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Abstract. The ellipsometric Brewster angle (principal angle) is defined by Re (rp/rs) = 0,
where rp and rs are the reflection amplitudes for TM and TE waves. We show that there will
always be multiple principal angles in reflection from a homogeneous layer on a substrate, if
the layer is made thick enough. The principal angle θp ranges between the zero-thickness
value θB = arctan(n2/n1) (where n1 and n2 are the refractive indices of the medium of
incidence and of the substrate), and a value θm which depends on the refractive index n of the
layer. Analytic expressions for θm are obtained, for n2 < n1n2 and for n2 > n1n2. When
n2 = n1n2, θm is zero, and θp varies with thickness over the full range of zero to θB. In
general, rapid variation of the principal angle with layer thickness is expected near odd
multiples of λ/4 times a known function of the refractive indices. Monitoring θp during film
growth can thus provide information about film thickness and about refractive indices.
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1. Introduction

In most ellipsometric experiments, the real and imaginary
parts of rp/rs are monitored separately. A convenient angle
of incidence to work at (and to lock onto in automated
systems) is the principal angle. An arbitrary isotropic
interface between two isotropic media will always have
at least one principal angle (ellipsometric Brewster angle)
at which the real part of the ratio of p to s reflection
amplitudes passes through zero. In general, there will be an
odd number of principal angles. These results follow from
continuity arguments: see [1, section 2.4]. An illustration of
triple principal angles for a homogeneous layer is shown in
figure 2.8 of [1].

For a homogeneous layer of thickness �z and dielectric
constant ε = n2 (n is the refractive index), with light incident
from medium 1 and with the substrate designated by 2, the
principal angle θp is a function of ε1, ε, ε2 and ω�z/c. In
general, it is multivalued as a function of the thickness: at
a given value of the thickness parameter τ = ω�z/c =
2π�z/λ (c is the speed of light, ω is its angular frequency,
and λ is the vacuum wavelength) there may be, for example,
three values of θp.

This paper examines in detail the properties of θp for a
homogeneous layer. One motivation is practical: θp is easily
measured in polarization–modulation ellipsometry [2–6],
and deductions are made from these measurements about the
thickness of the layer, whose dielectric function is assumed
known, as is that of the substrate. Clearly, there is a problem
in extracting the thickness in regions where θp is multivalued.

Before considering the homogeneous layer, we note two
examples of reflection from a bare substrate in which multiple
principal angles can appear:

(i) In reflection from the sharp surface of an absorbing
medium with dielectric function ε2 = εr + iεi, there is a
small domain in the ε2/ε1 complex plane within which
there are three principal angles [7].

(ii) Even when the substrate is not absorbing, triple principal
angles can appear in the total-reflection region, which
exists when ε1 > ε2. The trajectory of ρ = rp/rs is
then the real axis, from +1 at θ1 = 0 to −1 at θ1 = θc =
arcsin(ε2/ε1)

1/2, after which ρ climbs out along the unit
circle, reaching an extremum at arcsin[2ε2/(ε1 + ε2)]1/2,
and then retracing its path back to −1 at θ1 = π/2. (See
figure 10.2 of [1].) The extremum value of ρ is given
in equation (33) of section 10.2 in [1]. The real part of
the extremum of ρ will be positive if ε2

1 + ε2
2 > 6ε1ε2,

which happens when ε2/ε1 < 3 − √
8 ≈ 0.17. In this

case Re (ρ) will be zero at the three angles θB and θ±
p ,

given by

tan2 θB = ε2

ε1
,

tan2 θ±
p = ε1 − ε2 ± {ε2

1 + ε2
2 − 6ε1ε2}1/2

2ε1
.

(1)

2. Ellipsometric ratio for a non-absorbing layer

The ellipsometric ratio ρ = rp/rs is given by [1, 2]

ρ = p1 + p2Z

1 + p1p2Z

1 + s1s2Z

s1 + s2Z
(2)

where p1, p2, s1 and s2 are the p and s Fresnel reflection
amplitudes at the boundaries of the layer with the medium
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of incidence and with the substrate (which have dielectric
constants ε1 and ε2 respectively):

s1 = q1 − q

q1 + q
s2 = q − q2

q + q2

p1 = Q − Q1

Q + Q1
p2 = Q2 − Q

Q2 + Q
.

