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Abstract. The optical properties of a homogeneous isotropic layer on an anisotropic 
uniaxial nystal are characterized by four reflection amplitudes (rss, rip, rpp, rpr) and 
four transmission amplitudes (t.., tse,  tpo ,  tp.). We give analytic expressions for these 
amplitudes. Some recent experiments relating lo h e  geophysically imporiant phenomenon 
of the surface melting of ice below O T  are discussed. ' n e  wenk anisotropy of ice is 
amplified a hundredfold by index marching (the refractive indices of ice and water are 
not wry different), but it is still qualitatively correct Io interpret the experiments by 
assuming ice to be irotropic. An appendix gives the Ilieory of what is measured in 
polaliulion modulalion ellipsometry when anisotmpy is present, 2nd another appendk 
discusses the enhancement of anisotropy [y lefrnctive index matching. 

1. Introduction 

The optical properties of a homogeneous isotropic layer on an isotropic substrate 
are well known (see for example Born and Wolf (1965), section 1.6.4, or Lekner 
(1987), section 2-4). They may be characterized by two reflection amplitudes rs and 
rpI and two transmission amplitudes 1, and t,. When the isotropic layer rests on an 
anisotropic substrate, the currently available 4 x 4 matrix method (see, for example, 
Wohler ef a1 (1988) or Eidner et a1 (1989) for recent work and further references) may 
be used to evaluate numerically the four reflection amplitudes vSs, P~,,, rPp, rpe and 
the four transmission amplitudes t,,, t,,, t,,, In two recent papers (Lekncr 1991, 
1992a) the author has given analytic expressions for the optical coeflicients of uniaxial 
crystals, and of crystal plates illuminated at normal incidence. Here we extend these 
results to give analytic expressions for the optical coefficients of an isotropic layer on 
a uniaxial crystal substrate. 

The isotropic layer has dielectric constant E = n2, and is bounded by the medium 
of incidence (c1 = nt)  and the uniaxial substrate (eo = n:, E, = n:), at I_ - - 0 and 
z = Az respectively. The plane of incidence is taken as the ZI plane. ?he direction 
cosines of the optic axis of the uniaxial substrate with respect to the x, and 2 axes 
are a, p and y; thus e = (a, p, y)  is the unit vector giving the direction of the optic 
axis. 

We consider reflection and transmission of a plane monochromatic wave of an- 
gular frequency w, incident from medium 1 at angle 0, to the normal. In the three 
media (medium of incidence, the layer, and the anisotropic substrate), all components 

0953-8984/9~16569+18$04.50 @ 1992 IOP Publishing U d  6569 



6570 J Lekner 

of the electric and magnetic vectors will have dependence on I and t contained in 
the factor e x p i ( K x  - ut), where 

K = n , ( u / e )  sin 0, = n ( u / c )  sin 0 (1) 

is the r a m p o n e n t  of all the WavevectoTs, and 0 is the angle to the normal in the 
isotropic layer. The ycomponent of all the wavevectors is zero, by choice of the 
plane of incidence as the zx-plane, and by the invariance of the system with respect 
to a y-translation. The r a m p o n e n t  of the wavevector of the incidcnt wave is 

q, = n , ( u / c ) c o s 0 ,  (2) 

and it is -qi for the reflected wave, and fq for the WO plane waves in the layer, 
where 

(3) (12 = EW2f.2 - IC2  = kZ - IC 2 . 

Within the crystal substrate two plane waves can propagate. For uniaxial crystals 
these are hown as the ordinmy and amordinary waves, and have zcomponents of 
their Wavevectors given by 

(4) 2 - E J J C 2  - 1p 3 k? - 

qe = - aylC A€/€, (5) 

-2 q - - ~ , [ ~ , ~ , ~ ~ / c ~ - l i ~ ( ~ ~ - p ~ a ~ ) ] / ~ ~ .  

% -  0 

for the ordinary wave, and 

where 

A€ = = nz = c,+Y2nc 7 7  

(6) 

The electric field wctor of the ordinary wave is 

E = No(-Pq,,,aq0 - TIcw,OJc)  (7) 

and is perpendicular to the optic axis and to the ordinary wavevector (A', 0, q,). The 
electric field of the extraordinary wave is 

E , =  N , ( o r q ~ - - y q ~ l C , p k ~ , . y ( k , 2 - q ~ ) - o r q ~ l i ) .  (8) 

No and Ne are normalization factors: we will normalize E, and E, to unit amplitude, 
so that lE.J2 = 1 = IE,IZ. 

