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Abstract. We consider various ellipsometric arrangemenfs, consisting of polarizer, sample 
and analyser, with a compensator or polarization modulator inserted before or after the 
sample. These configurations enable the determination of the real and complex parts of the 
ratio of two basic transmission amplitudes. The polarizer-sample-analyser configuration 
can determine the absolute square and the real part ofthe ratio ofthe two basic transmission 
amplitudes. The transmission amplitudes are obtained by methods previously developed by 
the author for uniaxial crystals. The method is extended to include biaxial crystals. 
Transmission properties of free and supported anisotropic layers are discussed. 

1. Introduction 

In a recent paper (Lekner 1992) we have shown that the normal incidence reflection 
and transmission properties of a uniaxial crystal layer are contained in two reflection 
and two transmission amplitudes, r,. r, and f,, f,. These were found by a 2 x 2 matrix 
method. This is in contrast to the situation at oblique incidence, where four reflection 
and four transmission coefficients are needed, and where the usual approach is via a 
4 x 4 matrix formalism. (See, for example, Wohler et a1 1988 or Eidner et a1 1989 for 
recent work and further references.) Here we give the theory of what is measured in 
normal incidence transmission ellipsometry, for various experimental arrangements. 
Normal incidence transmission elIipsometry can be considered to be complementary to 
the technique of reflectance anisotropy, in which the difference between normal 
incidence reflectances is measured for light polarized along the two principal axes of 
the surface (Acher and Drkvillon 1992). 

Section 2 summarizes the results for transmission by uniaxial layers, and the 
appendix extends these results to biaxial layers. Sections 3 to 7 analyse five ellipsometer 
configurations. In section 8 we give some properties of the measured transmission 
amplitude ratio for a single anisotropic layer (e.g. mica in air), and for an anisotropic 
layer on an isotropic substrate. 

2. Normal-incidence transmission by a uniaxial layer 

A plane monochromatic wave normally incident onto a uniaxial crystal splits into two 
components which travel in the crystal as the plane waves 

E. exp i(k,z - ut) E, exp i(k,z - at). (1) 
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The subscripts o and e stand for ordinary and extraordinary. E,, and E. are electric field 
vectors. and are orthogonal for normal incidence (but not in general: see Lekner 1991, 
equation (29)). The wavevector magnitudes k ,  and k ,  are given by 

where n, and n, are the ordinary and extraordinary refractive indices, c, = n," and E, = n." 
are the corresponding dielectric constants, and $h is the angle between the optic axis c 
and the normal to the crystal. (The inward normal n = (O,O, 1) coincides with the z 
axis.) The ordinary electric field vector E, is perpendicular to n, being along the n x c 
direction. The extraordinary electric field vector E. is perpendicular E,,, but is not 
perpendicular to n unless $ is zero or 90". Nevertheless one can designate by o and e 
two perpendicular directions in the plane normal to n. the first being Eo, and the second 
the projection of E. onto this plane. The latter direction coincides with that of E. x n. 

Now consider a crystal plate of thickness d,  between the medium of incidence of 
refractive index nl, and the substrate of index n,. It is shown in Lekner 1992 that the 
transmission properties are characterized by two transmission amplitudes, to and f,, 
corresponding to incident polarization along the o and e directions. respectively. These 
are given by 

(3) 

2k, 2k0 ti = 1 + r"l=- 
k l  + ko 

t % = l + P , = -  
ko + k, 

(4) 

and a similar set of formulae for t,, with k, replacing k.. The wavevector magnitudes k,  
and k, are n,w/e and nzw/c, respectively. The coeBcients r; and are the Fresnel 
reflection and transmission amplitudes for the interface between media of indices n1 
and no, and likewise r; and t; are those for the interface between no and nz. Thus (30) 
is identical to the transmission amplitude for an isotropic slab of index no,  while the 
formula for tc  is the same as for an isotropic slab of index 

When the incident wave is linearly polarized with its electric field vector at angle 4 to 
the E. direction, the transmission amplitudes 

t=t.,cosZq4+t,sinZ@ t' = (to - t.) cos 4 sin 4 (6) 
give the components of the transmitted field along and perpendicular to the incident 
field dircction. 

