
ELSEVIER Physica B 215 (1995) 329 336 

Neutron reflection interferometry: 
Extraction of the phase in total reflection from stratified media 

John Lekner 
Department of Physics, Victoria University of Wellington, Wellington, New Zealand 

Received 9 March 1995 

Abstract 

Lloyd's mirror configuration has been suggested for determination of the reflection phase, in order to obtain 
information about the reflecting stratification. For thermal neutrons total reflection occurs at small glancing angles. We 
show that the phase of the reflection amplitude in total reflection is linear in the glancing angle at small angles, and 
determine the coefficient of proportionality for three solvable variations of the scattering length density. The semiclassical 
reflection phase is shown to fail at grazing incidence, but, for smooth profiles which are thick compared to the neutron 
wavelength, may have a useful range of glancing angles smaller than the critical angle. 

1. Introduction 

Lloyd's mirror experiment [1] produces interfer- 
ence fringes between a direct and a reflected beam, 
providing information about their relative phase. 
Klein, Opat and collaborators have suggested 
Lloyd's mirror configuration for neutrons [21, and 
implemented it for light [3]. They used the semi- 
classical short-wave limit for the reflection phase 

j t Z o  

~ (~a = 2 dz q(z) - n/2, (1) 
o 

where q(z) is the local value of the normal compon- 
ent of the wave vector, and Zo is the classical turn- 
ing point at which q is zero (see for example Ref. [4, 
Sections 6 7 and A-6, Eq. (113)]). This approxima- 
tion is known to fail at grazing incidence, where the 
effective wavelength 2n /q  is large; see Figs. 6-9 and 
the accompanying discussion in Ref. [4]. Since 
the Lloyd mirror experiment for neutrons must be 

performed at glancing angles 0 smaller than the 
critical angle 0c for total reflection, and 0c is typi- 
cally of the order of one degree for neutrons of 10 A 
wave-length [5], we need to examine the behaviour 
of the reflection phase 6 at small glancing angles. 
We shall show that, in all cases, 

6 = + 7t + cO + O(03), (2) 

where the coefficient c is determined mainly by the 
variation in scattering length density at the outer 
boundary of the reflecting stratification. The initial 
variation in the reflecting medium is important at 
glancing incidence, because the neutron wave pen- 
etrates only to a distance of order z0, which goes to 
zero at grazing incidence. 

At grazing incidence (0 ~ 0) Eq. (2) correctly 
gives the reflection amplitude r = e i a ~ -  1, in 
agreement with the general result of Ref. [4, Section 
2-3], whereas Eq. (1) gives r --* - i. As we shall see, 
the short-wave formula (1) also fails to give the 
correct 0-dependence at small 0. 
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2. A general formula for the total reflection phase 

Let neutrons of  wavelength 2 be incident from 
vacuum onto  a stratified layer situated between 
z = 0 and z = Az. The scattering length density 
p = b/v (b is the bound  scattering length, and v is 
the volume per scatterer) is assumed to be a func- 
tion of z only. Then the wave equat ion for the 
neutrons  separates: if the neutrons  travel in the zx  
plane, the wave function is (approximately)  the 
modula ted  plane wave exp(iKx)~k(z), where ff satis- 
fies 

d z  2 + q2(z)~b 0, 

q2(z ) = q2 _ 4rip(z), 
(3) 

For  0 < 0c the neutrons  are totally reflected, with 
exponential  decay (evanescence) into the substrate  
according to exp( - ] q 2  [z), where 

2 ~  2-  Iq21 = (4rcp2 - q2)1/2 = ~- ( s in  O~ - sin20) '/2. (9) 

The continuity of  ~ and dO/dz at z = 0 and 
z = Az gives four equations,  which can be solved 
for the four unknowns  r, t, ~ and fl in Eq. (6). We 
find (cf. Eq. (2.25) of  Ref. [4]): 

qlq2(F, G) + iqx(F, G') + iq2(F', G) - (F', G') 
r =  

qlq2(F, G) + iq,(F, G') - iq2(F', G) + (F', G')' 

(10) 

where 

with 

2x 2n 
ql = ~ -  sin 0, K = ~ -  cos 0, (4) 