The plan of the remainder of this paper is as follows. In section 2 we wi t e  
down the equations determining the reflection and transmission amplitudes, and a 
2 x 2 matrix method for their solution. In section 3 we consider the normal-incidence 
case, for which the system is characterized by just two reflection and two transmission 
amplitudes, which take a particularly simple form. In section 4 we consider general 
oblique incidence. These results are applied in section 5 to experiments on the surface 
melting of ice. In the appendices we give a theoretical analysis of what is measured 
by polarization modulation ellipsometry, and of the enhancement of the anisotropy 
by index matching between the overlayer and the substrate. 
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2. The equations for the optical coeficients 

An incoming plane wave may be taken as a superposition of s- and p-polarized waves 
with appropriate amplitudes and phases. The s and p polarizations have E, respec- 
tively perpendicular and parallel to the plane of incidence (here the zr-plane). We 
consider the reflection and transmission of pure s and pure p incident polarizations, 
starting with the s polarization. The electric field components in the s-polarized case, 
with the common factor e x p  i (  I C 2  - ut) suppressed, are 

incident (0, eiqlz, 0) 

reflected 

within layer 

e-iqlz(rs,, cos e,, rrsr rsp sin e , )  

(cos B(ae'" + k i q Z ) ,  Ae'q* + Be-'q', - sin B(ae'q" - be- " " ) )  

within crystal t , ,E,e'g*(z-Az) + tseEeeiq-(z-Az). (9) 

The wavefunction within the layer has the property that the downward-propagating 
part has its Poynting vector (proportional to E x B )  along ( K ,  0, q),  while the 
upward-propagating part has E x  B along (IC, 0, -q),  with proportionality constants 
A' + a2 and B? + b2, respectively. These results follow on using the identity 

q cos 6 + IC sin 6 = n w / c  = k (10) 

which comes from IC = ks in  8, q = k cos 0. 
The wavefunctions (9) contain the eight unknowns rss, rsp, A, B, a, 6, t,,, 

is,, and the eight conditions determining them follow from the continuity of the 
tangential components of E and B at z = 0 and at  z = A+. The continuity of E,, 
E,, aE, /az ,  and BE,/az-  iKE, at r = 0 gives the equations 

1 t rss = A + B VSP cos e, = (a + b )  cos e 
(11) 

qi(1 - r'3s) = q ( A -  B )  - k,r,,  = k(a  - 6). 

The same conditions at r = A r ,  with the notation 

('2) A' = AeiqAz = Be- iqAz  = 6' = be-iqAi 

and with E = (X, Y, Z )  for the ordinary and extraordinary modes, give 

k(Q'- 6') = tso(qox,, - ICz,) f t,,(q,X', - ICze). 
We will give 'WO solutions of this system of eight equations: a 2 x 2 matrix method 

modelled on Lekner (1992a) which will prove particularly simple at normal incidence, 
and an algebraic method that puts the solutions into a more physically revealing form 
at general incidence. The 2 x 2 matrix method is given here. We define the vectors 

(14) 
A + B  A - B  

a - b  
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and the diagonal cosine matrices 

c l =  (: co:Ol) c =  ( I  o case O ) 
Then the equation set (11) can be written as 

f C-'C,T = s (q l / q ) (u  - CC;*+) = d. (16) 
For the set of equations resulting from the continuity of the tangential components 
of E and B at z = Ar, we define the vectors 

and the matrices 

Then the equation set (13) can be written as 

Cs' = Mt qC-'d' = Nt. (19) 
The vectors s' and d' are linear combinations of s and d 

s' = cosq A z s  + i s in  q A i d  d' = cas q A z d +  isin q Azs. (20) 

The equations (19) give 

t = M-ICs' = qN-'C-'d'. (21) 

On substituting for a' and d' using (20) and (16), we obtain a linear equation for T 
in terms of U which has the form Vr = Ww, with 

V = N-'(cq,C;' - isqC-'C,) + q-'M-'(cqC, - isq,CzC;') 

( q1 + isq) - q - ' W ' c ( c q +  isq,)  w =  N-IC-1 (22) 

where c = cos q A Z  and s = sin q Az. Thus 

c = W ' W u  3 Ru (23) 

may be obtained by inversion and multiplication of 2 x 2 matrices. Explicit and 
beautifully simple results follow from ttiis formulation at normal incidence, as will 
be demonstrated in the next section, but we must first discuss the case of incident p 
polarization. 

incident e'q'"(cos 0 , ,0 ,  -sin 0,) 

reflected e-tq3z (r,,,, cos Ql , , PPI, sin 0,) 

within layer 

within crystal 

For p-polarized incident light, the electric field components are 

(cos O(aeiqz + be-""), Ae"" + Be-"", - sin 0( ueiqz - be-""))  

t E ~ eiqd2-As) + t p e ~ , e i 9 4 z - A 2 ) .  (24) 
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The continuity of E,, E=, a E , / d z ,  dE,/ar - iKEZ at z = 0 implies 

(1 + r,,,,) cos 0, = ( U  + b )  cos f3 rPs = A + B 

- qlrps = q ( A -  8)  k l ( l  - rPp) = k ( n -  b ) .  (25) 

At z = A r  the boundary conditions give the same equations (13) as for an incoming 
s polarization, with tp, replacing t ,  and t,, replacing t,. A 2 x 2 matrix solution is 
as follows: we introduce the vectors 

with all other Vectors and matrices defined as above. Then the first and second pairs 
in (25) read 

5 = C-'C,(v t 1.') d = qIq-'CC;'(v - T') .  (27) 

The remainder of the solution proceeds as before, with the rcsult 

P' = V-'W'v E R'7, (28) 

where V is as defined in (ZZ), and 

W' = N-'(cq,C;' + isqC-*C,) - q-'M-'(cqC, + isq,C2C;1). (29) 

Equations (23) and (28) give the reflection amplitudes in terms of the 2 x 2 matrices 
R and R'. The transmission amplitudes can be found in terms of the same two 
matrices: we obtain 

t = y-'M-'[cq(C+ C,R) + isql(C - C2C;'R)]u 

t' = q-'M-'[cq(C, + C,R') f isql(C2C;' - C2C;'R')]t,. 
(30) 

We shall next use these results to obtain simple formulae for the reflection and 
transmission amplitudes at normal incidence. 