The above formulae are for uniaxial crystals. In the appendix we show that results 
of the same form as equations (3), (4) and (6) hold also for biaxial crystals, with k ,  and 
k, replaced by k, and k-,  the positive square roots of a quadratic equation for kZ, 
equation (A5). The directions o and e are simultaneously to be replaced by the directions 
e+ and e- of the projections of the electric fields E+ and E- onto the reflecting plane. 
In the body of this paper we will continue to use the uniaxial o and e notation for 
convenience, with the understanding that the results apply (with the above substitutions) 
to the biaxial case also. 
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To calculate the output of a transmission ellipsometer we need an extension of the 
results of Lekner (1992) to the case where the substrate is of finite thickness d,, since 
the usual experimental situation is that the light originates and ends in the same ambient 
medium of index n, (usually air or vacuum). Consider first the case of light incident 
with polarization along the o direction. The reflection-transmission problem is then the 
same as for isotropic media with indices it,, no, n,, n,. The reflection and transmission 
amplitudes r, and t ,  for this system can be found by matrix methods. From Lekner 
(1987), section 12.2, we find 

I 2ik, 
to = 

k h ,  - m21 + ikl(m,, + ~ I J  
where the matrix elements mij are given by 

(7) 

C ,  = COS k0d 

m Z l  = -k2s2c ,  - kosoc2 

m22 = c,c, - - s2s, 

s, = sin kJ c2 = COS k,d2 s2 = sin k2d,. 

k2 
ko 

It follows from the structure of (7) and (8) that t ,  is the same whether the layer of index 
n, comes before or after the anisotropic layer, in accord with the general theorem of 
section 2-1 of Lekner 1987, equation (2.14). 

For incident polarization along the e direction, corresponding results are obtained 
by substituting e for o in the subscripts of the formulae (7) and (8). It is clear from 
formulae (3) and (7) that the phase difference between the transmitted o and e waves 
is not simply (k,, - k, )d .  as is sometimes assumed (see for example Born and Wolf(1965), 
section 14.4.3). As explained in Holmes (1964) and Lekner (1992). the latter expression 
does not allow for multiple reflections inside the crystal plate. Holmes considered the 
case where the principal dielectric axes of the unsupported plate are aligned parallel and 
perpendicular to the plate normal. The phase difference given in equation (53) of Lekner 
(1992) is for arbitrary orientation of the optic axis of an unsupported uniaxial plate, 
and the appendix of the present paper shows how this may be generalized to biaxial 
plates, again of arbitrary orientation. The experimental aspects of ellipsometry with 
non-ideal compensators have been considered by Archer and Shank (1967) and Yolken 
et al (1967). See also Azzam and Basharta (1987), section 5.2.1.2. 

3. Polarizer-sample-analyser 

Figure I shows this arrangement, with the anisotropic layer on a substrate of index n2. 
For this case, and also when the isotropic layer precedes the anisotropic layer, to is 
given by formulae (7) and (S), and t ,  by the same formulae with k, replaced by k,.  If 
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Figure 1. The polanizer-sample-analyser arrangement. The angles P and A give the 
directions of the easy axes of the polarizer and analyser, relative to the o direction of the 
crystal. 

the substrate is absent, to is given by equations (3) and (4) with k ,  replaced by k , ,  and 
t ,  likewise, with k,  replaced by k, .  

We consider the electric field amplitude, resolved along the o and e directions of 
the crystal: 

along o along e 

---fzT- f,ms P sin t.sinP P 
after after polarizer: sample: 

After the analyser the amplitude is thus 

r, cos P cos A + t, sin P sin A.  (9) 
For an isotropic material we would have to = t , ,  and hence the amplitude transmitted 
by the analyser proportional to cos ( P  - A), which is zero when the polarizer and 
analyser easy axes are at right angles. This is the crossed-polar configuration used in 
polarization microscopes (see for example Gribble and Hall 1985). When A = P f go”, 
formula (9) becomes 

& ( r e  - to )  cos P sin P. (10) 

Thus the transmitted intensity is zero when the polarizer and analyser easy axes are at 
right angles, with one dong the o direction and the other along the e direction. 
Extinction thus determines the o-e pair of axes, but does not distinguish between the 
o and e directions. 

