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Abstract. A 2 x 2 matrix method is developed and used to calculate the reflection and 
transmission amplitudes for normal-incidence reflection and transmission by uniaxial crystals 
andqstalslabs. The reflectionischaracterized by tworeRectionamplitudes(randr')which 
give the amplitudesofthe reflected field components alongandperpendicular to the incident 
polarization direction. The reflection results take the form r = r. cos'g, + r. sin'gl, r' = 
(io - re) ws q sin QI. where g, isthe angle betweentheincident polarizationandtheordinary 
electric field vector in the crystal, and ro and r. are the reflection amplitudes of isotropic 
crystalsorcrystal plates. with appropriate refractive indices. Similar results are obtained for 
the transmission amplitudes. 

1. Introduction 

In a recent paper (Lekner 1991) we have given formulae for the reflection and trans- 
mission amplitudes of a uniaxial crystal, at an arbitrary angle of incidence. Here we 
consider the special but important case of normal incidence, and extend the analysis to 
include the reflection and transmission by a crystal plate. We will show that a 2 x 2 
matrix method can be used at normal incidence to give analytical results for all the 
required quantities, in contrast to the more general 4 X 4 matrix formalisms (Teitler and 
Henvis 1970, Berreman 1971, Yeh 1979,1988). 

We begin by rederiving the results of section 5.4 of Lekner (1991), in order to define 
the notation and to introduce the 2 x 2 matrix method. 

2. Normal-incidence reflection from a crystal face 

The coordinate system to be used is as follows: the z axis is normal to the reflecting 
crystal surface, which lies in an ny plane, for simplicity taken to be the z = 0 plane. The 
optic axis, c = (a, /3, y) ,  has direction cosines a, /3 and ywith respect to then, y and z 
axes. Let E,  = rz: and E,  = n: be the ordinary and extraordinary dielectric constants of 
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the crystal, with no and n, the corresponding refractive indices. We set A& = 
define 

- E, and 

n: = eY = e,  + y2 A&. (1) 

For normal incidence the ordinary and extraordinary wavevectors both lie along the 
inward normal to the reflecting surface, and have magnitudes 

k, = no W / C  ke =  non,/^,)+. (2) 

The electric fields which can propagate as plane waves in the crystal are orthogonal: 

E o  = N , ( - P ,  a, 0) Ee = N,(LY,  p, -y(l - y 2 )  (3) 

The factors No and N e ,  which normalize the vectors E" and E' to unit magnitude, are 
given by 

N,2 = 1 - y2 NFZ = NiZ[l + y2(l - y2)(A~/ey)2]. (4) 

So far we have not defined the orientation of the x and y axes. For oblique incidence 
these are defined to lie respectively long and perpendicular to the plane of incidence, 
but at normal incidence the plane of incidence is not uniquely defined, and neither are 
the s and p polarizations. Let n = (0, 0,l) be the inward unit normal; since the ordinary 
and extraordinary wavevectors lie along n, the plane of n and c is the principal plane, 
anditsnormaln X c = (-/3, cu,O)liesinthereflectingplanez = O(andisparaUeltoEo). 
This is one physical direction in the xy plane. Another is the direction of E ,  in the 
(linearly polarized) incident wave, and we take the electric vectorEl to define thex axis. 
If q is the angle between the incident polarization and the Eo or n x e direction, 

Ee = (sin q cos 6, -cos q cos 6, sin 6) Eo = (cos q, sin q, 0) (5) 

where 6 is the angle between the ray and wavevector directions for the extraordinary 
wave, given by 

sin 6 =EC. n - y(1 - y2)'f i  A&/[&: + (E: - E $ ) Y * ] ' / ~  
(6)  tan S = -y(l - y2)'/' 