(3)

Here, q1, q and q2 are the normal components of the
wavevector in the medium of incidence, the layer and the
substrate,

q2
1 = (ω/c)2ε1 cos2 θ1,

q2 = (ω/c)2(ε − ε1 sin2 θ1),

q2
2 = (ω/c)2(ε2 − ε1 sin2 θ1)

(4)

and Q1 = q1/ε1, Q = q/ε, Q2 = q2/ε2, where ε is the
dielectric constant of the layer. Finally, if �z is the layer
thickness,

Z = exp(2iq�z). (5)

Provided ε1 is smaller that both ε and ε2, and both the
layer and the substrate are non-absorbing, all the wavevector
normal components and all the Fresnel reflection amplitudes
are real at all angles of incidence, and the thickness �z

contained in Z can be eliminated by use of ZZ∗ = 1. The
resulting equation defines the locus of ρ in the complex plane
as the layer thickness varies [8]. This locus is parametrized
by the angle of incidence θ1 and by the dielectric functions
ε1, ε and ε2. It is a quartic in x = Re (ρ) and y = Im (ρ),
consisting of a closed curve plus an isolated point (acnode)
on the real axis. Details are given in the appendix of [8].

At fixed layer thickness, ρ moves continuously in the
complex plane from +1 at normal incidence to −1 at grazing
incidence, cutting through the imaginary axis (Re (ρ) = 0)
an odd number of times. Wild behaviour is expected, and is
found, near the zeros of rs (where the layer is an antireflection
coating). For the case being considered, s1 and s2 are real,
and thus rs can be zero only when Z is real. As discussed
in [9], section 1.6.4 and [1], section 2.4, the zeros of rs occur
at {Z = +1, s1 + s2 = 0} or at {Z = −1, s1 − s2 = 0}. In
the first case we have 2q�z equal to an even multiple of π ,
and q1 = q2, which implies ε1 = ε2, i.e. a substrate optically
identical to the medium of incidence. The less restricted
second case has 2q�z equal to an odd multiple of π and
q1q2 = q2. The last equality is possible only if ε2 � ε1ε2,
and then holds at the angle of incidence θ0 given by

sin2 θ0 = ε1ε2 − ε2

ε1(ε1 + ε2 − 2ε)

or tan2 θ0 = ε1ε2 − ε2

(ε − ε1)2
.

(6)

The corresponding thickness value leading to rs = 0 is given
by any odd multiple of π/2q evaluated at θ0, namely by an
odd multiple of

τ0 = ω

c
�z0 = π

2

{
ε1 + ε2 − 2ε

(ε − ε1)(ε2 − ε)

}1/2

or �z0 = λ

4

{
ε1 + ε2 − 2ε

(ε − ε1)(ε2 − ε)

}1/2
(7)
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Figure 1. Ellipsometric ratio ρ = rp/rs for a layer of water on
heaviest flint glass, in air (refractive indices n1 = 1.00, n = 1.33
and n2 = 1.89 at 589 nm), drawn for various thicknesses of the
water layer. All the trajectories of ρ begin at +1 at normal
incidence, and end at −1 at glancing incidence. Since n2 < n1n2,
zeros of rs are possible, and these zeros are responsible for the
large excursions of ρ when (ω/c)�z is near an odd multiple of τ0.
For example, 3τ0 ≈ 4.07, hence the behaviour of the (ω/c)�z = 4
trajectory in part (a), while 5τ0 ≈ 6.78 is close to (ω/c)�z = 7 in
part (b). Note the rapid excursions near θ0 ≈ 40.9◦ at
(ω/c)�z = 4 and 7; in this region the angle of incidence is shown
with 1◦ increments. The thickness parameter value (ω/c)�z = 7
also demonstrates the phenomenon of triple principal angles, at
44.0◦, 48.9◦, and 59.2◦. The value (ω/c)�z = 4 does not quite
produce triple principal angles: the onset is at 4.057 and the
principal angle becomes single-valued again at 4.148. The next
range of triple principal angles is between (ω/c)�z ≈ 6.776 and
7.123.

where λ is the vacuum wavelength. For a film of water
deposited on heaviest flint glass (refractive indices 1.33 and
1.89 at 589 nm), when the dimensionless thickness parameter
τ = ω�z/c passes through odd multiples of τ0 ≈ 1.3567, rs
will be zero at the angle given by (6), namely at θ0 ≈ 40.9◦.
Figure 1 shows some trajectories of ρ in the complex plane,
as the angle of incidence varies from 0◦ to 90◦. Note how
the simple behaviour at small τ values changes drastically as
odd multiples of the τ0 value are approached and exceeded.

