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Abstract. Periodic structures reflect strongly at frequencies and angles of incidence
corresponding to photonic bandgaps. It has recently been shown that for a suitable choice of
high and low refractive indices nh and n�, a high–low dielectric multilayer can reflect strongly
at all angles of incidence. An accurate and simple analytic approximation for the location of
the band edges for the s and p polarizations is given. The region in the (n�, nh) plane where
omnidirectional reflection occurs is determined. This region lies above a curve which has its
minimum value of nh(≈2.247n1) at n� ≈ 1.492n1, where n1 is the refractive index of the
medium of incidence. The minimum occurs when the optical paths in the high and low
refractive index layers are in the ratio 1.362 to 1.
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1. Introduction

Multilayer dielectric mirrors reflect strongly in stop bands,
within which light propagation is not possible in an infinite
periodic structure [1–9]. Although analyses have been
mainly for multilayers made up of alternating homogeneous
high- and low-index layers, certain aspects of reflection by
multilayers are universal [8]: for N periods the transmittance
goes to zero as N−2 at the band edges, where the reflectance
is 1 − O(N−2). Within the bandgaps the reflectance tends to
unity exponentially with N . Thus not very many periods of
the multilayer structure are needed to give high reflectance.
Typical use of dielectric multilayer mirrors has been at
normal incidence, with the (homogeneous) layers a quarter-
wavelength thick at the design frequency:

dh = λh

4
= λ

4nh

, d� = λ�

4
= λ

4n�

(1)

where λ is the vacuum wavelength. Then the optical paths
are nhdh = n�d� = λ/4 and maximum reflection (at normal
incidence) occurs at angular frequency

ω0 = 2πc

λ
= π

2

c

nhdh
= π

2

c

n�d�
. (2)

The edges of the stop band are at ω0 ± �ω, where

�ω

ω0
= 2

π
arcsin

(
nh − n�

nh + n�

)
. (3)

The above results are independent of polarization, but at
oblique incidence the reflectances of the s (TE) and p (TM)
polarizations are different (see, for example, figure 12-4 of [7]
or figure 5 of [8]).

However, recent work [10–13] has shown that it
is possible to have strong reflection (perfect reflection,
for the infinite stack) for all angles of incidence, and
both polarizations. Southwell [14] has given analytical
approximations for an omnidirectional mirror consisting of
a quarter-wave dielectric stack. In this paper we present
improved analytical approximations which give the band
edges of the s and p stop bands at any angle of incidence
on a dielectric stack which need not be quarter-wave.

We take as read the theory of reflection from
multilayers [1–9], and its main result, namely that strong
reflection will occur when the trace of the 2 × 2 matrix for
one period exceeds 2 in magnitude. (These conditions, one
for the s polarization and one for the p polarization, locate the
band edges of the s and p waves.) For homogeneous layers
of high and low refractive indices nh and n�, and thicknesses
dh and d�, these conditions take the form

| cos δ� cos δh − � sin δ� sin δh| > 1 (4)

where

δ� = ωd�

c

√
n2
� − n2

1 sin2 θ,

δh = ωdh

c

√
n2
h − n2

1 sin2 θ

(5)

are the phase shifts of the waves of angular frequency ω

in traversing the layers of low- and high-index, n1 is the
refractive index of the medium of incidence, and θ is the angle
of incidence. The function � is frequency independent, and
takes different forms for the s and p polarizations:

�s = 1
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(
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)
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(6)
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�p = 1

2

(
xp +

1

xp

)
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)2 /
xs. (7)

We assume that nh > n�, so xs > 1. Note that xp can be
less than unity for angles of incidence greater than θp, where
sin2 θp = n2

�n
2
h/n

2
1(n

2
� + n2
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�n

2
h < n2

1(n
2
� + n2

h).
From (1), (2) and (5), a quarter-wave stack at normal

incidence has
δ� = π

2

ω

ω0
= δh (8)

and cos δ� cos δh − � sin δ� sin δh becomes cos2 δ − 1
2 (

nh

n�
+

n�

nh
) sin2 δ, which takes the value −1 at ω0 ± �ω, where �ω

is given by (3).

2. Band edges at oblique incidence for a general
stack

At normal incidence the stop band for a quarter-wave stack
lies between ω0 − �ω and ω0 + �ω, where ω0 and �ω are
given by (2) and (3) respectively. The quantity cos δ� cos δh−
� sin δ� sin δh in (4) decreases from unity at zero frequency,
so the first stop bands lie between frequencies ω− and ω+

given by solving the transcendental equations

cos δ� cos δh − � sin δ� sin δh = −1 (9)

numerically, for � = �s and �p, as given by (6) and (7).
At normal incidence �p = �s and the stop band for both
polarizations lies betweenω−

0 andω+
0 . The s polarization stop

band typically increases in width as the angle of incidence
increases, while the p stop band width decreases. At glancing
incidence the p stop band ranges fromω−

p toω+
p , and provided

ω−
p < ω+

0 (10)

there will be a frequency region from ω−
p to ω+

0 , where both s
and p polarizations are reflected strongly (perfectly reflected,
in the case of an infinite stack).