We can now write down the incident, reflected and transmitted waves for the case of 
light normally incident onto an arbitrary crystal face. With thex axis along the direction 
of the incident plane-polarized electric field, these are 

incident: 0,o) 

reflected: (reMik]', r'e-iklz, 0) 
transmitted: t,EoeikG + t,ECetk& 

(7) 

where k l  = nlo/c ,  n l  being the refractive index of the medium of incidence. Note that 
two reflection amplitudes ( r  and r') and two transmission amplitudes (Lo and tC) are 
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sufficient to characterize the problem, in contrast to the four reflection and four trans- 
mission amplitudes required at general incidence. The continuity of Ex, Ey,  aE&z and 
aEy/az at the crystal surface z = 0 gives the four equations 

1 + r =  t,E: + t,E: 

r' = t ,E; +&E; 

k l ( l  - r )  = k,t,E: + k,t,E: 

-klr'  = k,t,E; + k,t,E;. (8) 

We define the column vectors 

r =  (F,) t =  (:I) u =  (3 
and the matrices 

( 9 )  

We will call M the mode matrix, since its elements are the transverse components of the 
modes (or eigenstates) Eo and Es. The four equations (8) can now be written as a pair of 
coupled vector equations in rand t:  

u + r = M t  U - r = MKFlt. (11) 
These are readily solved, to give 

where I is the identity or unit 2 X 2 matrix, and 

From (9, (10) and the well-known inverse of a 2 x 2 matrix, 

r =  Ru t = M - l  (I + R)u 

A = MKIM-' R =  (A + I)-'(A - I). 

we have that 
M =  (cosq s i n q c o s 6 )  M-1 = sin q 

Let D = diag(d,, de) be any diagonal 2 x 2 matrix. Then 
sin q -cos q cos 6 (:::,cos 6 -cos q/cos 6 

) (16) 
do cos2q + d, sin2 q 

((do - de) cos q sin q 

(do - de) cos q sin q 
d ,  sin' q + de cos2 q 

M D M - ]  = 

is a symmetric matrix, and does not contain cos 6. The matrix A has this form, and so 
does R because R = M (K, + I ) - ' (K l  - 1)M-l:  

(17) 
ro cos' q + re sin2 q 

(ro - r e )  cos q sin q 

(ro - r e )  cos q sin q 
ro sin2 q + r, cosz rp 

R =  ( 
where r,, and re are the same as the Fresnel reflection amplitudes for isotropic media with 
refractive indices no and n,n,/n,: 

Thus, from (12), 

When the crystal is transparent, r, and re are real, and thus when the incident light is 

ro = (k i  - ko)/(ki  + k d  

r = ro cos2 rp + e ,  sin2 q 

r e  = (k i  - k d / ( k ,  + k e ) .  

r' = (ro - r e )  cos q sin q ,  

(18) 

(19) 
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linearly polarized the reflected light is also linearly polarized, with the polarization 
rotated by an angle atn(r'/r) relative to the incident polarization. Note that r ' ,  which 
gives the amplitude of the electric field reflected into they polarization when the incident 
fieldE,isx-polarized,iszerowhenE,iseither parallelorperpendiculartoEO(orn x c) .  
The magnitude of r' is largest as a function of the azimuthal angle at odd multiples of 
45", and largest as a function of the direction cosine y at y = 0, that is when the 
optic axis lies in the reflecting plane. The absolute maximum of lr'/ is nllne - n,l/ 
( n ,  + n,)(nl + nJ. (For calcite in air this takes thevalue0.026, about one-tenthof Irol.) 
At the other extreme, when yz  = 1 and the reflection is from the basal plane, r' = 0 and 
r = r,, independent of the azimuthal angle. 

The formulae (19) are in agreement with the reflection amplitudes given in equations , 
(71) and (73) of Lekner (1991). when we set sin cp = a / (d  + p2)1/z, cos cp = 
-B/(Lx' + pZ)l/*. Note the degeneracy in the latter formulae, associated with the lack of 
uniqueness of s and p polarizations at normal incidence. 