A A 

being the normal  and tangential  componen t s  of the 
wave vector  in the med ium of incidence. Because of 
the t ranslat ional  invariance in the x-direction, K is 
a constant  of  the mot ion,  while q(z) is not. The 
classical turning point  Zo is given by q(zo)= O, 
which implies 

q2 = 4np(zo) or p(zo) = nsin  20/Z 2. (5) 

(F, G) - F1G2 -- G1F2, 

(F, G') - F~G'2 - G~F'z, 
(11) 

(F', G) = F~G2 - G~F2, 

(r ' ,  G') =- F~G'2 - G~F'z, 

and F1 = F ( 0 + ) ,  F2 = F(Az- - ) ,  F'I = d F / d z  
evaluated at z = 0 + ,  etc. We see that  r + - 1 as 
ql ~ 0 ,  as stated above.  When  0 < 0c, q2 = ilqz] 
and 

r =  

The z-dependence of the wave function can be 
written as 

eiq, z -Jr- reiq, z, 

~b(z) = ~F(z) + fiG(z), 

teiq2 z, 

z~<0, 

0 < z < A z ,  

z >~ Az, 

(6) 

where r and t are the reflection and transmission 
amplitudes,  and F(z) and G(z) are linearly indepen- 
dent solutions of Eq. (3) within the reflecting layer. 
The substrate  is assumed to be homogeneous ,  with 
scattering length density P2, so that  

q2 = ql 2 _ 4~p2 ~ q2 _ q2. (7) 

The critical angle 0c is defined by q2 = 0, so that  

sin z 0c = ).2p2/7~. (8) 

ql [(F, G') + Iq21(F, G)] + i[(F" G') + Iq21(F', G)]  

q, [(F, G') + Iqzl(F, G)] - i [(F', G') + Iq2] (F', G ) ]  

(12) 

The  wave equat ion (3) is linear, with real coeffi- 
cients. Thus  the functions F(z) and G(z) may  be 
chosen to be real, in which case the phase of r 
(r = e ia for 0 < 0c) is given by 

6 = 2 arc tan ~" (F ' ,G ' )+_IqzI (F ' ,  G) 
( q l [ ( F ,  G') + Iq2l(F, G)]  J 

_--2 arc tan ( Q ) .  (13) 

Since 

arc tan(X) = s g n ( X ) n / 2  - X - 1  + O(X-3) ,  (14) 
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we see that  

2 q l  O ( q l ' ~  3 (15) 
6 --- n sgn(Oo) - Q o  + \ Q o J  

with Qo equal to the limiting value of  Q as q t ~ 0 at 
grazing incidence, where, f rom Eq. (9), 

2n 
Iqel ~ q~ = (4npz) 1/2 = -7- sin 0¢ (16) 

A 

(for ql < q ¢  we have [qel =(q2_qZt) l /Z) .  Since 
ql = (2n/2)sin 0, Eq. (15) proves Eq. (2) for reflect- 
ing profiles of  finite thickness. 

We now look at some examples of  the behaviour  
of  the phase 6. 

3. Exact total reflection phase for three profiles 

We will give explicit formulae for the phase 6 in 
total reflection, i.e: for ql < qc = (4~p2)  1/2, for the 
three variations of  the scattering density p(z) shown 
in Fig. 1. 

3.1. Homogeneous layer 

When 0 < 0 a where sin 2 0 a = J.2pa/~ , q = (2hi/2) 
× (sin z 0a -- sin 2 0) 1/2 = ilql and the solutions of  

the wave equat ion within the layer are F(z) = e -Iqlz 

and G(z) = e +lql~. Then, with 

C - cosh I ql Az, S = sinh I ql mz, (17) 

we have 

(F, G) = 2S, (F', a ' )  = - 21ql e S, 
(18) 

(F, G')  = 2lqlC, (F', G) = - 2lqlC. 

(a) (b) (¢) 

Fig. 1. Three scattering density profiles for which the total 
reflection phase is calculated: (a) homogeneous layer; (b) linear 
variation of p(z); (c) p = pe/(l + e-~/a). 