The intensity, obtained as the absolute square of formula (9), is proportional to 

Ito[’ cos’ P cos2 A + 2 Re (tot:) cos P cos A sin P sin A + It,[* sin’ P sin’ A .  (11) 

There are three unknowns: It.J, ItJ, and the phase difierence between to and t , .  Three 
intensity measurements at different polarizer or analyser settings, plus an intensity 
measurement with the sample absent, are in principle sufficient to find the absolute 
magnitudes of the transmission amplitudes, and their relative phase. 

The expression (9) for the final field amplitude was obtained by using the 
fundamental t ,  and f. transmission amplitudes, and resolving along the o and e 
directions. We can check that the same expression results on using formula (6): the field 
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transmitted by the sample has components along and perpendicular to the polarizer 
easy direction equal to 

to cos2 P + t ,  sinZ P (to - t,) cos P sin P . (12) 

The field transmitted by the analyser is thus 

(to cos2 P + t ,  sin’ P) cos@ - A) + ( to - t,) cos P sin P sin (P - A )  

= to cos P cos A + t ,  sin P sin A (13) 

in agreement with formula (9). 

4. Polarizer-compensator-sample-analyser 

We consider now the effect of inserting a compensator (also known as a waveplate, or 
a retarder) between the polarizer and the sample. The compensator is a crystal plate, 
or combination of plates, which produces a known phase difference between two 
orthogonal components of the transmitted electric field. We will call these orthogonal 
directions 0’ and e‘, and C the angle between the 0‘ and o directions of compensator 
and sample (see figure 2). 

We first resolve along the 0‘ and e‘ directions of the compensator. After the polarizer, 
the respective field components are cos (P - C) and sin (P  - C). After the compensator 
the 0’ and e’ components of the electric field are t: cos (P - C) and t: sin (P  - C), where 
t ;  and t ;  are the complex compensator transmission amplitudes for light polarized along 
the 0’ and e’ directions. 

We now resolve along the o and e directions of the crystal. The electric field 
components are 

(14) 1. E, = t ;  cos (P - C) cos C - .th sin (P - C) sin C 

E,  = t; cos (P  - C) sin C + t: sin (P - C) cos C 

After transmission through the sample the electric field components along o and e are 
t ,E .  and f .E , .  and after the analyser the final field is 

t,E, cos A + t , E ,  sin A .  (15) 

The intensity is proportional to the absolute square of this quantity. We consider the 

Figure Z The polarizer-compensator-sample-analyser transmission ellipsometer arrange- 
ment. 
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particular case of a null setting of the ellipsometer, in which the intensity is made zero 
(in practice minimized). The intensity will be zero when the real and imaginary parts 
of the equality 

E, 
Eo 

t& = --tan A 

are satisfied. From equations (14) we see that 

E ,  - t:, tan C + t: tan ( P  - C )  
E, t; - t: tan C tan (P - C) 

= tan (C + D) -- (17) 

where D = Dr + iD, is a complex angle defined by 

t' 

t o  
tan D = f tan ( P  - C )  (18) 

Thus a null setting determines the complex ratio tJtC in terms of the compensator 
transmission amplitude ratio and the angles P,  C and A :  

(19) tJt.  = -tan (C + D) tan A ,  

5. Polariser-sample-compensator-analyser 

This ellipsometer arrangement is as in the previous section, exccpt that the compensator 
follows the sample. We resolve first along the sample o and e directions. As in 
section 3, the o and e components of the field after passing through the sample are 
t ,  cos P and 1, sin P. We now resolve along the 0' and e' directions of the compensator. 
The electric field components are 

1- (20) 
E, = t,cosPcos C + &sin Psin C 

E: = - to  cos Psin C + t, sin P cos C 

After passing through the compensator the 0' and e' components are t ;E,  and t:E:. 
After the analyser the field (along the analyser easy direction) is 

t.E:,cos(A -C)+t :E:s in(A-C).  (21) 