The amplitudes of the transmitted waves are obtained from (12), (15) and (17). We 
find 

to = ( ~ + r , ) c o s q  =[2kl/(kl+k.)]coscp 

t ,  = (1+te)sincp/cos6= [2kl/(kl+k,)]sincp/cos6. (20) 

If the incident wave is polarized with El along the P (or n x c )  direction, only the 
ordinary wave will propagate into the crystal, as expected. Only the extraordinary wave 
will be excited when cp = 2 90". The transmission amplitude te contains the divisor cos 6, 
which in practice is close to unity. From (6) we find that, for transparent media, Itan 61 
isgreatestwhen y2 = + &thelargestvalue beinglAE(/Zndl,.Thecorresponding 
smallest value of cos 6 is b,n, / (n:  + n l )  = 1 - (no - n$/(n: + nz) .  

3. Reflection and transmission by a uniaxial plate 

We now consider the optical properties of a crystal plate of thickness Az. bounded by 
the medium of incidence (of refractive index nl)  and a substrate of refractive index nZ 
When light is incident from medium 1 onto the z = 0 face of the crystal, and is linearly 
polarized in the x direction, the electric fields are as follows: 

incident: (e''lZ, 0.0) 

reflected: (r r' e-*l', 0) 

insidecrystal: 

transmitted: (te*A*-W, t 'e%(-W),  0). 

(The wavevector magnitude in the second medium is k ,  = n2w/c.)  Note that we have 
modified the usual definition of the transmission amplitudes I and t' to remove the 
common phase factor exp( -ik2 Az). The continuity of E,, Ey, aE,/az, aEy/az (or 

(21) 
(a, elks + bo e-"+)E" + (a, ekez + b,  e-'k~z)EC 
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equivalently of E,, Es, By, -BJ at r = 0 and z = Az gives eight equations in the eight 
unknowns, r, r', a,, bo, a,, b,, t, t'. At z = 0 we obtain 

1 + r = s,E; + s,E: 

r' = so Ey" + s, E; 

k l ( l  - r) = k,d,E,O + k,d.E: 

-klrr  = k,d,E,O + k,d,E; (22) 

where so = a, + bo and do = a, - bo, and similarly for the coefficients of the extra- 
ordinary wave. At z = Az we find 

t = sAE,O + s:E: 
t' =sAE," + s:E; 

k2t = k,d;E,O + k,d:Ez 

k,t' = k,d;E; + k,d:E; 
(23) 

where SA = a:, + b:, = a, 
fors: and d: . 

solution to be found in terms of 2 x 2 matrices. We define the column vectors 

+ b, e-jkOA2, dA = a; - b;, with analogous definitions 

We now reduce this 8 x 8 problem to four coupled 2 x 2 equations, which enables a 

Then the four equations (22) can be written as 

u + r = M s  U - r =  MKi'd (25) 

where the mode matrix M and the matrix K ; '  are defined in (10). For the second set of 
equations (23) we note that 

=a ,  eik&z + bo e-ikoAz = so cos(k, Az) + id, sin(k, Az) 

d:, = a,, eikoAz - bo e-ikoAz =do cos(k, Az) + iso sin(k, Az) 
(26) 

and similarly fors: and d:. Thus we can write 

s' = Cs + iSd 

where C and S are the diagonal matrices 

d' = Cd+ iSs 

c=i-""."r) 0 
0 cos(k, Az) 1 s =  (;(ko Az) 0 sin(k, Ar) (28) 

The equations (23) can now be stated as 

t = Ms' = M(Cs + iSd) t =  MKiId' = MK;'(Cd + S s )  (29) 

where K;' is defined as in (IO), with kz replacing k,. The equations (25) and (29) can 
now be solved as follows: rewrite (25) as s = M-'(u + r) and d = KIM-'(u - r) and 
substitute into (29), equating the two expressions for t .  The resulting linear equation r 
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in terms of U is then solved, using the fact that K,, K,, C and S are all diagonal, and thus 
commute with each other. We thus find 

where R has the form given in (17). with r, now given by 

k,(k, - k, )  cos(k,Az) + i(kg - k,k2)  sin(k,Az) 
k&, + k2)cos(k,Ar) - i(k2, + k,k~)sin(k,Az) 

r ,  = . (31) 