At oblique incidence on a general stack, δ� = (ω/c)D�

and δh = (ω/c)Dh, where

D� = d�

√
n2
� − n2

1 sin2 θ, Dh = dh

√
n2
h − n2

1 sin2 θ.

(11)
At normal incidence for a quarter-wave stack, the phase
increments δ� and δh at the band edges are both π/2 ±
arcsin( x0−1

x0+1 ), where x0 = nh/n� is the common value of
xs and xp at θ = 0. At all frequencies the phase increments
are in the ratio δh/δ� = Dh/D�. We therefore put the phase
shifts at the band edges equal to

δ±
� = 2D�

Dh + D�

(π

2
± φ±

)
,

δ±
h = 2Dh

Dh + D�

(π

2
± φ±

) (12)

where the angles φ± are to be found for each polarization.
The transcendental equation (9) for the band edges can now
be rewritten as a functional equation for φ±:

sin φ± =
(
x − 1

x + 1

)
cos

[(
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Dh + D�

) (π

2
± φ±

)]
. (13)

In deriving (13) from (9) we have used (x stands for xp or xs,
� stands for �p or �s)

� − 1

� + 1
=

(
x − 1

x + 1

)2

(14)

and taken a square root on the assumption that x > 1. No
approximation has yet been made. WhenDh = D� we obtain

φ± = arcsin

(
x − 1

x + 1

)
(15)

which is effectively a generalization of (3).
The usefulness of (13) lies in the fact that (Dh −

D�)/(Dh + D�) is a small quantity in many cases of interest.
Expansion of the right-hand side of (13) gives
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(16)

so that, on using arcsin(S + s) = arcsin(S) + s/
√

1 − S2 +
O(s2),
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− x − 1

4
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×
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. (17)

The band-edge frequencies can then be found from (12)
and (5):

ω± = 2c

Dh + D�

(π

2
± φ±

)
. (18)

As a numerical example, consider the band edges for a
tellurium/polystyrene stack which is quarter-wave at normal
incidence [11]. Equation (3) gives the band edges at normal
incidence, exactly. Equations (17) and (18) give the band
edges at all angles of incidence to such accuracy that exact
and approximate results cannot be differentiated in figure 1.
The errors in ω± at glancing incidence range from 12 to 268
parts per million.

3. Refractive indices for which omnidirectional
reflection exists

Omnidirectional reflection requires that the s and p bandgaps
of the multilayer persist from normal incidence to glancing
incidence. This will happen if criterion (10) is satisfied. The
region in the (n�, nh) plane where (10) is satisfied is bounded
by the curve where

ω−
p = ω+

0 . (19)

In terms of the approximate band edge frequencies given
in (18), this reads

π
2 − φ−

p

dhnhrh + d�n�r�
=

π
2 + φ+

0

dhnh + d�d�
(20)

where

rh =
√

1 − n2
1/n

2
h, r� =

√
1 − n2

1/n
2
� (21)
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Figure 1. Band edges for a high–low multilayer with n1 = 1,
nh = 4.6 and n� = 1.6 [11], versus sin2 θ . At normal incidence the
stop band extends from ω0 − �ω to ω0 + �ω. The approximate
stop band edges at oblique incidence of equations (17), (18) are
shown as solid lines; the exact band edges are plotted as points.
Omnidirectional reflection occurs in the frequency range between
the dashed lines. The calculations are for a ‘quarter-wave’ stack,
with nhdh = n�d�.

and φ+
0 is evaluated at normal incidence with x0 = nh/n�,

while φ−
p is evaluated at glancing incidence with xp =

(nh/n�)(r�/rh), Dh = dhnhrh and D� = d�n�r�. For quarter-
wave stacks, (20) reduces to

π
2 − φ−

p

rh + r�
=

π
2 + φ+

0

2
. (22)

Solution of (22) gives a curve in the (n�, nh) plane which is
shown in figure 2. Above this curve is the omnidirectional
region. The minimum value of nh(=2.265 899n1) occurs
at n� = 1.517 523n1. The exact equation (19), with ω−

p
found from (9) or (13) at glancing incidence, has (n�, nh)min

at (1.517 522n1, 2.265 899n1). Exact points are shown on
the approximate curve: on this scale the differences between
them are not visible. In contrast, figure 3 of Southwell [14]
has a minimum for its onset of the omnidirectional reflection
curve at n� ≈ 1.45n1, nh ≈ 2.24n1. This is due to the fact
that his equation for the band edges is less accurate than the
one used here, even for quarter-wave stacks.