Thus the function Q defined in Eq. (113) is 

/ T + Iq21/lq[ "~ 
e = - [ q l  ~- /+-T[- -~21~])  ' (19) 

where T = tanh(lq[Az). As ql ~ 0 ,  ]qe] ~ q ¢  and 
[q] ~ qa = (2n/2)sinOa, so 

tanh (q,Az) + qc/qa 
Q ~ Qo = - qa 1 + (qc/qa)tanh (qaAz)" (20) 

This varies between - q ¢  (when qaAz ~ 1) and - qa 
(when qaAz >> 1). 

If Pa < P2 and 0a < 0 < 0c, q = (2n/2)(sin e 0 -  
sin e 0a) t/2 is real and the appropr ia te  solutions are 
F(z) = cos qz and G(z) = sin qz. Then with 

c = cos qAz, 

we find 

(F, G) = s, 

(F, G')  = qc, 

S = sin qAz, (21) 

(F', G') = q2s, 
(22) 

(F', G) = - qc. 

The function Q which gives 6 = 2 arctan(Q/ql) is 
nOW 

Q = q t an [qAz  - arctan(Iq2 I/q)]. (23) 

At 0 = 0, the normal  componen t  of  the wave vector 
within the layer is zero, and both Eqs. (19) and (23) 
give 

- 1  
Q(O = 0,) = (24) 

Az + 1/]q2(O,)[ 

F r o m  Eq. (20) we conclude that  Qo is negative, so at 
grazing angles of  incidence the reflection phase 
increases linearly with 0 from - n. When Pa = P2 
the layer does not  reflect (it is identical to the 
substrate as far as the neutrons  are concerned). 
Then Iq[ = [q2] and we regain the bare substrate 
phase 

6 = - 2 arctan(lqzl/qt) (25) 

in accord with the reflection ampli tude (q i - i l q2 J)/ 
(ql + ilq2[). 

F r o m  Eqs. (24) and (13) we see that  

tS(Oa)= 2arctan[qa Az - 1  1 + qa/(q2 _ q2)X/i " (26) 
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Thus ~(0) changes by at most n as 0 increases from 
zero to 0,. It follows that if many Lloyd fringes are 
to be seen, they have to be in the region 0a < 0 < 
0c, where the neutron wave function is oscillatory 
within the layer (we assume that pa < P2). The 
parameter which determines the number of fringes 
is, from Eq. (23), 

(q2 _ q2)1/2 az  = [4n(p2 - -  pa)]l/ZA2, (27) 

since q increases from zero to (q2 _ qa2)l/2 as 0 in- 
creases from 0a to 0c. An additional fringe appears 
for each increment of this parameter through an 
odd multiple of n/2; thus a count of the fringes 
gives an estimate of the quantity (27) (see Section 
4 for a discussion of other contributions to the total 
phase). Fig. 2 shows the total reflection phase 6 for 
a layer of silicon on iron. 

3.2. Linear profile 

We now consider the scattering length den- 
sity profile shown in Fig. l(b). When p(z) is linear 
in z, so is q2(z)= qZ_4np(z ) .  We change to 
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Fig. 2. The  phase  of the reflection ampl i tude  for a 3182 layer of  
silicon ( p a = 0 . 2 1 5 x l 0  5 A - 2 )  on iron ( p 2 = 0 . 8 0 5 x 1 0  -5 
A z). For  neu t rons  of 6.28 A wavelength,  Az ~ 2000,~, 0, ,~ 
0.Y ~ and  0c ~ 0.Y'. The  dot ted line is calculated from Eqs. (15) 
and  (20). The  dashed  curve shows  the semiclassical phase  
2~oodzq(z ) - n / 2  = 2(q 2 - q2)U2 Az -- n / 2  (for O. ~< 0 ~< 0¢). 