This is the reflection amplitude for a homogeneous isotropic layer of refractive index no' 
and thickness Az (Lekner (1987), equation (2.52)). The amplitude re, obtained by 
replacing k, by k, in (31). is likewise the reflection amplitude for an isotropic slab of 
refractive index n,n,/ny. An alternative form of (31) is 

ro = ( r :  + r ;  e2'XoAz)/(1 + rPr; ez'xoAz) (32) 

where 

r7 = (kl - k , ) / (k ,  + k o )  r; = (ko - k2)/(kO + k2) (33) 

are the Fresnel amplitudes for reflection at the entry and exit faces of an isotropic slab 
of refractive index no. The same form holds for re, with k, replacing k,. 

Returning to (30), we thus have the direct and orthogonal reflection amplitudes 

r = r ,  cos' 'p + r ,  sinz (I, r' = (ro - r e )  cos a, sin a,. (34) 

Note that the direct reflection amplitude r can be zero if r, and re differ in phase by an 
odd multiple of x and their magnitudes satisfy )r,l cos2 p? = )re] sin2 q. 

The transmission amplitudes are found from (29), onsubstituting forsanddin terms 
of r. The result is 

t = M ( f O  O ) M - l u = (  to cosz 'p + 1, sinz a, (to - t,) cos a, sin 'p 

t, sin2 cp + f, cosz p? 

where to and re are the transmission amplitudes of isotropic slabs with indices no and 
n,fl,/n,, each with thickness Ar (Lekner (1987), equations (2.53) and (2.59)): 

,Q (35) 0 1, ( to - I,) cos 'p sin a, 

(The formulae for t, have k, replacing k-) Thus 

r = to cosz a, + I, sin2 a, f' = (to - 1,) cos 'p sin a,. (37) 

We discuss some consequences of the formulae (34) and (37) for reflection and trans- 
mission by a homogeneous uniaxial layer in the next two sections. Here we note that to 
and t, are the exact elements of a transmission matrix which relates the outgoing electric 
field components along the Ea and Ee directions to those incident on the crystal layer. 
For layer thickness Ar the approximate matrix used in the Jones calculus (Jones (1941); 
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see also the reprints of all eight of Jones' papers in Swindell(1975), or the discussion in 
Yariv and Yeh (1984), ch 5 ) ,  and the exact matrix, are respectively 

(/(ik, Az) 0 

exp(ik, Az) 1 (; p,, 
From (36) we see that the leading term in the difference between the exact elements, 
which allow for (multiple) reflections at the boundaries of the anisotropic slab, and the 
approximate elements is r l  + r2 (superscripts o and e to be added for the o and e waves). 
Whenn, = n2 this iszero for both polarizations, so the difference becomes second-order 
in the Fresnel reflection amplitudes and can usually be neglected. 

4. Discussion of reflection properties of a uniaxial layer 

The reflection amplitudes r and r' are now complex, even for transparent crystals. The 
azimuthal dependence is as for reflection from a bulk crystal: r takes the values r, and re 
when the incident polarization is along the Eo and Ee directions, and r' is zero in either 
case. Themagnitudeofr'islargest asafunctionoftheazimuthalangle qj atoddmultiples 
of 45", and then Ir'l = Ir, - rcl/2. The variation of r,, re and r, - re with the thickness Az 
of the anisotropic layer may be found as follows: both r,  and re are of the form 