More sedate behaviour is shown by layers for which
ε2 > ε1ε2, as in the ρ trajectories for a layer of water
(n = 1.33) on glass (n2 = 1.50), illustrated in figure 2.
When ε2 > ε1ε2, the s wave reflection amplitude cannot be
zero, and the curves all lie within a bounded region.
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Figure 2. Trajectories of ρ = rp/rs as a function of the angle of
incidence, at various thicknesses of a water layer on glass
(n1 = 1.00, n = 1.33, n2 = 1.50). In this case n2 > n1n2, zeros of
rs are not possible, and the trajectories are contained within a
bounded region. (a) Thickness values (ω/c)�z ranging in unit
steps from 1 to 5; (b) the values 11–15, again in unit steps. The
onset of triple principal angles is near (ω/c)�z = 12.7, when the
water layer is about two vacuum wavelengths thick. The first
thickness range in which triple principal angles exist is very
narrow: 12.699–12.715 in (ω/c)�z, approximately. The next
range is a little wider: 15.560–15.657. Thus, no example of triple
principal angles appears in this figure.

3. The principal angles

The principal angles are defined by Re (ρ) = 0. For the
homogeneous layer ρ is given by (2); let us write it as

ρ = p1s1s2 + p2 + s1s2p2Z + p1Z
−1

s1p1p2 + s2 + p1p2s2Z + s1Z−1
(8)

and put Z = C + iS, Z−1 = C − iS, where

C = cos 2q�z, S = sin 2q�z. (9)

Then Re (ρ) is the ratio of two quadratics in C. This result
was used in the reduction of the inversion of ellipsometric
data to a quintic in ε in [8]. Also, Im (ρ) is S times an
expression linear in C, divided by the denominator of Re (ρ).
Incidentally, this denominator factors into

(1 + 2p1p2C + p2
1p

2
2)(s

2
1 + 2s1s2C + s2

2 ). (10)

When the values in equations (3) and (4) are substituted into
the expression for Re (ρ), and the result is cleared of fractions,
the numerator is a quadratic in C with coefficients which

are composed of integral powers of ε1, ε, ε2 and sin2 θ1.
These coefficients are given in the appendix. Let us write the
numerator as

N = αC2 + βC + γ. (11)

Then N = 0 gives the location of the principal angle or
angles. The variation of θp with thickness of the layer may
be determined in two ways. We can regard N = 0 as a
transcendental equation for θp in terms of τ = (ω/c)�z

(to be solved numerically), or we can take N = 0 to be a
quadratic in C = cos(2q�z), with solutions

C± = −β ±
√
β2 − 4αγ

2α
. (12)

The physical solution must lie in the range [−1, 1]; for the
examples in figures 3 and 4 the physical solution is C−. If
φ = arccos(C), C being the physical solution of (11), then
the set {τ0, τ1, . . .}, where

τ0 = φ

2
√
ε − ε1σ

,

τ1 = π√
ε − ε1σ

− τ0,

τ2 = π√
ε − ε1σ

+ τ0,

τ3 = 2π√
ε − ε1σ

− τ0 . . .

(13)

give the thickness parameter τ as a function of σ = sin2 θp.
Thus, by taking σ as plotting variable, τ(σ ) is obtained
without numerical solution of the transcendental equation
N = 0.

A particularly simple case obtains when ε1 = ε2, as
would be the case for a soap film in air. In that case the
principal angle is given by sin2 θp = ε/(ε1 + ε) (this value
makes α, β and γ all zero), independent of the film thickness.
When ε1 and ε2 are close but not equal, the sin2 θp curve is flat
except near zero and integral multiples of τB given by (21),
where it drops rapidly to sin2 θB = ε2/(ε1 + ε2) (we assume
that ε1 ≈ ε2 are smaller than ε).

