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Abslraer. The transmission and reflection properties ofa  homogeneous anisotropic uniaxial 
layer are discussed. The layer may be transparent or absorbing. Analytic expressions are 
given for the elements of a 4 x 4 mode matrix M characterizing such a layer. for any angle 
of incidence and lor arbitrary oiieniation of the optic axis. The reflcctian and transmission 
amplitudes are given in t c m s  ofclcments of a layer matrix L = M P M  ~ I ,  where the diagonal 
phase matrix P has as elements the phase factors for the ordinary and extraordinirry W ~ V C S  

as they traverse the layer in the forward and backward directions. Analytic capressions for 
the reflection and transmission amplitudes are given explicitly for the case when the optic 
anis oi the layer lies in the plane of incidence, whcn thc layer is thin, and whcn the layer 
anisotropy is weak. Application is made to anisotropic antireflection coatings, and to the 
modelling of slightly rough surfaces by anisOlrOpic layers. 

1. Introduction 

In two recent papers ( [I ,  21) the author has given analytic expressions for the optical 
coefficients of uniaxial crystals, and of crystal plates illuminated at normal incidence. 
These results will he extended here to the optical properties of a uniaxial crystal plate, 
hounded by isotropic media of dielectric constants E ,  = n: and c 2  = n:. We will use a 
4 x 4 matrix method, which is not different in fundamentals from that in current use (see 
for example [ 3 ]  for references and discussion of three formulations 14-63). The new 
feature is that all results given here are analytic. 

Light is incident from medium 1 onto a uniaxial layer of thickness Az. For 
mathematical convenience we will take z = 0 and z = Az as the boundary planes of the 
layer. The plane of incidence is taken as the zx plane. The direction cosines of the optic 
axis with respect to the x, y and z axes are a, p and y ;  thus e = (a, {J, y) is the unit vector 
giving the direction of the optic axis. When a plane monochromatic wave of angular 
frequency ai is incident at angle H I  to the normal, all components of the electric and 
magnetic vectors in the medium of incidence, the anisotropic layer and the substrate 
will have x and t dependence contained in the factor exp i(Kx - ut), where 

is the x-component of all the wavevectors, and 0, is the angle to the normal in the 
substrate. The y-component of the wavevectors is zero (by choice of coordinates, and 
translational invariance). The z-component of the wavevector of the incident wave is 
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Figure 1. Reflection geometry far a uniaxial layer (refractive indices n, and n,) resting on 
an isotropic substrate of index ni. The medium of incidence has index fit. and the angle of 
incidence is 8,. The plane of incidence is the 2-x plane, z is the inward normal and e (the 
broken line) is the optic anis of the uniaxial layer. 

q ,  = n ,  -- cos 0, i3 
and it is - q ,  for the reflected wave, and q2 for the transmitted wave, where 

Thus the z-dependence of the incident, reflected and transmitted waves is given by 
exp(iq,z), exp(-iq,z) and exp(iq,z). 

The situation within the crystal layer is more complicated. Let eo = n,' and E ,  = n: 
be the ordinary and extraordinary dielectric constants of the uniaxial layer. There are 
four plane waves that can propagate within this crystalline layer for a given incident 
plane wave exp[i(Kx + q,z - ut)]. All have the exp[i(Kx - ut)] dependence, as stated 
above. The ordinary wave propagating down into the crystal layer has z-dependence 
exp(iq,z), where 

There is a backward (or upward) propagating ordinary wave, with z-dependence 
exp( - iq,z). The corresponding extraordinary plane waves are exp(iq'z), where 

( 5 )  q$ = kq - ayKAE/&, 

with 

AE = E ,  - E 0 E? = E ,  + y2Ac = n: 
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The four plane waves which can propagate in the crystalline layer have electric field 
vectors which depend on K, on the direction cosines a, b, y of the optic axis, and on the 
values of the appropriate z-component of the wavevector, namely &qo and q'. From 
(4) to (6) we see that qo depends on K, while q> depends on 2, p and y ,  as well as on 
ti. The electric field vector of the ordinary wave is given by 

(7) 

for the forward propagating mode. No is a normalization constant. The backward mode 
has the sign of q, reversed. For both modes E, is perpendicular to the optic axis and 
to the appropriate wavevector (ti, 0, +_q,). The electric field vectors of the extraordinary 
waves are given by 

E, = 

E, = N,(-Pq,, aq, - Y K ,  P W  

- ?q,K, pk?, ;tk,2 - d l  - aq,K) (8) 

where q, takes the values q: for the forward and q; for the backward propagating 
waves, and k,2 = c,w2/cz. These results all follow from section 3 of [I], where bounds 
on 4: and exprcssions for the scalar product of E, and E, and for the direction of the 
extraordinary ray may also be found. 