[6] the variable 

1 Az \2/3 qZ(z ) = A Z  2/3 ((z) = \ ~  ~pp ~ q2(z) -- q2(z)/k2, 

(28) 

where Ap = Pb - -  Pa' The wave equation (3) trans- 
forms to 

d26 
d( 2 + ( 6 = 0  (29) 

with solutions A i ( -  () and B i ( -  (), the Airy func- 
tions [7]. These functions, and their derivatives, 
need to be evaluated at the end points 

~a = (q2 _ 4npa)/kZ, (b = (q2 _ 4npb)/k e. (30) 

For definiteness we will assume 0 < Pa < Pb < P2 
in the discussion that follows. At grazing incidence 
both Ca and ~b are negative, and the functions 
F(z) = A i ( - ( )  and G(z) = B i ( - ( )  respectively de- 
crease and increase monotonically from z = 0 to 
Az. At 0a defined by sin 2 0a = ,~2pa/rt the end point 
~a is zero. For 0a < 0 < 0b = arcsin(2Zpb/n) 1/2 the 
functions F and G change from oscillatory to 
monotonic behaviour at the classical turning 
point Zo defined in Eq. (5). The turning point moves 
from z = 0 to z = Az as 0 increases from 0a to 0b. 
Before the turning point the Airy functions are, for 
large argument, proportional to (-~/2 times the 
sine or cosine of 2 ( 3 / 2 +  n/4. From Eq. (20), 
2(3/2=(Az/Ap)q3/61t;  thus the dimensionless 
parameter 

1 Az 2 4x/-n 
6rtAp(qb--q2)  3 /2 -  ~ (pb--Pa)X/2Az (31) 

determines the number of Lloyd fringes seen 
for 0 ~< 0b (an additional fringe appears for each 
increment of this parameter by 2n). We note that, 
as in the case of the corresponding fringe counting 
parameter (27) for a homogeneous layer, the 
fringe number is independent of the neutron 
wavelength: for shorter wavelengths the same num- 
ber of fringes is compressed into a narrower angu- 
lar range. 

The short-wave approximation to the phase, 
t~ a = 2J'~) ° dz q(z) - n/2 can be evaluated analytically. 
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We find 

f°dz q(z) = (32) 

{ 0 0. 0a 

1 A z  2 2 3/2 
(ql -- qa) , 0 a ~ 0 ~ 0b, 

1 A ~  . 2 2 3/2 ~ p p  {(ql -- qa) _ (ql 2 _ q2)3/2}, 0b ~< 0 ~< 0¢, 

AS Ap = Pb - -  Pa tends to zero, this reduces to the 
homogeneous  layer phase integral 

y io {o. 0. 0a. ,33, 
d z q ( z ) =  ( q ~ _ q 2 ) l / 2 A z  ' Oa<O<~O~. 

The exact phase  and the shor t -wave approx ima te  
phase are c o m p a r e d  in Fig. 3. In calculat ing the 
exact phase  f rom Eq. (13) we need derivatives of the 
Airy functions with respect to z. These are related 
to the ( derivatives via 

d (AP']k  d 
d--~ = - s g n \ ~ z /  

_ s g n ( ~ P z ) / - ' A P I '  ~/~d ~ r t ~ )  ~ .  (34) 

A I 

i f V  
I 

Oa 

A II 
I 

Ob 

Fig. 3. Comparison of the exact and semiclassical reflection 
phases for the linear ramp profile of Fig.ol(b), with Pa = 0.215, 
Pb = 0.644 and P2 = 0.805 (units of 10 -5 A~ 2) for a layer thick- 
ness Az = 3182 (this corresponds to 2000A for 2 = 2hA). The 
full curve is the exact phase, the dashed curve the short-wave 
approximation. 

3.3. Hyperbolic tangent profile 

In contras t  to the two profiles just  considered, 
the profile 

P p ( z ) -  - ½ P 2 [ 1  + tanh(z/2a)] 
1 e-Z/a + 

(35) 

has no finite boundaries .  Since e 3 ~ 20, p(z) varies 
from abou t  5% to abou t  95% of P2 as z increases 
f rom - 3a to + 3a. F r o m  Ref. [8] or  directly f rom 
the formula  (10.44) of Ref. 1-4] we find for this 
profile the total  reflection phase 

6 =  2 ~ arctan~" 2 2yly~ t ,=l (n(n + 4y 2 -- y2) 

. . f tannlY21~ 
- z arc tan ~t--~-~nh ~ y , ) ,  (36) 

where 

Yl = qla, (37) 
lY21 = Iq2[a = (qff -- q2)l/2a = (yff - -  y 2 ) 1 / 2 .  