We again define a complex angle related to the ratio t:/t:: 

t' 

10 
tanD' = tan(A - C) 

A null setting is obtained when 

which gives the complex ratio t , j t ,  in terms of the compensator transmission amplitude 
ratio and the angles P, C and A: 

(24) 
t o  - = -tan P tan (C t D'). 
te 
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6. Polarizer-modulator-sarnple-analyser 

We now turn to polarization modulation ellipsometry, which has been extensively used 
in reflection studies of interfaces (Jasperson and Schnatterly 1969, Beaglehole 1980). 
The use of a birefringence modulator to determine the polarization properties of light 
has been described in detail by Badoz et a l ( l977) .  The polarization state of the light 
is varied sinusoidally, with synchronous (lock-in) detection of the intensity. The 
modulator may be, for example. a block of fused quartz glued to a similar block of 
crystalline quartz, to which is applied an oscillatory electric field. The piezoelectric stress 
produces an oscillatory birefringence in the fused quartz, which then acts as a modulator 
with an oscillatory phaseshift 

t: - % ei* 
t: 

J ( t )  M sin Qr . (25) 

Here M is the maximum phaseshift, and Q/2n is the modulation frequency. The first 
equality in (25) is approximate, since the ratio t:/t: does not have unit modulus exactly, 
as noted in the discussion at the end of section 2. For most birefringent modulators 
It:/tAl is very close to unity, and we set it equal to unity for simplicity. The second 
equality in ( 2 5 )  is also approximate, as has been shown by Acher et a1 (1988), who 
considered the effect of residual strain in the modulator, and of higher harmonics in 
the modulation. Again, we assume (25) to be true here. 

Since the modulator is a compensator with a sinusoidally varying phase, we can use 
part of the analysis of section 5, making the substitution (25). The field passing the 
analyser has amplitude given by (14) and (IS), which we write as 

t:r, cos ( P  - C) cos C cos Ai7 + tan C tan A + e’’ tan(P - C)[tan A - T tan C ] )  (26) 

where 
t , / t ,  = 7 = T r  + iTi (27) 

is the quantity to be determined. The absolute square of the expression inside the braces 
in equation (26) is 

(7: + 7?)[1 + tan’ ( P  - C) tan2 C ]  + kr tan C tan A[l -tan2 ( P  - c)] 
+ tan’ A[tan* ( P  - c )  + tan’ C] 

+ 2.r; sin 6 tan (P - C) tan A(1 + tan’ C) - 2 cos 6 tan ( P  - C) 

x { (7:  + 7 3  tan C + T ,  tan A(tan2 C - 1 )  - tan C tan’ A } .  (28) 

Now sinusoidal functions of sinusoidal arguments are periodic. and can thus be 
expressed as Fourier series, the coefficients of which are Bessel functions (Watson 1966, 
section 2.22): 

(29) 

30 

cos (M sin Qr) = Jo(hf) + 2 C J,,(hf) cos (2nQt) 

sin ( M  sin Qt) = 2 

n = i  

13 

JZn+ , ( M )  sin ((271 + 1)Qt) 
0=0 
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Thus if we write expression (28) as a + b sin 6 + c cos 6, the DC, !2 and 2Q parts of the 
intensity are proportional to 

2bJ,(M) sin at . (30) 1 DC: a + cJ,(M) 

a: 
212: 2cJ2(M) cos 2a t  

The a signal is proportional to the imaginary part oft&,  while the DC and 252 signals 
depend on both the absolute square and the real part of this ratio. 