( T I  + r 2 z ) / ( 1 +  r I r 2 z )  Z = exp(2ik Az) (38) 
where k takes the values k, or k, in r , ,  r2 and Z .  As the thickness increases, 2 moves on 
the unit circle in the complex plane (we assume the medium is non-absorbing). The 
periods in Az of r, and re are n/k,  and n/ke. The bilinear (or fractional) transformation, 
which gives the complex numbers r, and r, in terms of 2, transforms circles into circles 
in the complex plane, and so the loci of r,  and r, are also circles. Since r ,  is real, these 
circles are symmetric with respect to reflection in the real axis, and their centres lie on 
the real axis. We shall first assume the substrate is non-absorbing, so r2 is real also. The 
radii and centres may then be found from the intersections with real axis at 2 = 2 1. At 
Z = 1 ,  r, and re take the zero-thickness value 

r t  = ( r l  + r 2 ) / ( l  + r l r 2 )  = ( k ,  - k 2 ) / ( k I  + k 2 ) .  (39) 
This is the reflection amplitude of a sudden transition between media 1 and 2. At 
2 = -1 the reflection amplitudes are 

r -  = ( r ,  - r 2 ) / ( 1  - r l r z )  = (k lkz  - k2) / (k1k2 t k'). (.lo) 
The centre c and radius a are therefore given by 

c = ( r t  + r - ) / 2  = k2(k:  - k 2 ) / ( k l  t k z ) ( k l k 2  + k 2 )  

a = ( r+  - r - ) / 2  = k l ( k 2  - k : ) / ( k ,  t k 2 ) ( k l k 2  i k'). 
(41) 

The two circles representing r,  and re touch at the point r* on the real axis. The points 
r- lie to the left of rt if k > k2, that is if n, > n2 for r, andn,n,/n, > n2 for re. When both 
r; and r; are more negative than r+ the maximum value of Ir, - r,l as Az varies is the 
diameter of the larger of the two circles for r,, and re (see figure l) ,  i.e. 

Ire - r e L a  = 2k1(k: - k:) / (k l  + k ~ ) ( k ~ k ~  + k:) (42)  
where k, is the greater of k, and k,. The same result holds when r; and r; both lie to 
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the right of r". When one of r; and r; is to the left and the other to the right of r + ,  the 
maximum value of (r,  - rei as Az varies is the sum of the diameters of the two circles, 
i.e. 

For the maximum of (r,  - re[ given in (42) to be attained, the crystal plate has to be 
thicker than 

( s /2) / ik0  - k,i = (a/4)/inO - n,n,/n,i (44) 
where A is the vacuum wavelength. The corresponding minimum thickness requirement 
for (43) is twice the above value. 

For thin crystal films (Az 4 A) both r, and r, tend to r+ ,  the correction to lowest order 
in w A z / c  taking the form 

2iki Az(k2 - k:) / (kl  + k2)' 

where k = k, or k,. Thus to first order in w AzJc the difference between r, and re is 

2ikI Az E,  A E  
(ki  + kz)' 

ro - re = (kz - k:)  = 
( k i  + k d 2  (45) 

The reflection amplitude r' is pure imaginary when the substrate is non-absorbing. Its 
maximum magnitude (at g, = 24.5" and y = 0) for thin films is then 

The direct reflection amplitude for thin crystal films is 

r = ro cos2 g, + re sinZ q = r+ + [2iki Az/ (k i  + kz)2](k2, cos2 g, + k: sin2 g, - k t )  
(47) 

to lower order in the film thickness. 
We now consider the case of an absorbing substrate. The Fresnel amplitude r2 = 

(k  - k2) / (k  + k,) is now complex for both the o and e waves. The radii and centres of 
the circles on which r, move are now given by 

(48) 
whereR, = r: andR, = ( r Z l 2 .  Therestillexistsapointcommontother,andr,circles, 
namely the 2 = 1 zero-thickness value of r, and r, as given in (39), but this is now 
complex. Figure 2 shows the locii of r, and re for calcite slabs on substrates of AI and Si. 
We sec that in the case of aluminium the reflection from the substrate is so strong as 
to make the anisotropy unimportant, but that for the silicon substrate the effect of 
anisotropy is significant, 