2. Mode, phase and layer matrices 

The optical properties of an anisotropic layer may be characterized by four reflection 
amplitudes r,,, rSp, r p p ,  rpr and four transmission amplitudes t,,, t,,, f,,, tpr .  For example, 
rsp is the amplitude of the wave reflected into the p polarization when the incident wave 
is s pokarired. The method by which these amplitudes are determined is simple in 
principle: the continuity of Ex,  El. 8Ex/az-iKEz and d E J 8 z  (that is, the continuity of 
thc tangential components of the vectors E and B) is applied at the boundaries of the 
layer. We shall begin by evaluating the four amplitudes r3s, r S p r  t,,, t,, (incident 5 

polarization). The electric fields, with the factor exp[i(Kx - o t ) ]  suppressed, are 

incoming: (0, exp(iq,,-), 0 )  
reflected : exp(-iq14(r,, cos H I ,  r,,, I , ,  sin 0 , )  (9) 
within layer: a, exp(iq,z)E; + b, exp( -iqoz)E; + U,  exp(iq:i)E: 

+ h, exp(iq;z)E,- 

transmitted: expCiq& - Az)l(t,, cos O , ,  l,,, - t , ,  sin &). 

The continuity of E,, E y ,  ?E,/az-iKE, and aE,/Zz at z = 0 gives 

rSp cos H ,  = a,X;  + h,X; + a , X :  + b,X; 

1 + r,, = uo Y,+ + h, Y; + a, Y,+ + he Ye- 

-k , r , ,  = a,(q,X: - KZ;)  - b,(q,X; + K Z ; )  + a,(q:X: - KZ:) 

+ b,(q;X; - KZ,) (10) 

q1(1 - rsJ = w, Y,t - h,q, Y; + a,q: YT + b,q; Ye- 

where k ,  = n,w/c and X,+ is the x-component of E:, etc. At z = Az the boundary 



U: = exp(iq,Az)a, 

U: = exp(iq:Az)u, 

b, = exp(-iqoAz)bn 

bh = exp(iy;Az)b,. 

The structure of (10) and ( 1  I )  leads us to define the mode matrix M (so named because 
its elements are determined by the components of the electric fields of the propagating 
planc wave modes), 

and the column vectors 

I 
Then (10) and (11) can be written in matrix notation as 

rs = M a  t, = Ma' = MPa (15) 

where the diagonal phase matrix P is given by 

(16) 
0 1. exp(iq,Az) 0 0 

exp( - iq,Az) 0 

P = [  O 0 0 exp(iq:Az) 

0 0 0 exp(iq,Az) 

The diagonal elements of the phase matrix give the phase change of the four plane wave 
modes on propagating through the layer thickness Az. The unknown coefficients a,, b,, 
a,, b, may be eliminated from (15): 

(17) f, = MPa = MPM-' r ,  
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which is now a set of four simultaneous linear equations in the four wanted unknowns 
I, , ,  rsp, t,,, f,, .  

Before discussing the solution of this set. we look at the case of incoming p 
polarization. The electric fields are now 

incoming: exp(iq,z)(cos B,, 0, -sin U , )  

reflected : exp(-iq,z)(rpp cos H, ,  rps, rpo sin 8,) (18) 
transmitted: exp[iq2(z - Az)](fPp cos B,, t , , ,  -to, sin U 2 ) .  

(The definition of rPp is such that rpp and rs7 are equal at normal incidence onto an 
isotropic layer.) The form of the electric field within the layer is the same as given in 
(9), being made up of the four plane wave modes. Thus the boundary conditions lead 
to a similar set of equations to that obtained abovc for s polarization incident, with the 
same mode matrix M and the same phase matrix P: 

vP = MU f ,  = MU' = MPu. (19) 

Here the column vector U is as defined in (14), and 

It follows that the optical amplitudes for both polarizations are given by an equation 
of the form f = Lr, with the same matrix 

L =  M P M - ' .  (21) 

We call the 4 x 4 matrix L the layer matrix, since it depends on the properties of the 
layer through the electric field modes and the phase shifts they experience in propagating 
through the layer. The elements of L are independent of the polarization of the incident 
wave; they depend on the angle of incidence through the x-component of all the 
wavevectors, K (since the z-components of the wavevectors and the electric field mode 
vectors depend on K ) .  

