin films
of turpentine(n = 1.47, γ = −0.606× 10−6 at the sodium D wavelength) between glass
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Figure 1. Real and imaginary parts ofρ⊥ = rsp/rss for a
turpentine layer between glass of index 1.48, versus sin2 θ1.
The curves are drawn for layer thicknessd = λ/π , index
1.47 and chiralityγ = −0.606× 10−6. The inset shows a
possible experimental configuration.

Figure 2. Detail, near grazing incidence, of figure 1. Note
that the horizontal scale isθ1 rather than sin2 θ1.

Figure 3. Im(ρ⊥) for turpentine layers of thicknessesλ/10π
and λ/π (other parameters as in figure 1). Thinner layers
have Im(ρ⊥) indistinguishable on this scale from theλ/10π
curve. The straight line given by the leading term of (135)
is also indistinguishable from thed 6 λ/10π curves, up to
the maximum near grazing incidence.

plates of index 1.48. We see that Im(ρ⊥) is accurately given by the leading term in (135)
up to quite appreciable film thicknesses, except very close to grazing incidence.

We thus have a method for the measurement of the chirality parameterγ : determination
of the imaginary part ofρ⊥ for thin films held between (for example) a half-cylinder and a
plate made from the same glass. This method is insensitive to the film thickness, provided
the thickness remains small compared to the wavelength. Index matching enhances the
ellipsometric signal, but at the expense of the light intensity. The measurement of the
ellipsometric reflection signal provides a method of obtaining the chirality parameter for
very small volumes of sample, in contrast to the usual method of measurement of the
rotation of the plane of polarization on transmission through the sample.
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Appendix. General formulae for a chiral layer

We give the reflection and transmission amplitudes which characterize the optical properties
of a chiral layer (with indicesn±) between non-chiral media 1 and 2, medium 1 being the
medium of incidence. Let the factors

Z± = exp(iq±d) (A1)

give the phase increments in a single transit of the layer for the two helicities, and define
the quantities

F±
1 = 2m(c2

1 + c+c−) ± (m2 + 1)(c+ + c−)c1

F±
2 = 2m′(c2

2 + c+c−) ± (m′ 2 + 1)(c+ + c−)c2

G±
1 = 2m(c2

1 + c+c−) ± (m2 − 1)(c+ + c−)c1

G±
2 = 2m′(c2

2 + c+c−) ± (m′ 2 − 1)(c+ + c−)c2

f ±
1 = 2m(c2

1 − c+c−) ± (m2 + 1)(c+ − c−)c1

f ±
2 = 2m′(c2

2 − c+c−) ± (m′ 2 + 1(c+ − c−)c2

g±
1 = 2m(c2

1 + c+c−) ± (m2 − 1)(c+ − c−)c1

g±
2 = 2m′(c2

2 + c+c−) ± (m′ 2 − 1)(c+ − c−)c2

(A2)

wherec1 = cosθ1, c2 = cosθ2, c± = cosθ±, andm = (εµ1/ε1µ)1/2, m′ = (εµ2/ε2µ)1/2.
The reflection and transmission amplitudes share a common denominator,

D = F+
1 F+

2 − 8c1c2c+c−(m2−1)(m′ 2−1)Z+Z−−f −
1 f −

2 Z2
+−f +

1 f +
2 Z2

−+F−
1 F−

2 Z2
+Z2

− .

(A3)

The reflection amplitudes are given by

Drss = G−
1 F+

2 +8c1c2c+c−(m2+1)(m′ 2−1)Z+Z−−g+
1 f −

2 Z2
+−g−

1 f +
2 Z2

−+G+
1 F−

2 Z2
+Z2

−
−Drpp = G+

1 F+
2 − 8c1c2c+c−(m2 + 1)(m′ 2 − 1)Z+Z− − g−

1 f −
2 Z2

+ (A4)−g+
1 f +

2 Z2
− + G−

1 F−
2 Z2

+Z2
−

Drsp = Drps = −2imc1{(c+ − c−)[F+
2 − F−

2 Z2
+Z2

−] + (c+ + c−)[f −
2 Z2

+ − f +
2 Z2

−]} .