3. Normal incidence 

At normal incidence (IC- - 0) we have 

'11 -t k.1 q + I ;  q0 -t Lo qe + I;, = k0ne/n7.  (31) 

The ordinary and extraordinary modes within the uniaxial crystal also simplify (Lekner 
(1991), section 5.4): 

E,  * N,(-P,a,O) E , -  N,(~,P,Y(~ (32) 

The cosine matrices, defined in (15). reduce to the identity matrix. The M matrix 
and the N matrix, defined in (IS), can be witten as 
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We then find that the matrix R in T = R u  simplifies to 

where 

and the 

k(k, - ko) cos k A z  + i(k2 - klk.,) sin 12 A Z  
k(k, + k ~ ) c o s k A z - i ( k z + k 1 k , ) s i n k A z  

r,, = 

(34) 

(35) 

rmula for re is obtained by replacing k,, hy ke in (3 We recognize 
ro and re as the normal-incidence reflection amplitudes for an isotropic layer on 
isompic substrates of refractive index no and n,n,/n7, respectively (see Lekner 
(1987), equation (252)). 

Thus 

rss = (o2r0+ p 2 r e ) / ( a z + p 2 )  = r o c o s z 4 +  r,sin24 

rsp = a p ( r , - r o ) / ( a z + P Z )  =(ro-re)cosq+sin4  
(36) 

where 4 is the angle between the E, direction and the incident Rcld E,. For p 
polarization incident, the matrix R' is equal to R as given in (34) for normal incidence. 
Thus 

= ap(r, - r , ) / (a2  + 8') = (ro - P,)  cos &sill 4 PP" 

TPP - - (a2re + p2r , ) / (a2  + 8') = ve cos2 4 + rosin2 4. 

In the limit of zero thickness of the layer ( A z  -+ 0), these formulae reduce to the 
reflection amplitudes for a bare crystal, as given in Lekner (1991). equations (71) to 

Just as r and T I ,  which have as components the four rellection amplitudes rss, 
rSp, rps, rppr can be expressed (at normal incidence) in terms of the two amplitudes 
r0 and re, so can t and t', which have the transmission amplitudes t,,, tse, $,,, 
t,, as components, be expressed in terms of 1, and t,, which are the transmission 
amplitudes for a layer of thickness A z  on isotropic substrates of indices no and 

to  = k - ' [ k ( l  + r,) cos k A r  + ik,(  1 - yo) siii k A-] 

(37) 

(73). 

n,n,ln7: 

= 2 k 1 k / [ k ( k 1  + k,) cos k A z  - i(k2 + klko) sin 12 A t ]  (38) 

( t ,  is obtained by replacing ko with ke in (38)). We find that t and t' can be witten 
as 

t = T u  t ' = T v  (39) 

where 
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Thus 

t,, = aN;' t , / (a '  t 0') t,, = P N ; ' t , / ( a 2  t 0') 
(41) 

t,, = -PN;' t , / (a'  + 0') t , ,  = a N ; ' t , / ( a '  + Pz). 
In the limit of zero thickness of the layer, the formulae (41) reduce to the direct 
transmission amplitudes into a uniaxial crystal, as given in Lekner (1991), equations 
(78) and (79). 

Since the reflection and transmission properties at normal incidence are entirely 
determined by the amplitudes r,, re and to,  t , ,  we will note the behaviour of the 
latter as a function of the layer thickness Az. Let 

fl = (k, - k ) / ( k ,  t k) f, = (k - k o ) / ( k  + ko) f, = (k - ke j / (k  + k e )  
(42) 

be the Fresnel s-wave reflection amplitudes at the z = 0 and z = A z  faces of the 
isotropic layer, in the latter case for substrates of refractive index no and n,n,/n7. 
Then ro and re can be written as 

r, = (fl t foZ)/(l.+ f 1 f A  re = (fl t f ,z)/( l  + f 1 f A  (43) 

where Z = exp(2ikAz).  As Az increases, Z moves on the unit circle in the 
complex plane, and since ro and re are related to Z by a bilinear transformation, 
they also move on circles in the complex plane. The period in Az of all the motions 
is n/k. (If the isotropic layer were absorbing, the motions would not be periodic, 
but spirals converging onto the origin.) The properties of the loci of yo, re and to,  
t,, are as follows (cf Lekner (1992a), sections 4 and 5): when all the media are 
non-absorbing, the circles r,, and re are symmetric with respect to reflection in the 
real axis. Thus their radii and centres may be found from the intersections with the 
real axis at Z = +1. At Z = +1, ro and re take the zero-thickness values 

r,i = (k, - k O ) / ( k 1  + ko) 1.: = (12, - k e ) / ( k l  + ke) (44) 

while at Z = -1, ro becomes 

= (fl - fo)/(l - fife) = ( k , k o  - k')/(klko t k 2 )  (45) 