U = Ir2l(l - R,)/'(I - RiRz) c = r l ( l  - R2)/(1 - R1R2) 

5. Discussion of transmission properties of uniaxial layers 

The formulae (37) give f and f', the transmission amplitudes of light polarized parallel 
and perpendicular to the incident polarization, in terms of the transmission amplitudes 
r, andt,ofisotropic layerswithrefractive indicesn,andn,n,/n,. For incident polarization 
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Im 0.3 

1-0.3 

Figure 1. The loci ofr. and r., drawn for calcite (no = 
1.658, n. = 1.486) in air. As the thickness AI of the 
rrystalplateincreases,r,andr,moveoncirclesin the 
complex plane. The r,-circle is fixed, while the re. 
circles(dashed)dependontheinclinationoftheoptic r,, thedashedcirclesr,witby = 0. 
axisto the surface. The direction cosine yoftheoptic 
axis relative to thesurfacenormaliszeroon the inner 
r,circle, and +l/VZon theouterr.-circle. 

Figure 2. Loci of ro and re in the complex plane, for a 
calcite slab of variable thickness on a substrate of 
AI or Si. The refractive indices at 633nm are: AI, 
1.566 + 7.938 i; Si, 4.0 + 0.12 i .  The solid circles are 

either parallel or perpendicular to n X c (the direction of IF), the exit polarization is the 
same as that on entry. These orientations thus give zero transmission between crossed 
polarizers. Let us consider the general case of the intensity transmitted through a crystal 
between polarizer and analyser, with angle x between their easy axes, as shown in 
figure 3. The electric field transmitted through the analyser is, for an incident field of 
unit amplitude, 

ei(k2z-")(rcosX + t' sinx). (49) 

(50) 

Thus the transmitted intensity is given by 

l t c o s ~  + t'sin,# = ltj2cosZx+ It'lzsinZx + 21rt'lcosxsinxws(ph(t'/t)) 

where we use the notation 5 = 151 exp(i ph(5)). When the polarizer and analyser are 
crossed 01 = 90"), the intensity is 

It'lz = It, - t,lZ cos2 q~ sin3 q~ (51) 
and is zero when q~ is a multiple of 90" (including zero). 

The factor /to - tel depends on yz,  the square of the cosine of the angle between the 
plate normal and the optic axis, since te is a function of n., = (E,, + yz A&)*/* through k,  = 
k,gze/ny In addition both to and t ,  are functions of the thickness Az of the crystal plate. 
The main effect on to and te of the variation of Az is through their phases, as we shall see 
shortly. If this were the only effect, then 

It, - l e l 2  = If,/* + belZ - 2lt,telcos(ph(t,/t,)) (52 )  

would have maxima and minima (It,l k Itel)' when the phase difference ph(te/to) passed 
through odd and even multiples of JC, respectively. The phase difference between te and 
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Re 

FigureS. Polarizer, analyser and crystal orientation, 
in the general case. 

Fignre4.Quarticlocioft.(solidcurve) andf, (dashed 
curve). The to-quartic is fixed, while the r.-quartic 
depends on the direction cosine y of the optic axis 
relative to the surface normal. The CUNCS are drawn 
for calcite in air, as in figure 1. with y = 0 (optic axis 
in the reflectingplane), Thevaluesol2 = exp(ik Az) 
areshown at special points. 

lo is often given as (ke - k,) Ar (see for example Born and Wolf (1965), equation (14.4) 
(U)), but from (36) we see that it is actually 

The difference between (53) and the approximate phase shift (k, - k,,) Az is due to 
multiple reflection of light within the crystal. Thiscan be seen from the second form of 
I, and te shown in (36): if either or both of rl  or r2 are reduced to zero by antireflection 
coating, the phases of to and re become exactly k, Az and k, Az. In the absence of 
antireflection coatings, the phase increments of the ordinary and extraordinary waves 
on passing through the crystal plate are different from these values. The phase difference 
is the optically important quantity, and isgiven by (53). 