Figures 3 and 4 give the locus of θp as the thickness
parameter τ = ω�z/c varies, for water on heaviest flint glass
and on glass, respectively. We see that θp oscillates between
upper and lower bounds, one of which is the Brewster angle
for the bare substrate, given by

sin2 θB = ε2

ε1 + ε2
or tan2 θB = ε2

ε1
. (14)

The other bound, θm, will be discussed in the next section.
Here we note only that an indication of which of θB and
θm is the maximum principal angle is given by the general
expression of the shift in the principal angle to second-order
in τ = ω�z/c given in equation (3.53) in [1]. When the
values of the integral invariants for the homogeneous layer
(given in table 3.1 of [1]) are substituted into this expression,
we find

θp − θB = (ε1ε2)
1/2ε2(ε − ε1)(ε2 − ε)

2ε2(ε2
2 − ε2

1)
2

[ε1ε2(ε2 − ε1)

+(4ε1ε2 + ε2
1 − ε2

2)ε − (3ε1 + ε2)ε
2]τ 2 + O(τ 4).
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Figure 3. Variation of the principal angle θp (at which the real part
of the ellipsometric ratio rp/rs passes through zero), with the
thickness of a layer of water, on heaviest flint glass substrate (the
refractive indices are as in figure 1). (a) The variation of θp with
the dimensionless thickness parameter, oscillating between the
upper bound θB ≈ 62.1◦ and the lower bound θm ≈ 40.9◦. Note
the triple principal angles at (ω/c)�z = 7 (for a water layer
about 1.1 vacuum wavelengths thick), previously shown on the
trajectory of rp/rs in figure 1(b). (b) The variation of θp in the
fundamental interval [0, τB].

This expression is negative when 0 < ε < ε2 except for a
small region between ε = ε1 and

ε = (ε2
1 + 4ε1ε2 − ε2

2 + (ε4
1 − 4ε3

1ε2 + 22ε2
1ε

2
2

−4ε1ε
3
2 + ε4

2)
1/2){2(3ε1 + ε2)}−1.

It is positive for ε > ε2. Thus, we can generally expect θB

to be the maximum value of θp when ε < ε2, and to be the
minimum for ε > ε2. More detail is given in the next section.

We note that the thickness �z enters into the equation
N = 0 determining the principal angle θp through
cos(2q�z). Thus at given θp there is periodicity in the
θp curves, with period �z = π/q. The period in the
thickness parameter τ = ω�z/c is correspondingly π/(ε −
ε1 sin2 θp)

1/2, which varies between π/(ε−ε1 sin2 θB)
1/2 and

π/(ε − ε1 sin2 θm)
1/2. Thus the upper part of the locus of

θp has a longer period than the lower part, and eventually
the lower part will lag behind sufficiently to produce triple
principal angles at a given thickness. As the thickness is
increased still further, quintuple principal angles will appear,
and so on. This argument shows that multiple principal angles
will always be found for sufficiently large layer thickness,
except in the case of ε1 = ε2 for which θp is constant, as

Figure 4. Principal angle θp as a function of the thickness �z of a
water layer on glass (n1 = 1.00, n = 1.33, n2 = 1.50, as in
figure 2). The maxima are at the Brewster angle
θB = arctan(n2/n1) ≈ 56.3◦, the minima at θm ≈ 47.7◦. The
upper period in (ω/c)�z is π(ε − ε1 sin2 θB)

−1/2 ≈ 3.03, the lower
period is π(ε − ε1 sin2 θm)

−1/2 ≈ 2.84. The onset of triple
principal angles is near (ω/c)�z = 12.7.

discussed above. An estimate of how thick the layer has to
be for triple principal angles to appear is given in section 5.

4. Location of the maxima and minima of θp

The locus of the principal angle θp is given by the zero of
N = αC2 + βC + γ = 0. As a function of the thickness
parameter τ = ω�z/c, the extrema of θp occur where
∂N/∂τ = 0, i.e. where

(2αC + β)
∂C

∂τ
= 0. (15)

(This is because the extrema occur at dσ/dτ = 0, where
σ = sin2 θp is regarded as a function of τ = (ω/c)�z. Now,
from N = 0 we have

dN = ∂N

∂τ
dτ +

∂N

∂σ
dσ = 0 (16)

and thus dσ/dτ = −(∂N/∂τ)/(∂N/∂σ). Since ∂N/∂σ

cannot be infinite, the zeros of dσ/dτ will be given by the
zeros of ∂N/∂τ .)