We now look at the matrices M, P and L in more detail. First we note that the 
normalization factors N,' and N' for the electric field vectors may be absorbed into 
the coeficients a,, b, and ac ,  b,. Thus we may set the normalization factors in (7) and 
(8) equal to unity without loss of generality. The resulting mode matrix is 
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the optic axis: 

det M = 4kfq,q{[(1 - y2)k,Z + (1 - / 1 2 ) K 2 ] 2  - 4 a 2 K Z k f }  (23) 

(We note that all physical results must he invariant to the simultaneous change of sign 
of all the direction cosines, since E and - e  are equivalent directions; det M is invariant 
to the independent change of sign of any direction cosine.) The determinant of M is 
non-negative, and can he zero only if the optic axis lies in the plane of incidence ( p  = O), 
and at the same time K 2  = x2k,2. This degenerate case will he considered in conjunction 
with the special case f l  = 0 in section 4. 

3. The reflection and transmission amplitudes 

The relation f, = Lv, represents four simultaneous equations in the four unknowns r3s, 
rsD, t,,, t s p .  We solve these to find the reflection amplitudes in terms of the matrix 
elements L i j :  

where Ai and B, are as defined in (25), and 

PI = k,(cos BIL,, + k , L 1 3 )  - COS O,(COS H,L,, t klL33) 

P2 = q2(cos O1L2,  + k 1 L 2 , )  - COS B,L,, - k,L,, .  
(27) 

We note that the reflection coefficients have a common denominator, as they do for 
reflection by a bulk crystal [I]. Note also the close correspondence between B,, PI and 
between B, , P2.  

As the thickness of the layer tends to zero, the phase matrix P tends to the identity 
matrix, and so does the layer matrix L = MPM-’. Then we regain the reflection 
amplitudes appropriate to an interface between isotropic media of indices n, and 
n 2 :  
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rpp --t ~~~ (28) 41 - 42 

41 i - 4 2  Q2 + Q I  
r,, - -~ rSp + 0 rps - 0 

where Q1 = q,/E, and Q ,  = y2/e2.  

formulae 
When the layer is isotropic, with +go  and 4,' tending lo i q ,  we regain the familiar 

where s1 = ( 4 ,  - q ) / ( q ,  + d .  s2 = ( 4  - M ( q  + q2), pI  = (Q - Q M Q  + QJ and p2 = 
(Q2 - Q)/(Q2 + Q) are the s and p Fresnel reflection amplitudes at the boundary of 
the layer with media I and 2 (Q = q/c where R is the dielectric constant of the isotropic 
layer). 

At normal incidence we regain the simple results ( [ 2 ] ,  (31) -(34)) 

where r,, and r ,  are the reflection amplitudes of isotropic layers of indices no and non& 
(n,  was defined in equation (6)): 

with re being obtained by replacing k, = n,w/c by k ,  = (n,n,/n,)w/c. Note that the plane 
of incidence is not defined at normal incidence, except by a limiting process, which is 
the way the formulae (30) and (36)  are obtained. When one is considering normal 
incidence only, it is better to work in terms of reflection amplitudes r a n d  r', which give 
the reflection parallel and perpendicular to the incident polarisation, as was done in 
121. At normal incidence r and r' give all the reflection information, and similarly t and 
t' all the transmission information, in terms of the amplitudes r o  and r e ,  and t, and t,.  

The transmission amplitudes t,, and rbp can be obtained from f, = Lr, in terms of rss 
and rsp: 

( 3 2 )  
t,, = L2,r,,cos O1 + 
k2trp = L,,r,,  cos 0, + L 3 d I  + rSJ - L,,k,r,, + L 3 4 q l ( l  - r5J. 

+ rqs) - L2Jklrrp + L2,ql( l  - r.J 

Similai-ly, I,, and t p ,  can be found from f ,  = Lr,: 

(33) 
k2r , ,  = L31( l  + rpp) cos 0 ,  + L,,r,, + L,,k,(l - rPJ - L34q l rP r  

t , ,  = t L I ( l  + Til,,,) cos H I  + L2,r,, + L 2 , k I ( l  - r,,J - L d l r P s .  