(we omit the e versions for the remainder of this section-they are obtained by 
replacing ko by ke in the formulae). Thus the centre and radius of the locus of .ro 
are given by 

CO = (7-2 t T i ) / 2  

t ,  = (1  + f l ) ( l  + f,)C/(1 + fif,C2) 

a, = (T+ 0 - r 0 ) P .  - (46) 

The transmission amplitude to can be written as 

(47) 

where C = exp(ikAz).  As Az increases, to  moves on a quartic in the complex 
plane, repeating with period 2 n / k  in Az. The equation of the quartic is found by 
eliminating { from (47), using CC' = 1. If we write to = X + iY,  the quartic is 

( X 2  .+ Y')2 = (t,+X')' + (tbY)' (48) 
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where kt$ is the value of to at C = rtl, and *it; is the value at C = fi: 

t: = 2 k l / ( k l  t k,) t b  = 2 k l k / ( k 1 k ,  t k'). (49) 

The reciprocal t;' moves on an ellipse, with semiaxcs ( f $ ) - I  and ( t i ) ? ' .  These 
results are closely analogous to those for a uniaxial crystal plate upon an isotropic 
substrate, discussed in L e h e r  (1992a). 

4 Oblique incidence 

Although the 3 x 3  matrix solution gives beautifully simpie results at normal incidence, 
I have found it more fruitful to work directly with the original boundary condition 
equations (11) and (13) at general incidence. Considcr the equations expressing the 
continuity of E, and aE,/Bz at i = 0, namely 

1 t rsr = A + B 1 - T= = q ; ' q ( A  - E ) .  (50) 

These may be solved for vSs in terms of B / A :  

where fl = ( q l  - q ) / ( q ,  t q )  is the oblique incidence Fresnel s-wave reflection 
amplitude for the boundary between the medium of incidcnce and the layer. The 
continuity of E, and aE,/Br at A; gives a pair of equations (the first and third of 
(13)) which may be solved for BIA:  

Thus the expression for rss may be put into the form of the s-wave reflection ampli- 
tude rs for a layer on an isotropic substrate (medium 2): 

1 4  = (fl t f ? Z ) / ( l +  f I f?Z)  1;$ = (f1 + g Z ) / ( l +  flgz) (53) 

where f i  = (q - q 2 ) / ( q  + q?) and Z = exp(2iqAz) (compare Lekner (1987), 
equation (2.58)). Note that g + f z  when the substrate becomes isotropic (eo, ce - 
E*) ,  and then vss + r,. 

To evaluate g we need the ratio of transmission amplitudes, T~ = tsJts,,. From 
the WO equations involving the coefficients a and 1, in (11) we find 

~ / ~ = ( Q I - Q ) / ( Q I  + Q)=-FI (54) 

whcre Q1 = q , / E 1 ,  Q = q / e  and Fl is the Fresnel p-wave reflection amplitude at 
the z = 0 boundary of the layer. From the second and third equations of (13) we 
find 

( a / b ) Z  = a'/b'= (S,+T~S,)/(D, +r,D,) (55) 
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where 

So = ( kZ + qq,)X,  - q ICZ, Do = (kz- qq,,)Xo + q K 2 ,  

with Se and D, similarly defined. From (54) and (55) we obtain r9 = tse/ tso:  

(56) 

(57) T s = -  (So + D,FlZ)/(S, + DeF1Z) 

and hence g in terms of known quantities: 

g = [ ( r ! - q o ) Y , + ( q -  e ) Y , T s l / [ ( r l f ~ o ) Y , +  ( q + q e ) Y e 7 J .  (58) 

Just as rSs can be put into the form that r, takes for an isotropic substrate, so 
rpp can be put into the form that rP  takes in that case: 

rp = (Fl + F z Z ) / ( l  + F I F z Z )  rpp = ( F ,  t G Z ) / ( 1  + F,C;Z) (59) 

where Fl and F2 are the Fresnel reflection amplitudes for p waves at the z = 0 and 
z = A z  interfaces. (F1 was defined in (54) and Fz = (Qz - Q)/(Qz + Q) where 
Qz = q z / e z ,  eZ being the dielectric constant of the isotropic substrate.) The form 
(59) for rPp follows from the second and fourth equations (25), with 

G = b'/n' = ( b / n ) Z - '  = (Do + r p D e ) / ( S 0  + r,>Se). (60) 

From the other p-wave equations we find the value of rP = t p e / f P o :  

T,, = - u 4 +  90 + ( r l -  ~o)fizlY,l/I[q+ 9, + (rl- 9e)flzl):l (61) 

having used the fact that 

B / A  = - f;' = g'Z (6-4 

where g' has the same form as g in (SS), with rP replacing rS. For an isotropic 
substrate we have G - Fz, and thus rPp -+ r,,. 