When the physical root is in ∂C/∂τ = 0, S = sin 2q�z

is zero, as is the case for extrema of the reflectances Rp and
Rs ( [9, section 1.6.4], [1, section 2.4]), which occur when

2q�z = 2mπ or 2q�z = (2m + 1)π

where m is an integer. These correspond to

C = 1, α + β + γ = 0

or C = −1, α − β + γ = 0.
(17)

The first of these options, namely α + β + γ = 0, factors to

4ε2(ε1−ε2)
2(ε−ε1 sin2 θ1)

2[ε2−(ε1+ε2) sin2 θ1] = 0, (18)

from which we extract the physical root which is the Brewster
angle θB as already given in equation (14). The second option,
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α − β + γ = 0, factors to 4F1F2, where F1 and F2 are
respectively linear and quadratic in sin2 θ1. F1 = 0 gives

sin2 θm = ε1ε2 − ε2

ε1(ε1 + ε2 − 2ε)

or tan2 θm = ε1ε2 − ε2

(ε − ε1)2

(19)

which we recognize from (6) as the angle θ0 at which rs = 0,
provided ε2 � ε1ε2. When ε2 � ε1ε2 the physical root θm

lies in the quadratic F2 = 0, which reads

ε1(ε
4 − ε2

1ε
2
2) sin4 θm + ε[2ε2

1ε
2
2 − (ε1 + ε2)ε

3] sin2 θm

+(ε2 − ε1ε2)ε
2ε2 = 0. (20)

The cross-over is at ε2 = ε1ε2; at this point both F1 and F2

give θm = 0, so the principal angle oscillates from zero to θB

as the layer thickness varies.
When ε2 < ε1ε2 it is possible for θB and θm, given by (14)

and (19), to coincide, at ε = 2ε1ε2/(ε1 + ε2). Rather large
values of substrate refractive index are required for this to
happen: for a water layer, the substrate index would have to
be about 2.7666 when n1 = 1. (A near example is n2 = 2.8
in figure 5.) When ε2 > ε1ε2 it is not possible for θm to be
equal to θB, since substitution of (14) into (20) leads to ε = ε1

or ε = ε2 (in these cases the layer has no optical effect), or
to values of ε inconsistent with ε2 > ε1ε2.

Figure 5 shows a set of curves of σ = sin2 θp versus
τ = (ω/c)�z, for n1 = 1, n = 1.33 (water) and variable
substrate index n2. We see that for low substrate index θm

gives the minimum value of θp, which drops to zero when
n2 = n2/n1 ≈ 1.77. For larger substrate index, θm increases,
and eventually θm gives a maximum value, with subsidiary
minima on either side. The transition from minimum to
maximum occurs when dσ/dτ and d2σ/dτ 2 are both zero.
We saw from (16) that dσ

dτ = − ∂N/∂τ

∂N/∂σ
.

We differentiate with respect to τ again, using

d

dτ

(
∂N

∂τ

)
= ∂2N

∂τ 2
+

∂2N

∂τ∂σ

dσ

dτ

and
d

dτ

(
∂N

∂σ

)
= ∂2N

∂τ∂σ
+
∂2N

∂σ 2

dσ

dτ

to obtain

d2σ

dτ 2
= 2( ∂N

∂τ
)( ∂N

∂σ
) ∂2N
∂τ∂σ

− ( ∂N
∂τ
)2 ∂2N

∂σ 2 − ( ∂N
∂σ

)2 ∂2N
∂τ 2

( ∂N
∂σ

)3
.