As the layer thickness tends to zero, L t j  + Sii and we regain the companion formulae 
of (28): 
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For an i ~ t r o p i c  layer we set qo + q, q z  + kq, and obtain (compare (29)) 

At normal incidence we find (compare equations (35) to (37) of [Z l )  

where f,, and t, are normal incidence transmission amplitudes for isotropic layers of 
indices n, and n,n,ln,, respectively: 

(see (31) for the dcfinitions of k, ,  k,,  and of thc reflection amplitudes s; etc). 
In the following sections we will give detailed results for some special cases. Here 

we mention some especially simple rcsults: rsp = - rp>  when 1 = 0 (optic axis perpendicular 
to the x axis), while rsp = rns when 7 = 0 (which obtains when thc optic axis lies in the 
planc of the reflecting surfacc). 

When the optic axis is perpendicular to the plane of incidencc ( f i2  = l ) ,  both a and 
7 are zero and q' = k(c,02/c2 - K 2 ) ' j 2 .  The s polarication has E parallel to the optic 
axis and converts completely to the extraordinary mode. The p polarization has E 
perpendicular to the optic axis and converts completely to the ordinary mode. Thus 
rsp = 0 = rps, t,, = 0 = r,,?; r,,, rnP and t,,, t,, have the isotropic layer forms (29) and 
(35), with 4 = (~ ,m~, l r *  - K 2 ) " 2  in the definitions of .si and s2 and in thc exponents of 
r,, and I,,, while q = q, and Q = q,/c, in the dcfinitions o f f l  and p 2  and in the exponents 
of rp,, and t,,,,. 

4. Optic axis in the plane of incidence (p = 0) 

When the optic axis lies in  the plane of incidence (the zx plane) the ordinary clectric 
field vector is perpendicular to thc plane of incidence. Thus thc incidcnt s-polarized 
wave has electric field along the E,, dircction, and we may expect the s polarization to 
convert fully to the ordinary mode, which implies that rsp and t,, are zero, and that rss 
is the same as that of the s reflection amplitude for an isotropic layer of index n,: 

where s, and Y, are the Fresnel s wave reflection amplitudes at the front and back faces 
of the crystal for the ordinary wave: 
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To find the other amplitudes we use the matrix NI of equation (22) simplified by 
setting I( = 0 (this makes 8 of the 16 elements zero), and 

ciq' = kn,n,y., - ryKAc  

q~;  = t+u2/c' - K 2 .  

(40) 

(41) 

where 

This substitution produces common factors among the remaining non-zero elements, 
since now 

i+(,xq: - 7 K )  = nc(ay,n,  - ;'Kn,) 

El(xqi - ;.Kq,) = q7n,(aqin, + ;JKII,) 

These relations enable us to simplify rp,, to the form taken for an isotropic layer, namely 

where q = n,n,q,/i., is the value of q whcn /i = 0, and 

have the same form as Fresnel p-wave reflection amplitudes. Here 

Q I  = q l i e , ,  Q 2  = qzIl:2 Q = q,/n,n,. (45) 

For non-absorbing crystals Z lies on the unit circle, and rpp  can bc zero if Z = 1 or 
- 1. When Z = 1, rpy is Lero ifp,  + p2 = 0, which happens whcn Q2 = Q,. This equality 
holds at the substrate Rrewster angle, 0, = tan-'(n,/nl). When Z = -1,  rpp  is zero if 
p I  = p 2 .  which happens whcn 