E y r e  1 shows the paths of rss, rpp, rsp and rPs in the complex plane, for 
fixed angle of incidence and variable thickness A z  of the isotropic layer. The paths 
repeat after thickness ? r / q ,  since all the reflection amplitudes are [unctions of the 
thickness via Z = exp(2iqAz).  As the thickness increases, Z moves on the unit 
circle in the complex plane. The loci are close to circles, which indicates that the 
functions g ( Z )  and G ( Z )  are nearly independent of the layer thickness. (For an 
isotropic substrate g - fz  and G + Fz, and rSs 3 rs = ( f l  t f zZ) / ( l  + fifzZ), 
rpp - rp = (Fl + F z Z ) / ( l  t F I F , Z ) ,  rs,, and rps -, 0; the rs and rp loci are 
then exact circles.) Note that the rPp locus moves across the origin as the angle of 
incidence increases. This implies that there are two angles at which rpp can be zero: 
the Brewster angle of the substrate, for which Fl + G(1) = 0, and another angle at 
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30° 
Im 

Re 

60° 
Im 

-. 1 :Re SS 

Figure 1. Loci of T,~, rpp, rAp and rps in the complcx plane, lor variable thickness 
A=  of the isotropic layer. rile cu~ves are drawn for air/water/calcite at 30' and 60' 
angle of incidence. The calcite optic axis is taken to make equal angles with LE, y and 
z axes (a, p and -y all take Ihe value I/&), "lie refractive indices (at 633 nm) are 
9% = 1.3327, no = 1.655, n. = 1.485. rile paths repeat with period l r / q  in Ar. 
nis  is 256 nm at 30' and 312 nm at M' for 673 nm light incident on water from air. 
Zero-thickneu MIUS are indicated ly a dot; arrows indicate the direction of increasing 
thickness. 

which Fl - G(-I) = 0. The corresponding values that  A; must have for pPp to be 
zero are integer x ' /q  and odd integer x?r/?q, respectively. 

The cross-reflection amplitudes rsp and pPs may be obtained from the boundary 
conditions on using the values for rss, rs and T , , ~ ,  rp given above. We find, after 
some reduction, 
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When 2 = exp(2 iqAz)  is unity, these formulae reduce to the bare crystal values 
(denoted by a bar in this paper) 

Fsp =2P(aq0+  r K ) ( q , - q , ) ~ i ~ ~ N , N , l D  

Fp = . L P ( a q , - y l ( ) ( q , - q ~ ) ~ ] ~ ~ N , N , / D  
(65) 

where D is the common denominator of the reflection and transmission amplitudes 
p k n e r  (1991), formulae (35) and (47)). Similarly ras and rpp reduce to Fss and 
F as given by Lekner (1991), equations (34) and (42), when Z = 1. At normal 
inadence the formulae of the previous section are regained. 

It is interesting that the ratio of the s to p and p to s reflection amplitudes is not 
affected by the presence of the isotropic layer on the crystal. This follows from the 
identity 

PP. 

(1 + flyZ)D,, = (1 + F,GZ)D,,. (66) 

Thus the two complex numbers rs, and rps have a real ratio (and so lie on a mmmon 
radius in the complex plane). From (66) and (63) we have that 

Tsp/Tp. = (w,, + -rW/(wo - Y W  (67) 

which is the Same ratio that is obtained on reflection from the bare crystal. Note 
that rsp = rpr at normal incidence, and also when the optic axis lies in the reflecting 
plane ( y  = 0). 

At grazing incidence q, and Q1 tend to zero. Thus f, = ( q l - q ) / ( q ,  + q )  - -1 
and F, = (Q - Q1)/(Q + Q1) + 1. It follows from (53) and (59) that r- - -1 
and rpp + 1 at gazing incidence. (For isotropic mcdia it is a general theorem that 
rs + -1 and T - ~  -+ 1: see Lekner (1957), section 2-3.) From (63) we see that the 
cross-reflection amplitudes rsp and T,. both tend to zero as 0 ,  + 90 '. 

At normal incidence vSp = ypr, but the result that r,, = 1; at 8, = 0'  for 
isotropic media does not generalize to r,,, = rss: see section 3. 

The transmission amplitudes are obtained in a similar way to the reflection am- 
plitudes. We will just state the results: 

is, = -2q(S, + D,Fl Z)A,e"J *' /DSp t,, = 2q( So + Do Fl Z)A,e" / D,, 
(68) 

where A, is the value of the coefficient A in (11) and (13), 

As = 2qi/[(qi + q) ( l  + f19Z)l. (69) 

The mansmission amplitudes for the p wave incident are 

tpo = 2 k l d q + q e + ( q -  qe)flzlY,A,e'9A'/D,,, 

t , ,  = - 2 4 d 9  + 'I, + ('I - Cr,)S1 z1yOA,,e'9 A= IDps  

where 

A, = 2Ql/[(Qi + Q)1(1+ FiGZ)1. 
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5. Application to experiments on the premelling of ice 

The premelting of ice, that is, the existence of a layer ol water on the surface of ice 
below OOC, has considerable geophysical importance. The compaction of snow, frost 
heave, rock fracture, water transport at subaro temperatures, and charge transfer 
in the electrification of thunder clouds are some of the topics discussed in a recent 
review (Dash 1989). We will discuss some recent optical studies of the surface of 
melting of ice. We begin with the Elbaum rcflcctivity experiment (Elbaum 1991, 
Elbaum el a/ 1992), since this is simpler to analyse than the ellipsometry work to be 
discussed later in this section. 