Since ∂N/∂σ cannot be infinite, dσ/dτ is zero when ∂N/∂τ

is zero, as noted before. Thus dσ/dτ and d2σ/dτ 2 are both
zero when ∂N/∂τ and ∂2N/∂τ 2 are both zero. These imply
{2α − β = 0, C = −1}, which in turn are equivalent
to {α − γ = 0, α − β + γ = 0}. The second of these
was examined above, leading to (19) or (20) depending on
whether ε2 is less or greater than ε1ε2. For the cases shown
in figure 5 for which n2 > (1.33)2 = 1.7689, sin2 θm is given
by (19), and substitution into α = γ gives

(3ε1 + ε2)ε
4 − 4ε1ε2ε

3 + 4ε1ε
2
2ε

2

−4(ε1ε2)
2ε − (ε1ε2)

2(ε2 − ε1) = 0

which is quartic in ε and cubic in ε2. For ε1 = 1, ε = (1.33)2,
this gives ε2 ≈ 5.150 or n2 ≈ 2.269. Above this value of

0
0

1

2

n2=1.8

n1=1, n=1.33, n2=1, 1.2, 1.4,..., 3.0

n2=1.2

n2=3.0

4 6

Figure 5. A set of curves of sin2 θp versus τ = (ω/c)�z, for
variable substrate index n2, which increases from 1.0 to 3.0 in steps
of 0.2. The curves are drawn for n1 = 1 and n = 1.33 (water).
Note the deep minima near n2 = n2/n1 = 1.7689, for which value
of n2 the minima would be at zero angle of incidence. Note also
that the minima transform to local maxima as n2 increases, as
discussed in the text. At n2 = n1 the principal angle is constant at
sin2 θp = ε/(ε1 + ε) ≈ 0.639. For n2 
= n1 the zero-thickness
principal angle takes the Brewster value sin2 θB = ε2/(ε1 + ε2).

0

0.4

0.6

0.8

2

n=1.2

n=1.4

n=2.0

n1=1, n=1, 1.2, 1.4,..., 2.0, n2=1.5

4 6

Figure 6. Variation of sin2 θp with layer thickness, for fixed
substrate index n2 = 1.5, and layer index n increasing from 1.0 to
2.0 in 0.2 steps. The Brewster angle is at
sin2 θB = ε2/(ε1 + ε2) ≈ 0.6923; for n = 1.2 and 1.4 the curves
have maxima at this value, for n > 1.5 they have minima at this
value. When n = n1 the layer has no optical effect, and sin2 θp is
constant at the substrate Brewster value (horizontal line).

n2, θm becomes a local maximum, and eventually an absolute
maximum. Two subsidiary minima appear on either side of
θm, being given by the first factor in (15), 2αC + β = 0.
Together with N = αC2 + βC + γ = 0 this implies
β2 − 4αγ = 0, which is a sextic in σ = sin2 θp, one root of
which gives the observed subsidiary minima.

Figure 6 illustrates the behaviour of sin2 θp with layer
thickness for variable layer refractive index. When n is less
than the substrate index n2 (here 1.5), the sin2 θp curves have
minima at θm and maxima at θB. For n > n2 the maxima are
at θm and the minima at θB.

We now return to the location of the main maxima and
minima of θp. One of these is at θB, and occurs at zero
thickness and then at points when qB�z is an integral multiple
of π (see equation 16), i.e. when τ = ω�z/c is an integral
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multiple of

τB = ω

c
�zB = π√

ε − ε1ε2
ε1+ε2

. (21)

The location of the other extrema depends on whether
the layer dielectric function is smaller or greater than the
geometric mean of the dielectric functions of the bounding
media. When ε2 � ε1ε2, the main extrema occur at odd
multiples of (ω/c)�z0 given in (7) at θm given by (19). When
ε2 � ε1ε2 the main extrema occur at odd multiples of

τm = ω

c
�zm = π/2√

ε − ε1 sin2 θm

(22)

where sin2 θm is the physical solution of equation (20). We
note that this equation can be transformed into a quadratic
for tan2 θm:

ε1ε
2
2(ε − ε1)

2 tan4 θm − ε[ε3(ε2 − ε1)

−2ε1ε
2
2(ε − ε1)] tan2 θm − ε2ε2(ε

2 − ε1ε2) = 0. (23)

Write this as aT 2 +bT + c = 0. We see that a > 0 and c � 0
(since ε2 � ε1ε2). Thus the discriminant b2 −4ac is positive,
and the roots are real. Also the product of the roots is c/a,
which is negative, so one root will be positive and the other
negative. Thus, there is one and only one possible physical
root.