2 

(46) 
4.; - Y I Y 2  

E,Ce c,c2 
~~~ - ~ or Q' = Q i Q 2  

This condition leads to a quadratic in K 2  (for given y), or to a linear equation in y2  
(for given angle of incidence). At normal incidence (46) is satisfied if 

(47) 
E ,  e ,  - n l n 2  

..2 = ~~~~~ 

n , n 2  i:, - i:, 

The transmission amplitude r,, has the samc form as for an isotropic layer: 
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(.sl and s2 are defined in (39)). The p to p transmission has a similar form, but with an 
additional phase factor: 

where p I  and p2 are given in (44). 
The remaining amplitudes, rpl and tpr, are zero. Thus there is no cross-linking 

between s and p polarizations when the optic axis lies in the plane of incidence, either 
in reflection or in transmission. 

When /l = 0 the extraordinary electric tield vector lies in the plane of incidence: for 
the forward wave we have 

E, = N,(&,q7,0, - [n,n,K + vjq?At.]). (50) 

This is perpendicular to both the ordinary electric ficld, proportional to (0, 1,0), and 
to the extraordinary ray vector, which also lies in the plane of incidence: 

(51) 

We noted in section 2 (see equation (23)) that the determinant of thc mode matrix 
NI is zero if /J = 0 and at the samc time K 2  = zzk,2. Then y,' = :"k,Z, and the wavevector 
( K ,  0,qJ is parallel to the optic axis c = (a, 0, y )  if a and y have the same sign. (The 
wavevector of the internally reflected wave, ( K ,  0, -4,) is parallel to c if z and JJ have 
the opposite sign). From (42) and the fact that q7 = lyl(n, /n,)k,  for this special case, we 
see that four more of the elements of NI become zero, eight already being zero because 
they are proportional to /i. This leaves only four non-zero elements of M ,  which now 
has two columns of zeros. Thus M cannot be inverted, and the matrix method fails. 
This is related to the fact that when /l = 0 and simultaneously aq, = + y K  the ordinary 
electric field vector is indeterminate for the forward or backward propagating waves, 
respectively (see equation (7)). In a biaxial crystal, indeterminacy of one of the 
extraordinary electric fields leads to conical refraction [7, 81. In the case /i = 0, K 2  = a2k: 
being considered here. however, it is the ordinary clectric field vector which is 
indeterminate. Since the ray vector always coincides with the wavevector for the 
ordinary mode, there is no conical refraction in this case. The formulae given above for 
the reflection and transmission amplitudes remain valid when /l = 0 and K 2  = a2k:. 

ray vector - (n,n,K + z'/q?Ac, 0, " q J .  

5. Optical properties of a thin layer 

A thin isotropic layer, that is one whose thickness is small compared to the wavelength, 
so that W&/c = 2xAz/l. << 1, has reflection and transmission amplitudes which are given 
by (28) and (34), plus power series in wAz/c. Of most cnterest is the ratio rp/ra, which 
can be obtained by ellipsometry, and differs from the zero thickness value 
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by a term linear in Az, namely 

For non-uniform isotropic layers, where E = E(L), the same form holds, with 
R C ~ ( & ~  - c)(c - nJAz replaced by 

(54) 
( E ,  - & ) ( E  - E 2 )  I ,  = dz ~~ s E 

This well known result has been extended to uniaxial non-uniform layers in which the 
optic axis is along the surface normal (191, section 7-2). In this case, which corresponds 
to y 2  = 1 in our notation, rsp and rps remain zero, and 

where now 

The reader may have noticed the factor ( e ,  - E J '  in (53) and ( 5 5 ) .  For unsupported 
films this appears to lead to a divergence in rJrS or rpp/rss. In fact there is no divergence 
when E ,  = eZ, but there is an enhancement of the ellipsometric ratio when E* is close 
to e , .  The isotropic case is discussed in [lo]. 

For general anisotropic layers, the reflection is characterized by four reflection 
amplitudes rss, rap, rpp. Ips, and reflection ellipsometry measures the quantities 

(rDp + rSp tan P)/(rPs + I , ,  tan P )  or (57) 

depending on whether the compensator or modulator is placed between the sample and 
the analyser, or between the polarizer and the sample [ll]. ( P  and A are angles defining 
the orientation of the polarizer and analyser.) 

We will find the first-order corrections to (28) and (34). The relative phases of the 
reflection amplitudes are experimentally measurable, but the overall common phase 
depends on the choice of origin. Here we choose the front face of the anisotropic layer 
to be at z = 0 for convenience. This fixes the common phase, and we can write down 
expressions for the separate reflection coefficients, not just for their ratios. 

When Az - 0, the matrix P tends to the identity matrix I = diag(I, I, I ,  I). To first 
order in WAZJC, 

( 5 8 )  

(59) 