Elbaum interpreted his data by treating the ice as an isotropic substrate. He 
measured the p to p reflected intensity, R,, = l~,,/~, at the Brcwster angle, which 
was obtained by locating the minimum in Rpp at temperatures well below O T ,  
when no water layer covercd his ice crystals. As the temperature was raised to the 
melting point, an increased reflectivity was intcrpreted as being caused by a growing 
water layer, as follows. On the isotropic substrate model, the reflection amplitude is 
approximated by the first equation of (59): 

At the Brewster angle for the substrate, 
Fl = -Fz = F,,, SO 

F2 = Q?-V 
Q ? + Q  

Z = rxp (2 iqAz) .  

v,(O,,) = Fb(l - Z)/(1 - F,Z) 
R,(O,) = 4 F; sin' qb A;/( 1 - 2c cos 2qb Az + F,) 

where q, is the value taken by q a t  the substrate Brcwster angle 0 ,  = R ~ I I ( C ~ / E , ) ~ / ~ :  

(73) 

q,, = ( . . / . )[e - e l e 2 / ( e ,  + e2)11/?.  (74) 

We see that (73) gives a quadratic dependence of the reflectance on the thickness 
A z  of the water layer, provided q,Az  < 1. This is in accord with the general 
theory of reflection hy thin layers on isotropic substrates, which gives (Lekner (1987), 
chapter 3) 

Rp(%) = Kw/c)II12/[4(cI + c ? ) l  (75) 

as the leading term in the p reflectance at the Brcwster angle, with the integral 
invariant I ,  taking the value 

I ,  = A z ( c l  - C ) ( . - F ~ ) / ~  (76) 

for a uniform layer (Lekner (1987), rable 3-1). 

for ice at 3OC and 673 nm: 
'Ib estimate R,(6',) we will use the retractive indices of Furukawa ef a/ (1987) 

no = 1.307 G3 ne = 1.309 03 (77) 
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and n = 1.3327 for the water layer (this is the measured value at O°C and 633 nm). 
We need z2, the dielectric constant of the effectively isotropic substrate, and we obtain 
this from E, = rt: and E, = n," by using the formula 

€2 = ( 2 6 ,  + 4 / 3 .  (753) 

Then (73) gives R,(Bb) 2 7.3 x lo-' when A L  = 10 nm. Although this is a small 
reflectivity, it is well above Elbaum's noise level. Using the isotropic suhstrate model, 
Elbaum interpreted his rellectivity data as indicating premelting on the basal face of 
ice crystals, with Az 

We now consider the effect of anistropy of the substrate on the p to p reflectivity. 
Could the one part per thousand anistropy produce any measurable effect? The 
surprising answer is that it does, as we shall now see. The T~~ reflection amplitude 
is given in (59). We see that it is zero for the base crystalline substrate when 
G(Z = 1 )  = -Fl ,  and this equation defines the Brewster 0, angle for the crystal, 
which now depends on the crystal orientation. At this angle Fl = F,, and for thin 
layers 

10 nm at about 0.5'C. 

vpp + [(Gb - FB)/(l - F;)]Ziq, A -  G' = (8G/82),,, (79) 

to first order in the layer thickness. From (73) we see that the analogous formula 
for an isotropic substrate has G' missing. The derivative of C( 2 )  at Z = 1 can be 
found ffom the defining relations (GO) and (GI): 

We see that it is zero in the isotropic limit, and zero also when 13 = 0 or a& = 
f y K .  Numerically we have found it to be small compared to FB when iLe is the 
substrate. This does not mean that anisotropy has no effect: since OB varies with 
clystal orientation, so do FB and (1,. Upper and lower hounds on 0 ,  have been 
found (Lekner 1992b); these occur when a2 = I (optic axis parallel to 2, as for 
example in reflection from a prism face of ice with the optic axis in the plane of 
incidence), and yz = 1 (optic axis parallel to +, as in reflection from a basal face of 
ice). The formulae giving 8, for a2 = 1 and Cor y 2  = 1 are, respectively, 

For ice the Brewster angle upper and lower bounds are 52.66' and 52.55', a variation 
of only 0.1'. However, the multiplier of A r  in (79) increases by a factor of 1.25 
in going from the a2 = 1 to the y2 = 1 reflection. This enormous amplification, 
of parts per thousand to one in four, is due to index matching: the refractive indcx 
of the water layer is close to both indices of ice. 'lb see how it works, consider the 
isotropic case again. The value of F,, in (73) is 

& = ( v - 1 ) / ( T + 1 )  T = ~ ( E l + ( ? ) / E - E l E ? / € ? .  (82) 

This is zero (and 7. = 1) when E is equal to c l  or c2 .  In the air-water-ice case E is 
close to e2, and T is close to unity (T N 0.902). Thus the two parts per thousand 
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difference provided by anisotropy in the effective value of c2 is to be compared to 
eight parts per thousand in lr - 1 I: hence the one in four change in the multiplier 
of Az. Closer index matching would give still greater effect to anisotropy, but at the 
expense of a decrease in reflectivity at the Brewster angle. A more detailed discussion 
of anisotropy enhancement by index matching is given in appendix B. 