In considering actual intensities, rather than ratios of intensities, it is better to include 
the factor [cos (P - C )  cos C cos A]’ (see expression (26)). The intensity then becomes 
~ l t ~ r c l ’  (a’ + b’sin 6 + e‘ cos 6), where 

a‘ = (r: + T:) cos’ A[l + cos 2(P - C )  cos 2 C ]  + T, sin 2C sin 2A cos 2(P - C )  

. (31) i + sin’ A [  1 -cos 2(P - C )  cos 2C] 

b‘ = ri sin 2(P - C )  sin 2.4 

c’ =sin 2(P - C)(sin 2C sin’ A + T, cos 2C sin 2,4 - (T:  + r’) sin 2 C }  

When P-C = 45” this simplifies to 

a’ = (T; + T:) cos’ A + sin’ A 

b’ = T~ sin 2A 1. (32) 
c’ = sin 2C sin’ A + rr cos 2C sin 2.4 - (rf + T;) sin 2 c  

We note that rotating the sample gives the reference o or e direction by the position at 
which the 0 signal is zero, since b‘ is zero when the o or e direction coincides with the 
analyser easy axis (i.e. when A = 0 or 90”). 

7. Polarize-sample-modulator-analyser 

The final configuration we consider is a polarization modulation ellipsometer with the 
modulator between the sample and the analyser. From expressions (20) and (21) of 
section 5, the field amplitude passing the analyser can be written as 

tkt. cos P cos C cos ( A  - C){T + tan p tan C + ei6 tan@ - C)[tan P - T tan C]}. (33) 

The absolute square of the quantity inside the braces is 

(T: + rf)[l + tan’ ( A  - C )  tan’ C ]  + 2 ~ ,  tan P tan C[l - tan’ ( A  - C ) ]  

+ tan’ P[tanz C + tan’ ( A  - C ) ]  

+ 2rj tan P tan ( A  - C)(1 + tan’ C )  sin 6 - 2 tan (a - C )  

x { ( r f  + r;) tan C + r,  tan p (tan’ c - 1) - tan’ P tan C }  cos 6. (34) 
If again we write this as a + b sin 6 + c cos 6, the DC, fl and 2Q signals will be given 
by expressions (30). Again the sin 0 part is proportional to T ~ ,  while both rf + $ and 
T~ enter into the DC and cos 2Qt parts. We also note that expression (34) can be obtained 
from expression (28) by interchanging A and P.  
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The actual intensities are $]t;t,lz(a’ + b’sin b + c‘ cos b) ,  where 

a’ = (7: + z,”) cos’ f‘[I + cos 2(A - C) cos ? C ]  + T~ sin 2P sin 2C cos 2(A - C )  

. (35) 1 + sin’ P[1 - cos 2C cos 2(A  - C ) ]  

b‘ = zi sin 2P sin 2 ( A  - C) 

c’ = sin 2(A - C){sin2 P sin 2C + T~ sin 2P cos 2C - (7: + T:) sin 2 C j  

When A - C = 45“ the coefficients simplify to 

a’ = (T: + z2) cos‘ P + sin’ P 

b‘ = r,  sin 2P 1. (36)  
c’ = sin2 P sin 2C + T~ sin 2P cos 2C - (T: + T:) sin 2C 

In this case rotating the sample and noting the position at which the 51 signal is zero 
gives the o or e direction as then coincident with the easy axis of the polarizer. 

8. Properties of the transmission ratio t,,/f, 

We begin with the simplest case, that of an unsupported crystal plate of thickness d .  
From equations ( 3 )  and (4) we have (setting k ,  = k , )  

The formula for L, is obtained by replacing k, by k,.  Thus 

The ratio ZJZ, = exp i(k, - ke)d  gives the phase change which is usually assumed to 
hold between the o and e waves. For thin crystal plates we set Z z  = 1 + 2ikd + . . 
(with subscripts o and e), and find that to first order in the plate thickness 

z = 1 + id@, - k,)(k, + k, ) /2k ,  + . . .. (39) 

Thus multiple reflections inside the crystal alter the first-order term by the factor 
(k,  + k, ) /2k , .  (When the optic axis is perpendicular to the surface normal, this factor 
equals (no + n,)/2n,, which is 1.57 for calcite in air.) For small thicknesses, measurement 
of the imaginary part of T gives the quantity 

nd 
%, 

n,’(n.’ - n:) sin’ II, 
n: sin’ $ + n: cos’ $ 

(k: - k:)d/2k,  = - x 

where i., is the wavelength in the medium of incidence, $ is the angle between the optic 
axis and the normal to the crystal plate, and equation ( 5 )  has been used. 