The leading terms at grazing incidence are (from 
Eqs. (14) and (36), setting [Y21 ~ qca =-- Yc): 

6 = - n sgn(tan nyc) 

{ v _2y  
+ 2yl taff-nyc + , ~  n(n z - y~)J + O(y3)" (38) 

The  infinite sum in Eq. (38) may  be expressed in 
terms of the psi function ~ = F' /F ,  since (Ref. 1-7, 
Eq. (6.3.16)]) 

7'(1 + z) = - y + n(n + z) 
(39) 

(z ¢ negative integer), 

where 7 = 0.5772 ... is Euler 's constant.  Thus  

2y~ - - {2,: + 9 ( 1  + yo) + ~ ' t l  - y~)}. 
• -, n(n 2 - y~) 

n = l  

(40) 

The  apparen t  singularity at integer y¢ is removable:  
on using the reflection formula  (Ref. 1-7, Eq. (6.3.7)]) 

~(1 - z) = 7~(z) + ncot r tz ,  (41) 
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Eq. (38) reduces to 

'5 = - rt sgn(tan frye) 

- 2y1{27 + ~(Yc) + 7/( 1 + Yc)} + O(y3). (42) 

This formula demonstrates  that the grazing inci- 
dence form (2) of  the total reflection phase is not  
restricted to profiles of finite extent. 

The semiclassical phase formula (1) applies to 
profiles which have q(z )  = q~ for z ~< 0 (see Section 
A-6 of Ref. [4]). This is not  the case for the profile 
(35); the appropria te  short-wave phase has been 
evaluated in Ref. [4, Eq. (6.129)]. It is 

' 5 ~ = 4 y ~  log (23~c~) - r t /2 - 41Y2, arctan 

(43) 

At the critical angle, the Euler Maclaurin sum- 
mat ion formula (Ref. [7], Eq. (3.6.28)) gives '5(0c) = 
4 y c l o g 2  - ~ / 2  + (4yc) -1 + (96y3) -1 + O(y~-S), 
of which the first two terms are reproduced by 
6a. Fig. 4 compares  the exact phase (36) with its 
linear approximat ion (42) and with the semic- 
lassical phase (43). All the phases depend on the 
parameter  Yc = q~a = (4gop2)l/2a. For  P2 = 0.805 × 
I0 5 A - 2  and a = 333A (the °5% to 95% of 
P2 thickness is then about  2000 A), Yc ~ 3.35. 

!1- 

i l  
II 

/ 
Y~ 

ql a 

Fig. 4. Total reflection phase for the hyperbolic tangent profile: 
exact (solid curve), short-wave approximation (dashed curve) 
and linear part (dotted line). The P2 value is 0.805 x 10- 5~ - 2, so 
that if 2 = 6.28 A, 0c ~ 0.576-'. 

4. The total phase difference between direct and 
reflected rays 

In the preceding sections we explored the proper-  
ties of the reflection phase '5, which relates to the 
mot ion in the z-direction, normal  to the reflecting 
stratification. There is also a phase difference be- 
tween the reflected and direct neutron waves due to 
mot ion in the x-direction. Fig. 5 shows the two 
paths. 

The phase difference between the reflected and 
direct neutron rays can be broken up into the 
straight-path contr ibut ions (where the neutrons 
travel in vacuum), and the curved part  contr ibut ion 
from within the reflecting stratification. The 
straight-path phase difference is 

2rt { , , /L2 + H2 + x/L~ + h2 
A s = 7 -  " 

- x / L  2 + ( H -  h) 2} 

_if{ 2 H h  = . - z X x + - - £ - - +  
(H 2 + h 2 ) A x  

2L 2 
n t- O ( L -  3)}. 