For reflection from the basal plane there is azimuthal symmetry, and the re- 
flectance is independent of the plane of incidence. For thin layers the reflectivity at 
the Brewster angle (given by the second formula in (81)) has a form like (75) with 

1, = A.z { (CO% - &/(% - €1) - [ ( e ,  - Cl)/(% - .1)1. - e,c,/e) ' (83) 

Details may be found in section 7-3 of Lekncr (19S7), which also t a k a  into account 
possible layer anisotropy. 

Elbaum observed surface melting only on the basal face. The above factor of 
1.25 applies to the greatest possible change in the factor multiplying A; between the 
prism and the basal faces. For the basal face, R,,(QB) with OB given by the second 
part of (81) is 8.4 x for isotropic 
ice using the c2 found from (78). This 20% difference in rcllectance implies that 
Elbaum's thickness estimates are likely to be about 10% high. 

We now turn to the ellipsometric experiments, which have the advantage that 
the ellipsometric signal is proportional to the thickness of the layer resting on the 
substrate, as opposed to the R,, reflectivity at the substrate Brcwstcr angle, which 
we saw is proportional to the square of the small quantity w A;/c. What polariza- 
tion modulation ellipsometry measures in the presence of anisotropy is discussed in 
appendix A. In the absence of this theory, the experiments of Beaglchole and Nason 
(1980) and of Furukawa cf al (1987) on the premelting of ice had been analysed by 
assuming ice to be isotropic. In the isotropic use ,  polarization modulation ellipsom- 
etry measures the imaginary part of r, , /vs at the angle where the real part o l  vP/rs 
is zero. (This follows also as a limit &om the anisotropic use:  sec the discussion 
following (All) in appendix A.) For thin layers we have (see, for example, Lekner 
(1987), chapter 3) 

for A2 = 10 nm, compared to 7.3 x 

r p / r s  = j p / j s  - 2 i Q l f ~ p 2 ~ l / [ ( 4 ? l  + Q2)2.1f?l  + . . . (84) 

where fp  and fs are the Fresnel reflection amplitudes for the bare substrate, and f ,  
is given by (76). 'RI the lowest order in wAz/c ,  the real part of v P / 7 * $  is zero at the 
substate Brewster angle, 0, = a tn (n? /n , ) .  At this angle 

How much error in the deduced thickness of the water layer is caused by assuming ice 
to be isotropic? Since the difference between the ordinary and extraordinary indices 
of ice is about one part in a thousand, the error might be expected to be. of this 
order. In fact we found from (All) that the factor multiplying A z  varied by 25% 
as the crystal substrate took on differcnt orientations. This was the total variation, 
with values bcing calculated that were both Iargcr and smaller than predicted by 
(85). As in the reflectivity use ,  a reason for the amplification is index matching: the 
refractive index of water is close to both refractive indices of ice. (For more dctail, 
see appendix B.) In addition to index matching, there is the presence of the s to p and 
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p to s reflection amplitudes: instead of rp/rs, polarization modulation ellipsometry 
now measures (rpp f Tps)/(rss f rsp), and (SS) becomes only a guide to order of 
magnitude. Nevertheless, for water on ice the analysis assuming isotropy is correct to 
within about +lo%. 

Appendix A. Polarization modulation ellipsometry of anisotropic media 

Jasperson and Schnatterly (1969) introduced the technique of sinusoidally varying the 
polarization of the incident beam in an ellipsometer, with synchronous detection of 
the intensity modulations. The method is currently extensively used by Beaglehole 
and collaborators. This appendix gives the theory of what is measured by polarization 
modulation ellipsometry when anisotropy is present. In the Beaglehole (1980) ellip- 
someter, the incident beam passes through a polarizer which gives equal amplitudes 
of s and p polarization, and then through a birefringent modulator in which the s and 
p waves get a @eriodically modulated) phase shift rclative to each other. The beam 
then reflecw from the sample, and passes through an analyser to the detector. The 
analyser is cycled through two positions, parallel and perpendicular to the polarizer 
direction. The amplitudes of the p- and s-polarized waves after reflection are given 
bY 

Ep = rp,, Eh + rSp E: E, = EL + rsE EA (A') 

where EL and E: arc the amplitudes of the incident waves after passing through the 
polarizer and birefringent modulator. On removing a common factor, these can be 
written as 1 and ei6,  respectively, where 

6 ( t )  = Asin(i2t)  (A-2) 

in which C2/2rr is the frequency of the modulator. After reflection the p and s 
components are thus 

rpp + rspei6 rps + rsei6. (A?) 

lrpp + Tspei6 ~t (ppr + rssei6)1? 