We note finally that at the cross-over point when ε is
equal to the geometric mean of ε1 and ε2, sin2 θm is zero, and
the non-Brewster extrema occur at odd multiples of

ω

c
�zm = π

2
(ε1ε2)

−1/4. (24)

The period is twice this value, and is smaller than the Brewster
period at ε = (ε1ε2)

1/2, which from (21) is

ω

c
�zB = π(ε1ε2)

−1/4

[
1 − (ε1ε2)

1/2

ε1 + ε2

]−1/2

. (25)

5. Summary and discussion

We have derived formulae for the location of the extrema in
the variation of the principal angle θp with thickness. One of
these is always the Brewster angle. It is interesting that the
physical root giving the other main extremum θm comes from
different factors, depending on whether the layer refractive
index is smaller or greater than the geometric mean of the
indices of the bounding media. In the former case an angle
exists at which rs goes to zero, so ρ = rp/rs is unbounded. In
the latter case rs cannot be zero, and ρ lies within a bounded
region of the complex plane. Thus the different mathematical
roots correspond to very different physical situations.

The simple qualitative argument at the end of section 3
has shown that multiple principal angles (in general, an odd
number of θp values for given layer thickness) will always
appear if the layer is thick enough. Just how thick can
be estimated from the formulae of the previous section:
let τ again represent the thickness parameter ω�z/c; then
extrema occur at zero and integral multiples of τB, and at
odd multiples of τm, with τB and τm given by (21) and (22).

Let us assume that τB > 2τm, for example. Then, when
*τB > (2* + 1)τm, the maximum at θB lies to the right of the
minimum θm in the θp versus τ diagram, so triple principal
angles must necessarily occur when the number * of the
periods τB exceeds τm/(τB − 2τm). In fact, triple principal
angles first appear at about half this number of periods, i.e.
at a thickness given by

τ = ω

c
�z ≈ 1

2

τBτm

τB − 2τm

= π/4√
ε − ε1 sin2 θm −

√
ε − ε1ε2

ε1+ε2

. (26)

This estimate gives τ values of 4.8 for the example in
figure 3(a) (actual value about 4.0) and 11.5 for the example in
figure 3(b) (actual value about 12.7). Equation (26) provides
an approximate lower bound for the thickness when triple
principal angles are first observed. The range over which
triple principal angles appear is quite narrow at first (see
figures 1–4), but as the layer thickness increases eventually all
thicknesses will have triple principal angles, then quintuple
angles will appear, and so on.

The precise thickness at which there is onset into (and
exit from) a region of triple principal angles is where N =
αC2 + βC + γ and ∂N/∂θ1 are zero together. (At this point
the θp versus τ curve is vertical.) The derivative ∂N/∂θ1 is
linear in S = sin 2q�z, and, by squaring, S and C can be
eliminated between the two equations, leaving a quadratic
in [(ω/c)2�z/q]2, to be solved simultaneously with N =
0. I have not been able to extract an analytic expression
for the minimum value of ω�z/c required for multiple
principal angles by this method. However, for a given set
of refractive indices, the principal angle as a function of the
thickness is easily generated from (13), without solution of
the transcendental equation N = 0.

At a given principal angle θp, the thickness dependence

is in cos 2q�z = cos(2ω
c
�z

√
ε − ε1 sin2 θp). The period in

τ = ω�z/c is therefore (at given θp)

+ = π

(ε − ε1 sin2 θp)1/2
. (27)

Thus the principal angle need only be calculated in the
fundamental interval [0, τB] as given by (21): for greater
values of τ we can use

θp(τ + +) = θp(τ ). (28)

The period itself satisfies the functional relation

+(τ + +(τ)) = +(τ) (29)

which confirms that + is independent of τ (as a period must
be), since a constant is the only possible solution of (29).