4. Discussion

We have given simple approximations which give the location
of the band edges at oblique incidence for a dielectric
multilayer. The approximation locates the refractive index
region in which omnidirectional reflection occurs to high
accuracy. For a quarter-wave stack this region has minimum
nh of about 2.2659n1 at n� ≈ 1.5175n1. Onset of
omnidirectional reflection lies on the curve; for a wide range
of frequencies at which both polarizations are reflected at all
angles, one must be well inside the omnidirectional region.
Figure 2 also gives contours corresponding to

ω0 + �ω − ω−
p = 0.1ω0, 0.2ω0 and 0.3ω0.

On the 0.3ω0 contour, for example, the frequency range over
which omnidirectional reflection occurs is 0.3ω0 wide.

Figure 2. Region of omnidirectional reflection of a high–low
multilayer. The lower curve with the points on it shows the limit of
omnidirectional reflection for a quarter-wave stack according
to (19), with ω−

p approximated by (17), (18); the points are from
numerical solution with the exact ω−

p . The contours labelled 0.1,
0.2 and 0.3 show where the quarter-wave stack omnidirectional
reflection band is 0.1, 0.2 and 0.3ω0 wide. The lowest curve gives
the boundary of omnidirectional reflection for a dielectric stack
with nhdh/n�d� = 1.352.

It is of interest to widen the search and admit dielectric
stacks which are not quarter-wave at normal incidence. For
general stacks we have an extra parameter, the ratio of the
optical thicknesses of the layers at normal incidence:

ρ = nhdh

n�d�
(23)

and (20) reads
π
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p
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π
2 + φ+

0

ρ + 1
, (24)

where, from equation (17),
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)
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.

(26)

With equations (24) to (26) we find that a stack with

ρ ≈ 1.352, n� ≈ 1.493n1, nh ≈ 2.247n1 (27)

has the lowest value of nh at which onset of omnidirectional
reflection occurs. Only a 1% drop in the minimum value
of nh is obtained by relaxing the nhdh = n�d� restriction of
quarter-wave stacks.

The values in (27) are not quite the best attainable,
since they are based on the approximate equations (25)
and (26). We can obtain exactly the lowest point of the surface
nh(ρ, n�)which gives the boundary at which omnidirectional
reflection begins. First we give a simplification of the
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equations to be satisfied. We use (24) to express φ−
p in terms

of φ+
0 , and define

γ = π

2
+ φ+

0 = (ρ + 1)β. (28)

Then the two equations defining φ+
0 and φ−

p from (13) can be
written as

tan(ρβ) tan β = nh

n�

(29)

tan(ρrhβ) tan(r�β) = n�rh

nhr�
(30)

(when ρ = 1 the first of these gives β = arctan(nh/n�)
1
2 ,

which is equivalent to sin φ+
0 = (nh − n�)/(nh + n�)). We

now regard (29) and (30) as together defining γ and nh as
functions of ρ and n�. If (29) and (30) are symbolically
written as

f (ρ, n�, γ, nh) = 0, g(ρ, n�, γ, nh) = 0 (31)

then we have, on differentiating f and g with respect to ρ

and n� in turn,

∂f

∂ρ
+

∂f

∂γ

∂γ

∂ρ
+

∂f

∂nh

∂nh

∂ρ
= 0,

∂g

∂ρ
+

∂g

∂γ

∂γ

∂ρ
+

∂g

∂nh

∂nh

∂ρ
= 0

(32)

∂f

∂n�

+
∂f

∂γ

∂γ

∂n�

+
∂f

∂nh

∂nh

∂n�

= 0,

∂g

∂n�

+
∂g

∂γ

∂γ

∂n�

+
∂g

∂nh

∂nh

∂n�

= 0.

(33)

At the lowest point of the surface nh(ρ, n�) we have
∂nh/∂ρ = 0 and ∂nh/∂n� = 0, so we can eliminate
the unknowns ∂γ /∂ρ and ∂γ /∂n� from the pairs of
equations (32) and (33), respectively. This yields

∂g

∂γ

∂f

∂ρ
− ∂f

∂γ

∂g

∂ρ
= 0,

∂g

∂γ

∂f

∂n�

− ∂f

∂γ

∂g

∂n�

= 0. (34)

Equations (31) and (34) together determine the lowest point
of the nh(ρ, n�) surface. It is

ρ = 1.362 086, n� = 1.492 045n1,

nh = 2.246 763n1.
(35)

These numbers (rounded to six decimal places) are to be
compared with the values given in (27) which were based on
the approximation (17).
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