(rPp + rps tan A)/(r?,, + rs, tan A )  

P = I + iAz diag(q,, -qo ,  y:. qe-) = I + D 

L = I + MDM-'. 

Thus the layer matrix L = M P M - '  becomes, to this order, 

The identity part of L leads to the bare-substrate reflection amplitudes given in (28). 
The first-order corrections come from the M D M - '  part of L. In the absence of 
absorption in the crystal or the substrate (we always assume lack of absorption in the 
medium of incidence), the first-order terms are pure imaginary, as can be seen from ( 5 8 )  
and (59). 
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Particularly simple results are obtained when p = 0 (optic axis in the plane of 
incidence), and we will give these first. We find 

(60) 

where Q1, Q2 and Q are defined in (45). The results (60) and (61) may also obtained 
from (38) and (43). The cross-reflection amplitudes rrp and rns are identically zero when 
the optic axis i s  in the plane of incidence. The transmission coefficients are 

We now give the reflection amplitudes to first order in Az, in the general case. These are 

We note that when /% = 0 the P,, and rpp amplitudes reduce to (60) and (61), while rsp 
and rps become zero. We stated at the end of section 3 that rsp = -rp. when a = 0, and 
rSp = rp. when 7 = 0. This is verified to first order in the layer thickness by (65) and (66). 

The transmission amplitudes to first order in the layer thickness are given by 
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In all cases the reflection and transmission amplitudes (to first order in Az) have the 
form U + io. whcre U is proportional to the film thickness, and U and U are real if there 
is no absorption. Thus the reflectances and transmittances are all of the form u2 + 02,  

with t i 2  thc zero-thickness value, and u2 the correction term which is second order 
in Az. 

Thc formulae of this section are intended for use in the ellipsometry of thin 
anisotropic layers; another application (in section 7) is to weakly rough surfaces. 

6. Weak anisotropy 

The isotropic layer has reflection and transmission amplitudes given by (29) and (35). 
When the uniaxial layer is weakly anisotropic, we expect that these relations are 
corrected by terms proportional to AE = E ,  ~ 1:". This section will give these first-order 
tcrms. From (6) we find that 

Let us denote by Ay the differences q: - q, and q; + qo. There arc two kinds of 
correction terms: those of order Aq/q,, and those of order AqAz. It is clear that the 
latter (which gives the phase shift between the ordinary and extraordinary waves on 
traversing the layer) can be largc for thick films, even if the anisotropy is weak. We will 
separate the two types of terms in what follows. 

The isotropic values of r3$ and r p p  are given by (29). The first-order corrections are 

where 2 = exp(2iqAz), sir .s2. pI and p 2  are the Fresnel amplitudes defined below (29), 
and we have dropped the suffix o on q,, as we did in (29). (We shall also drop the o 
suffix on k ,  and E,  in the remainder of this section.) The functions j'+ and f-  are defined 
by 

f, = aq * YK, (75) 

and we make use of the identity 

( rq  :'K)' + P 2 k 2  = k 2  ~ (aK f yy)'. (76) 

The first-order terms in AE for the cross-coupling reflection amplitudes are more 
complicated: 

r ( l l  = /%q,{(Z ~ ~~ - I)EE~(Y + q2)(Q + Q2U+ + s2p2f-Z1 + 4 i ( ~  ~ c2)(rq2q2 + ;.K3)ZqAz}Ae ~~ 

~ 

d q l  + q)(q + %)(el ~+ QXQ + Q2)e,i2c2[1 + s,.%Zl[I + p1p2Z1 
w 

(77) 
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(82) 

where 

e; = 41IE Q2 = 4 2 b .  (83) 

We note that the first-order parts of t , , ,  t,, and t,, are all zero when /I = 0. Thus only 
r(” and t:; are non-zero when the optic axis lies in the plane of incidence. 

In the orthogonal configuration, when b2 = 1 and the optic axis is perpendicular to 
the plane ofincidence, only ri;’ and ti:’ are non-zero (the incidents polarization converts 
to the extraordinary wave, since E, is along the optic axis). 

PP 

7. Discussion and applications 

We have seen that analytic results may be given for the reflection and transmission 
properties of a uniaxial layer. We have not assumed that the layer or the substrate is 
non-absorbing: if either is absorbing the formulae given here remain valid, with complex 
values of e,, e,  and E ~ ,  as appropriate, and thus with complex values of q,, q: and q 2 .  
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However, the formulae apply to absorbing uniaxial crystals only when the principal 
axes of the real and imaginary parts of E coincide. 

The matrix elements given here are for arbitrary crystal orientation, angle of 
incidence, and degree of anisotropy. Explicit formulae for the reflection and transmission 
amplitudes have, however, been given only for special cases, because the general 