(44) 

The curved part  contributes 

27t  
A¢ = K A x  + '5 = -=- Ax cos 0 + ,5. (45) 

A 

The tangential componen t  K of the wave vector 
is a constant  of the mot ion in a planar stratifi- 
cation. The value of Ax in the ray picture is (Ref. [4, 

_, ,_d. ~ J / 

~_---:_:----- _ _ 5~_:----:_~ 

L 1 ~ A x  ~a L 2 - - ~  

Fig. 5. Lloyd fringe formation in neutron total reflection. The 
direct ray has length x/L 2 + (H -- h) 2. The straight parts of the 
reflected ray have lengths ~ H a and ~ + h z. The hori- 
zontal distance from source to detector is L = Lz + L2 + Ax. 
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Eq. (10.50)]) 

Ax ~ 2 dz cot O(z) = 2 dz  K/q(z )  
o 

_ K fzo. dz_ (46) 
:o  , j p ( Z o )  - p(z) 

The last equality follows from Eqs. (3) and (5), 
which imply 

qZ(z) = 4~ [p(zo) - p(z)]. (47) 

The semiclassical value (46) may be obtained from 
the more general wave formula (Ref. [4, Eq. 
(10.51)]) 

d6 
Ax - d K '  (48) 

which applies when 6 varies smoothly with K (thus 
the immediate neighbourhood of the critical angle 
or wavelength is excluded, because of the (8 - Oc) t/2 
or (2c - 2) 1/2 singularities, which are universal for 
profiles of finite range, as shown in Section 10-2 of 
Ref. [4]). On using Eq. (1) in Eq. (48), with q(zo) = 0 
and 

q 2 ( z ) = ( 2 r c ~ 2 - - K 2 - - 4 r t p ( z ) ,  (49) 
\ ) , I  

we regain Eq. (46). We have seen that Eq. (1) fails at 
grazing incidence, and is generally poor  when there 
are discontinuities in the scattering density. Similar 
remarks apply to the corresponding formula (46) 
for Ax. 

The quantity 2 H h / L  is the leading term in the 
expansion of the geometric path difference in 
powers of L -  1. The leading terms in A which de- 
pend on the reflecting profile are 

Aprofil e = • -[- (K -- 2r~/2)Ax. (50) 

Since K = (2n/2)cos0, the small-angle expansion 
of this phase is 

Aprofil e = -}- 7z q- cO - (rt /2)OZAx + 0(03). (51) 

From Eq. (48) and K = (2rt/2) (1 - 02/2) + 0(84) 
we have, using Eq. (2), 

d6 d6 dO c2 
Ax - dK - dO dK - 2rt~ + 0(8). (52) 

Thus the effect of the transverse displacement on 
the phase is opposite to that of the reflection phase, 
in the term proportional  to 8: 

Aprofil e = q- ~ q- lc0 -]- 0(83). (53) 

5. Summary and discussion 

The semiclassical phase formula (1) fails at graz- 
ing incidence, both in value at 0 = 0 and in the 
0-dependence for small 0. 

For profiles of strictly finite range, the formula 
(15) gives the small-angle variation, and evaluates 
the constant c in 6 = _+ rt + cO + 0(03). 

The semiclassical phase becomes accurate away 
from grazing incidence, provided the profile thick- 
ness is large compared to the neutron wavelength, 
and the profile is smooth. 

The total phase difference has a term propor- 
tional to the lateral displacement of the neutrons 
during reflection, Ax. This term may be approxim- 
ated by a semiclassical path integral, but only to the 
same accuracy as that of the semiclassical phase. 

At grazing incidence the total profile phase has 
the same form as 6(0), with c reduced to c/2. 

The Lloyd fringes in a given experiment are like- 
ly to be very closely spaced unless the detector is 
very far from the reflecting sample. For example, 
the contribution 6 to the phase, in the case of 
homogeneous layer of 2000 A thickness shown in 
Fig. 2, increases by five multiples of 2n between 0.3 ° 
and 0.5 °. If a photographic film were to adjoin 
a layer impregnated with boron 10 or lithium 6, the 
neutron absorption reactions l°B(n, ~) or 6Li(n, ~) 
could be used to produce a latent image in the film, 
with a spatial resolution of the order of 10 ~tm or 
better. This may be a more convenient method of 
recording Lloyd mirror fringes than the use of 
conventional neutron detectors. 
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