If we imagine the thickness d of the crystal to increase continuously, 2. = eLod and 
2, = eikcd move around the unit circle in the complex plane, with periods in d equal to 
2n/!i, and 2n/k,. The transmission amplitude ratio T = t,/t. also follows a path in the 
complex plane as d increases. We first consider the behaviour of r for thin layers. We can 
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rewrite equation (38) as 

where e, = cos (k ,d) ,  so = sin (k ,d ) ,  and similarly for c. and se. Thus the real and 
imaginary parts of T are 

- 

Figure 3 shows how T ,  and T~ vary with crystal thickness, up to about 14 wavelengths. 
We see that the imaginary part is linear in the thickness only for very thin samples. 
Both T~ and T~ are non-monotonic for larger thicknesses, so that a given value of either 
may not be associated with a unique thickness. We shall see shortly that even when 
both the real and imaginary parts are measured the thickness is not fixed uniquely. 

We now consider the path of T in the complex plane as the thickness of the crystal 
plate increases. From equation (38) we see that T is made up of functions with periods 
n/k,, n/k. and 2n/lk0 - k,l in the layer thickness d. The path of z as d increases is like 
that of a satellite circling a planet which orbits the sun. The motion is not periodic 
unless kJk, is rational, but T crosses the positive real axis each time that d is close to a 
multiple of2n/[k, - k.1. We note that the path crosses itselfmany times during one orbit 
(see figure 4). At each crossing the same value of T results from two nearby values of d. 

The absolute square of 7 can be written as 

1 -  k2 0 
IT1 - -i X 

k, 
(k: + k:)’ - (k: - k:)2 COS’ ( k o a  
(k: + k:)’ - (k: - k,”)2 COS’ (k ,d)’  

Thus T must lie within the annulus formed by two circles centred on the origin: 

(43) 

Figure 3. The real and imaginary parts olr  = bit, for a thin calcite layer in air, as a function 
of the layer thickness. The optic axis is taken to lie parallel lo the layer. 
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Im 

Figure 4. The path traced by i = To/& in the complex plane as the thickness of the 
anisotropic layer increases from zero to one ‘orbital period’ 2 n k  - kJ. The curve is drawn 
for calcite, with its optic axis perpendicular to the surface normal. The arrow shows the 
direction of increasing layer thickness. The real and imaginary axes are each drawn from 
- 1 to + 1. The ’orbit’ starts a t  r = I and ends at the point indicated by a dot. The broken 
curves are the inner and outer bounding circles defined in equation (44). 

This spread of values of the magnitude of ‘T is attained when its phase is near L-n/2, 
but a narrower spread occurs when the phase of ‘T is close to 0 or n. 

We now consider an anisotropic layer on a substrate of index n, and thickness 
d,. (The discussion following expressions (8) noted that the transmission properties 
are the same when the light enters the supporting layer first.) The ratio ‘T = to/& 
is obtained from expressions (7). (8) and the corresponding equations with k ,  replacing 
k,. For a thin anisotropic layer the transmission amplitude becomes, to first order 
in d 

+ O ( d 2 )  (k t  - k3{ik1s2 - k2c2}d  
2ik,k2c, + (k: + k:)s2 

r = l +  (45) 

where c ,  = cos k,d, and s2 = sin k2d2, as in (8). This expression reduces to (39) when 
d ,  + 0, and also when k ,  + k ,  (in either case the substrate has no optical effect). Note 
that, in contrast to (39), the first-order term is complex rather than imaginary. The real 
and imaginary parts are seen by writing the coefficient of d in (45) as 

We see that the real part is zero when sin 2k2d,  is zero, but that the imaginary part is 
non-zero for all values of k,d2 

The ‘substrate’ may in fact he a thin isotropic layer (for example a liquid film) 
supported by the crystal. Thus it is interesting to examine the behaviour of T as d ,  tends 
to zero. We find that T is the sum of (41) plus a series in powers of d,, the coefficient 
of d ,  being 

(47) 
k,  ( k t  - k:){k:(k,c,s, - /ieceso) + k,k,(k,s,e, - k,s,c,) + i(k2 - k:)k,s,s,} 

k ,  
- 

[(k: t k:)s, t 2 i k , k , ~ , ] ~  
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As one would expect. this becomes zero when the anisotropy tends to zero, and also 
when n2 -+ n , .  