All of the above has been for a non-absorbing layer on a
non-absorbing substrate. When either or both are absorbing
the analysis is more complicated. In particular, when the
layer is absorbing,Z = exp(2iq�z) no longer lies on the unit
circle (except at zero film thickness) and the periodicity with
�z at fixed angle of incidence is lost. The general expression
for rp/rs given in [1], equation (3.52), to second order in
the layer thickness. The shift in the principal angle from
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Multiple principal angles for a homogeneous layer

the zero-thickness Brewster angle θB (for a non-absorbing
substrate) now becomes first-order in the layer thickness, in
contrast to the transparent-layer case of equation (13) above.
The general expression for the principal angle shift is ([1,
equation (8.74)])

θp − θB = ( ε2
ε1
)1/2 ω

c
Im (I1)

(ε1 + ε2)1/2( ε1
ε2

− ε2
ε1
)

+ O
(ω
c
�z

)2
(30)

where Il is the integral of (ε − ε1)(ε2 − ε)/ε over the layer,
and takes the value

Il → (ε − ε1)(ε2 − ε)

ε
�z =

(
ε1 + ε2 − ε1ε2

ε
− ε

)
�z

(31)
for a homogeneous layer.

Finally, we note that for anisotropic and/or chiral
(optically active) media, reflection ellipsometry measures
either

ρP = (rpp + rsp tanP)/(rps + rss tanP)

or ρA = (rpp + rps tanA)/(rsp + rss tanA)
(32)

whereP andA are the polarizer and analyser angles measured
from the p direction [10]. (The reflection amplitude rsp, for
example, gives the complex amplitude of the reflected electric
field s component, when unit electric field is incident, aligned
along the p direction.) One can thus define two principal
angles by Re (ρP) = 0, or by Re (ρA) = 0, both depending
on the respective angles P and A, as well as on all four
reflection amplitudes.

Appendix A. Values of α, β and γ

The coefficients α, β and γ in N = αC2 + βC + γ of (11)
are all cubic in sin2 θ1 and in ε2, and sextic in ε. The degrees
of α, β and γ in ε1 are 4, 5 and 5. The coefficients are (with
σ standing for sin2 θ1)

α = (ε − ε1)
2(ε − ε2)

2[2ε1σ
2

−(ε1 + ε)σ + ε][ε1(ε + ε2)σ − εε2] (A.1)

β = −2(ε − ε1)(ε − ε2){ε2
1[2ε3

+(ε1 + ε2)ε
2 + (ε2

1ε
2
2)ε + ε1ε2(ε1 + ε2)]σ

3

−ε1[ε4 + 3(ε1 + ε2)ε
3 + 2(ε2

1 + ε1ε2 + ε2
2)ε

2

+3ε1ε2(ε1 + ε2)ε + (ε1ε2)
2]σ 2

+ε(ε + ε1)(ε + ε2)[ε(ε1 + ε2) + 2ε1ε2]σ

−ε2ε2(ε + ε1)(ε + ε2)} (A.2)

γ = 2ε2
1[ε5 + ε1ε

4 − (ε2
1 + 2ε1ε2 − ε2

2)ε
3

−ε1(3ε
2
2 − ε2

1)ε
2 + ε1ε

2
2(2ε2 − ε1)ε + ε3

1ε
2
2]σ 3

−ε1[ε6 + (5ε1 + 3ε2)ε
5 − (ε2

1 + 3ε1ε2 − 3ε2
2)ε

4

+(3ε3
1 − 7ε2

1ε2 − 13ε1ε
2
2 + ε3

2)ε
3

+ε1ε2(3ε
2
1 − 11ε1ε2 + 7ε2

2)ε
2

+(ε1ε2)
2(5ε1 + 3ε2)ε + (ε1ε2)

3]σ 2

+ε[(ε1 + ε2)ε
5 + 2(ε2

1 + 3ε1ε2 + ε2
2)ε

4

+(ε1 + ε2)(ε
2
1 − 8ε1ε2 + ε2

2)ε
3

+4ε1ε2(ε
2
1 − 5ε1ε2 + ε2

2)ε
2

+5(ε1ε2)
2(ε1 + ε2)ε + 2(ε1ε2)

3]σ

−ε2ε2[ε4 + 2(ε1 + ε2)ε
3 + (ε2

1 − 12ε1ε2 + ε2
2)ε

2

+2ε1ε2(ε1 + ε2)ε + (ε1 + ε2)
2]. (A.3)

Test values: at ε1 = 1, ε2 = 2, ε = 3 and σ = 1
2 ,

the coefficients α, β and γ become −21, 337 and −428 1
2

respectively.
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