The transmission amplitude numerators are

Dtss = 8m′c1{c+(mc1 + c−)(m′c2 + c−)Z+ + c−(mc1 + c+)(m′c2 + c+)Z−
−c+(mc1 − c−)(m′c2 − c−)Z+Z2

− − c−(mc1 − c+)(m′c2 − c+)Z2
+Z−}

Dtpp = 8m′c1{c+(c1 + mc−)(c2 + m′c−)Z+ + c−(c1 + mc+)(c2 + m′c+)Z−
−c+(c1 − mc−)(c2 − m′c−)Z+Z2

− − c−(c1 − mc+)(c2 − m′c+)Z2
+Z−}

(A5)
Dtsp = 8im′c1{−c+(mc1 + c−)(m′c− + c2)Z+ + c−(mc1 + c+)(m′c+ + c2)Z−

−c+(mc1 − c−)(m′c− − c2)Z+Z2
− + c−(mc1 − c+)(m′c+ − c2)Z

2
+Z−}

Dtps = 8im′c1{c+(c1 + mc−)(m′c2 + c−)Z+ − c−(c1 + mc+)(m′c2 + c+)Z−
−c+(c1 − mc−)(m′c2 − c−)Z+Z2

− + c−(c1 − mc+)(m′c2 − c+)Z+Z2
−} .

Note thatrsp, rps and all the transmission amplitudes go to zero at grazing incidence, where
c1 → 0. The conservation laws (20) are satisfied for a non-absorbing layer.
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The formulae simplify considerably when the chiral layer lies between optically identical
media (so thatm′ = m and c2 = c1). Then F±

1 = F±
2 , . . . , g±

1 = g±
2 , and the common

denominator factors

D → (F+ + f −Z+ + f +Z− + F−Z+Z−)(F+ − f −Z+ − f +Z− + F−Z+Z−) (A6)

whereF+ is the common value ofF+
1 and F+

2 , etc. In the expressions for the reflection
and transmission amplitudes we can drop the subscripts 1 and 2 onF±

1 , . . . , g+
2 , and set

m′ = m andc2 = c1. The ss and pp transmission amplitude numerators simplify to

Dtss → 8mc1{c+Z+[(mc1+c−)2−(mc1−c−)2Z2
−]+c−Z−[(mc1+c+)2−(mc1−c+)2Z2

+]}
(A7)

Dtpp → 8mc1{c+Z+[(c1+mc−)2−(c1−mc−)2Z2
−]+c−Z−[(c1+mc+)2−(c1−mc+)2Z2

+]} .

Whenn2 < n1, c2 = cosθ2 is imaginary for angle of incidence greater than the critical
angleθc = arcsin(n2/n1). At the critical anglec2 = 0, and the reflection amplitude formulae
simplify to

D0rss = G−
1 + g+

1 Z2
+ + g−

1 Z2
− + G+

1 Z2
+Z2

−
− D0rpp = G+

1 + g−
1 Z2

+ + g+
1 Z2

− + G−
1 Z2

+Z2
−

D0rsp = D0rps = −2imc1{(c+ − c−)(1 − Z2
+Z2

−) − (c+ + c−)(Z2
+ − Z2

−)}
D0 = F+

1 + f −
1 Z2

+ + f +
1 Z2

− + F−
1 Z2

+Z2
− .

(A8)

These reflection amplitudes satisfy the energy conservation law

|rss|2 + |rsp|2 = 1 |rpp|2 + |rps|2 = 1 (A9)

because light of either s or p polarization is totally reflected at the critical angle. (The same
conservation law is satisfied whenθ1 > θc: no energy propagates into the substrate when
the angle of incidence exceeds the critical angle.)
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