We comment finally on absorbing media. The fundamental formulae derived here 
are valid for absorbing crystals and/or substrates. Absorption is allowed for by means 
of complex values of the dielectric constants E,, E, and E * ,  or of the refractive indices n,, 
ne and nz. The wavevectors k,, k ,  and k,  will be complex if the media are absorbing. 
Throughout this paper we have made simplifications based on the tacit assumption that 
k,, k ,  and k ,  are real. For example, (41) is general hut [42), (43) and (44) assume that 
the k s  are real. Likewise (45) is general hut in deducing (46) we have assumed that k ,  
is real. 

Appendix. Normal incidence onto biaxial crystals 

When a wave is incident onto any planar stratified system which is invariant with respect 
to translation along the system surface, the wavevector components parallel to the 
surface will be conserved. For normal incidence this implies that the wavevector k inside 
the anisotropic medium will be along the inward surface normal. (The propagation of 
energy, with direction given by E x B, is not in general along k, as is well known.) 

To find the possible values of Ikl inside a homogeneous anisotropic medium, we 
eliminate the magnetic field B from the Maxwell curl equations. For plane waves, with 
space and time dependence exp i (k.u - mt), these read 

(AI) 

where E is the dielectric tensor. On eliminating B by taking the vector product of the 
first equation in (Al) with k and substituting from the second, one obtains (see, for 
example, Born and Wolf 1965, section 14.2.1) 

w 0 

C C 
k x E = - B  k x B =  - - E E  

( E O ~ / C ~  - k’)E + k ( k * E )  = 0 .  642) 

We look at the possible solutions of (A2) in the principal dielectric axes frame, in which 

E =  [ E n  0 O E b  ” .  643) 
0 0 -&c 

The three equations (A2) then read 

(E~w’/c’ - k2)Eb + kb(k,E, + kbEb + k,E,)  = 0 . 644) 1 (E,w~/c’ - k2)E,  + k,(k,E, + kbEb + k$,) = 0 

(E,w’/c’ - k’)E, + k,(k.E. + kbEb + k,E,)  = 0 

This is a set of three homogeneous equations in the unknowns E*, E ,  and E,, and a 
solution with non-zero E exists if the determinant of the coefficients of E,, E, and E,  
is zero. This leads to ‘Fresnel’s equation of wave normals’ (Born and Wolf 1965, 
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section 14.22), which we write in the form 

where a, p and y are the direction cosines of k relative to the principal dielectric axes 
a, b and e, so that 

k = k(a, D, Y) a ’ + p ’ + y 2 = 1 .  (A61 

Equation (A5) is a quadratic in k’, giving the magnitude of the wavevector as a function 
of its direction. We label the solutions k:, according to the sign chosen in taking the 
square root of the discriminant of equation (A.5). We will note some properties of the 
solutions. Suppose (as is conventional) the axes are chosen so that 

Ea < Eb < E , .  (A7) 

Then bounds on k: are 

Equality in (AS) is attained when k is parallel or perpendicular to one of the dielectric 
axes. When a’ = 1, for example, (ck/w)‘ takes the values E,, and E,, while when OL = 0 
it takes the values E, and E,,E./(P’E~ + Y ~ E , ) .  