The signal detected after passing through the analyser is thus proportional to 

(A41 

where the two signs correspond to the two positions of the analyser. We will write 
(A4) 

[ u + e i 6 v I 2 =  1uI2+ ~ v ~ 2 + 2 ( ~ , v , + ~ ~ , v i ) c o s 6 - ~ ( i ~ , v i - i ~ i v , ) s i n 6  (As) 

where 

and 'U = U,  + iui, 2 )  = vr + ivi. 
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The terms cos 6 and sin 6 are sinusoidal functions of sinusoidal argument, which 
we may expand using the Jacobi formulae (Watson (1966), section 2.22) 

m 

cos(AsinR1) =J , (A)  t 2 ~ J 2 , ( A ) c o s ( 2 n R t )  

('47) 
n=1 

m 

sin(Asin52l) = 2 JZILt , (A)sin((2n + 1)Rt) .  
,,=U 

It is usual to adjust the voltage on the birefringent modulator so as to make J , ( A )  = 
0 (this requires A U 2.4048 radians or about 138O, for the lowest root of J,). The 
DC component of (As) is then 

DC: 1ti12 + tu[' (AS) 

For any value of the A the R and 'LR components (measured by lock-in amplifiers) 
are 

52: - 4 J 1 ( A ) ( ~ ~ , ~ ,  - 7t,tIr) 252: 4J2(A)(u,u,+ 7 1 , 7 i , ) .  (AS) 

Note that 

7 1 / V  = [U,., + 71,V, - l ( l l , U ,  - 7 1 , V , ) ] / / U 1 2  ('410) 

so the 252 and R signals are proportional to the real and imaginary parts of 

(u/v)* = (rpp * rps)/(rs,,* 'I~) = k(r,,,, *?7,,8)/(rs 'b,,). (Al l )  

In the isotropic case ( u / u ) *  + +r,,/rS, and the Beaglehole measurements are 
of Im(rp/rs)  at the ellipsometric Brewster angle where Re(r,/r,) = 0. In the 
anisotropic case one may (for example) deline the ellipsometric Brewster angle by 
the zero of the difference of the (2S2/DC), signals. 

Appendix B. Enhancement of anisotropy hy index matching 

We consider the p to p reflection first. The dominant factor in r,,p for thin layers is, 
from (79), 

F B = [ ( Q - Q I ) / ( Q ~  Q l ) ] o B ~ ( R - l ) / ( R t  1). (B1) 

F b = ( r - l ) / ( r + I )  I . ? = ( E , ~ C ~ ) / ~ - E ~ F ? / C ~ .  032) 

For an isotropic substrate the corresponding factor is 

The ratio R = (Q/Q1)Bs depends~on the Brewster angle, which varies beween the 
extremes given in (81). At any angle 

R2 = [ E  - ( c Z ~ / W ) * ] / [ < ~  - ( ~ K / w ) * ] F : / F ' .  (B3) 
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For a* = 1 (optic axis parallel to I), we have 

( C K B / W ) 2  = E I E o ( E , -  C 1 ) / ( C , E ,  - e : )  (B4) 

The change in FB between the I and z orientations of the optic axis of the substrate 
is 

AF, = FB(a2 = 1) - FB(y2 = 1) 
= ( E  - + C z ) A E / [ < 2 ( < 2  - E , ) V ( T  + l)’] + ~ ( A E ) ’ .  (B8) 

Thus the fractional change in the multiplier of Ai in the reflcction amplitude rpp is 
approximately 

= (€1 + E ~ ) A € / [ ( E Z  - E ] ) ( E ~  - €)VI + ~ ( A E ) ’ .  (B9) 

(The exact change can be found from (79). We have omitted the factor q,( l  - 
GL/F,)/(l - F i ) ;  for water on ice this has small variation compared to that of F,.) 
We see from (B9) that the enhancement of the effect of the anisotropy A E  = € , - E ,  is 
achieved in direct proportion that the dielectric constant E of the overlayer is matched 
to the average dielectric constant c2 = ( 2 e ,  + e e ) / 3  of the crystal substrate. When 
E = c2,  r = 1 and Fb is zero: thus for close matching we obtain a large enhancement 
of anisotropy, at the expense of weak reflectivity. Conversely, if the ratio given in 
(69) is small compared to unity, anisotropy in the substrate can be neglected. For 
air-water-ice the n t io  in (B9) 2 -0.22 (IeCt-hand side -0.21G5, right-hand side 
-0,2167); thus anisotropy is appreciable but not dominant for this system. 

We now briefly discuss the enhancement of anisotropy by index matching in ellip- 
sometric measurement. The reflection amplitude rppp at the substrate Brewster angle 
OB is given by (79). It is of first order in the overlayer thickness, and pure imaginary 
in the thin-film limit. The other reflection amplitudes are Fs, Fbp and F,, (all real), 
plus imaginary parrs that are first order in the layer thickness. For rs,, and rps the 
magnitude of the imaginary part is proportional to the real part (see figure 1). It 
follows from (79) that the R signal (see appendix A) which is proportional to the 
imaginary part of &(rPT & rps) / (rss  i rsp), is approximately &Im( 7%,,p)/Fss, provided 
Fps and F are small III magnitude compared to F,. It  then follows from the ar- 
guments gwen earlier in this appendix that the fractional change in Im(r ) as 8, 
varies between its extremes is given approximately by (B9). Thus the magnitude of 
(B9) also provides a guide to the importance of anisotropy on the R component of 
polarization modulation ellipsometry: if A F , / F ,  is small, anisotropy is unimportant, 
provided also that Fsp and Fps are small in magnitude compared to F,. 

I P  

pp. 
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