formulae are not compact enough to be useful. One important special case is missing: 
that of nearly normal incidence. The optical properties of a normally illuminated 
uniaxial layer are beautifully simple (see 121 and formulae (30) and (36) of this paper), 
but I have not so far been able to reduce the nearly-normal-incidence formulae to usable 
size. 

The utility of analytic formulae lies in providing immediate answers to physical 
questions. We give two examples. Consider first the optical properties of an antireflection 
coating which is anisotropic. Equations (30) and (31) give the reflection amplitudes at 
normal incidence in terms of the basic amplitudes r,  and r e .  For an isotropic layer wc 
can in general make one zero and the other small; only when the optic axis is coincident 
with the normal to the layer do  we have Y, = r,, for then k,  = k,. Suppose for example 
that r, is zero, and r ,  is not. Then zero reflection will obtain only when the incident 
polarization coincides with the E, direction in the layer. 

As the second example, consider the reflection properties of rough surfaces. For liquid 
surfaces it has been demonstrated that the effect of a small amount of roughness (on a 
scale small compared to the wavelength), is similar to that of an adsorbed layer [l2, 131. 
Recent interest lies in thc shift of the Brewster angle as a function of the roughness 
parameters [14-16]. The calculated shift is toward smaller angles of incidence, and 
increases in magnitude linearly with the mean square of the displacement of the surface 
from flatness. For an adsorbed layer of thickness Az thc shift in thc Brcwster anglc is 
also proportional to (Az)’. One must make clear which definition of the Brewster angle 
one uses. The ellipsometric definition of 0, is that angle at which Re(r,/u,) = 0, and the 
general formula for a film of arbitrary dielectric function profile is given in 191, equation 
(3.53). In 114-151 the definition is the location of Re(r,) = 0; this is not experimentally 
defined until a reference phase has been specified, the natural one being to take r p  to 
be real for a flat surface. With this definition one finds, to second order in the thickness 
Az of an isotropic homogeneous layer, 

where E is the dielectric constant of the layer between media 1 and 2, and q ,  is the value 
of q = (ew2/c2 - K2)’I2 at the zero-thickness Brewster angle given by tan2 0, = c2/c1. 
Assuming i;2 > c1 and that c lies between E ,  and and is greater than half of the 
harmonic mean of E ,  and 

We may expect that a homogeneous layer mimicking the behaviour of a slightly 
rough surface would be anisotropic; for random roughness the optic axis must coincide 
with the surface normal, by symmetry. (This is not the case for somc special models; 
see for example figure 2 of 1151.) When the optic axis is normal to the surface, we can 
obtain r p p  from the /j = 0 formula (43) by setting 7’ = 1. We find 

( E  > i:,cZ/(E1 + E ~ ) ) ,  A08 will be negative. 
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where now qs is the value of ( E , O J ~ / C ~  - K 2 ) l i 2  at the Brewster angle. The sign of A&, 
now depends on how different E~ and e ,  are. (When they are the same, (85) reduces to 
(84) and A& will be negative under the conditions stated in the discussion following 
(84)) Thus a positive A& would indicate strong anisotropy in the effective layer 
representing the roughness. We note that (84) and (85) predict an enhancement of the 
shift in Brewster’s angle when e l  % E ~ .  This index-matching enhancement occurs also 
for the ellipsometric ratio rp/rr  [17]. 

For a slightly rough surface, as for a homogeneous thin layer on a transparent 
substrate, the p to p reflectivity is no longer zero at its minimum. The minimum 
reflectivity is proportional to ( A z ) ~ ,  where Az represents the thickness of the adsorbed 
layer, or the root-mean-square deviation from flatness. The magnitude of R,, at the 
minimum for a uniaxial layer with its optic axis normal to its surface may be obtained 
from (61) or (67) by setting y2 = I and taking the absolute square of the first-order 
term (the zero- and second-order terms add to zero at the (shifted) Brewster angle, as 
defined above). We find, to lowest order in Az, 

Note that, on using the definition (56)  for a homogeneous layer, this may be written as 

Thus the minimum p to p reflectivity is proportional to the square of 

while, from ( 5 9 ,  the ellipsometric ratio is proportional to I,. Ellipsometry and minimum 
intensity measurement thus determine I ,  and its square. The Brewster angle shift gives 
additional information, since, from ( 8 3  AR,, contains factors additional to I, : 
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