The discriminant of the quadratic for (&/U)’ can be written as 

a4E.’(eb - E,)’ + P4EE(Ec - E,)’ + Y4E?(E. - Eb)’ + 20Lzp2E,E,(E, - E,)(E, - E b )  

+ 2p2yzEt,E,(E, - E d ( & .  - E,)  -!- 2~’OLZE,E.(8b - Ec)(Eb - E n ) .  (A91 

From inequality (A7), all the terms are non-negative except for the last. When k is 
perpendicular to the b axis ( p  = 0), three of the non-negative terms are zero, and the 
negative term remains. Thus the minimum of the discriminant occurs when p = 0, its 
value then being 

{X’E.(E, - E b )  - YzE.(Eb - (AlW 

The discriminant is thus zero when the direction cosines cc, p. y of k are given by 

Thus there are four directions of k ,  given by equations (All) ,  for which the discriminant 
is zero and the roots k: of equation (A5) are equal. These directions, by definition. 
determine the two optic axes, along which the phase speeds of the two modes are equal 
(k and - k  are taken to be equivalent in the definition of optic axes). The common 
eigenvalue of equation (A5) when equations ( A l l )  hold is k 2  = E ~ w * / c ’ .  Note that the 
optic axes lie in the a, c plane, and have directions (la[,O, + Iy l ) ,  where 01’ and y2 are 
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given by equations (Al l ) .  The cosine of the angle between the optic axes is therefore 

Thus the principal dielectric axis a is the acute bisectrix of the optic axes if cb is greater 
than the harmonic mean of E ,  and E<. 

Once equation (AS) is solved for the magnitude of k, the direction of the 
corresponding electric field \sector can be found from (A2): 

Thus, for given direction (a, B, y) of k, the electric field components are in the ratio 

where kZ is one of the solutions k:, k? of equation (As). (In the cases where one or 
more of the denominators in equation (A14) is zero, the directions of E must be found 
directly from expression (A2). to avoid division by zero in equation (A13).) 

E” and E -  are not orthogonal in general, but we will prove that their projections 
onto the reflecting surface are orthogonal. To verify this we show that, for normal 
incidence, 

(n x E + ) . f n  x E - )  = 0 ( ~ 1 5 )  

where n is the inward surface normal. This is the same as the unit vector in the k 
direction, i.e. n = (U, 1, y) ,  so 

n x E = ( P E ,  - YE,, Y E ,  - U&, aE, - BE,). 

From equation (A14), this is proportional to the vector 

fl?’(Eb - E,)[% - (ck/~)’I, ?a(&,  - d [ E b  - (ck/w)’], @(Ea - &b) [Ec  - (ck/w)’].  

Thus the scalar product in equation (A15) is the cyclic sum of terms like 
(A17) 

P z Y 2 ( E b  - %)’(Ea - E+) (% - E - )  (A181 

where E *  = (ck*/w)’ are the solutions of equation (A5). The quadratic equation (AS), 
of the form 

A ( c k / ~ ) ~  + B ( c k / ~ ) ’  + C = 0 (-419) 

&+E-  = C/A E +  + E -  = - B / A .  (AZO) 

has solutions E +  and E -  whose product and sum are given by 

Thus the product of the final two terms in (A18) is equal to 

(A&: + B E ,  + C) /A .  (A21) 

On using az + P’ + y z  = 1 and the values of A, E and C as given in (AS), i t  follows 
from the algebraic identity 

B ’ Y ~ ( E ~  - E, )~ (AEZ + BE, + C) + cyclic terms = 0 (A22) 
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that the projections of E +  and E -  onto the plane perpendicular to n are orthogonal. 
Thus, at norinal incidence, biaxial crystals have both modes with wavevector normal 
to the surface, of magnitudes k ,  and k - ,  and electric field components in the plane of 
the surface are orthogonal. The continuity of the tangential components of E and of 
their derivatives at the boundaries of the crystal, which determines the reflection and 
transmission amplitudes, can thus be applied to biaxial crystals in the same way as to 
uniaxial crystals. 

We note finally that the vector identity 

(U x b).(c x d) = ( U . C ) ( b . d )  - (u.d)(b.c) ( ~ 2 3 )  

E t * E -  = ( n . E + ) ( n . E - ) .  ( ~ 2 4 )  

applied to (A15) shows that at normal incidence 

That is, the scalar product of the two electric fields is equal to the product of the 
components of E' and E -  along the direction of propagation. 
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