We now give an exact treatment off, and le, and of their difference. The second 
equality in (36) shows that both I, and re can be written in the form 

where k takes the values k, or k, in r , ,  r2 and Z. We assume the crystal is non-absorbing. 
Then as Ar increases, Z moves on the unit circle in the complex plane. The transmission 
amplitudes la and 1, also move periodically around loci in the complex plane, with periods 
k / k ,  and 2n/k, in Az. At Z = i l  both t,and re take the value +I+, where 

f +  = 1 + r+ = 2k,/(k, + k2). (55) 
At Z = k i the values taken by to and tc are kit; and kif;, where 

f b  =2k,k,/(k,k2 + kz) 1: =2klk,/(klk2 t kz). (56) 
To find the equations of the loci we proceed as in Dorf and Lekner (1987). equations 

(1 + r l ) ( l  t r2)Z/(1 + rlr,Z2) Z = exp(ik Ar)  (54) 
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(30) to (34): the relations between Z and to or re can be written as quadratics in 2. 
Elimination of Z by means of ZZ* = 1 gives the following relation between the real and 
imaginary parts of to or fe, each written as X + i Y  

(xz + Y’)’ = (t’X)’ + (t’Y)’. (57) 
(We have assumed that the substrate is non-absorbing, so k2 is real.) In (57) f +  is given 
by (55)-the same for fo and &-and the (‘-values are given by (56). Thus fo and te move 
on quartics in the complex plane, which share the points (? t+ ,  0) and are symmetric 
with respect to reflection in both Xand Y axes. It is interesting that t i ’  and f;’ move on 
ellipses, with semiaxes (t*)-’, and ( t i ) - ’ ,  (ti)-’. This fact is useful in plotting the loci, 
shown in figure 4. 

We return now to the minima and maxima of / to  - tel. First we note that when the 
optic axis lies along the surface normal, k, = k, and te = to for all thicknesses of the 
crystal slab. There is then no azimuthal dependence in reflection or transmission, and 
the crystal behaves as an optically isotropic medium (for normal incidence). For a 
general orientation of the optic axis, it is still possible for re and re to be equal, as we saw 
in figure 4. This occurs if Z,  and 2, are both + 1, or both - 1. When k, # k, the minimum 
non-zero thickness for this to be possible is 

(58) 

The maximum value of Ifo - tel is either 2t+ or t i  + ti .  The first possibility occurs when 
2, = +1 and Z,  = -1, or vice versa; the second when Z, = +i and Z,  = -i, or vice 
versa. Since 

Az = k / I k ,  - k,l = A/lno - n,n,/n,l. 

t+  >r: when ( k ,  - k, ) (k2  - k , )  > 0 (59) 

with a similar relation for t i ,  the absolute maximum of Ifo - tcl is 2t+ = 4k1/(k, + k’) if 
k, and k, are both greater than either of k l  and k,,  which is lhe usual case. If the substrate 
and the medium of incidence have the same refractive indices, the maximum value 
attainable by Ifo - t.1 is 2. The minimum thickness for which either of the maxima 2t’ or 
t i  + t: can be possible is half of that given in (58). 

We note in conclusion that the characterization of the transmitted light in terms of 
the transmission amplitudes t and f’ applies to wide beams, which can accurately be 
represented by the plane wave given in the last line of equation (21). For narrow beams 
passing through thick crystals there will be complete separation of the o and e rays within 
the crystal, and two parallel beams will exit the crystal, perpendicularly polarized in the 
Eo and Ee directions. The transmission amplitudes for these beams are to cos p, and 
te sin p,. The identity 

ltol’ cos2 q + If,l’sin’ p, = / to cos’ p, + f, sin’ q1’ + It, - t,I2 cos’ p, sin’ q (60) 

shows that for given incident power, the transmitted total power in the two beams is the 
same as it would be in a single very broad beam. 
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