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The techniques used in optics and microwave and radio physics for the easy and efficient 
calculation of reflection and transmission by stratified media are adapted to acoustic 
compressional waves. The method involves taking the product of N 2 X 2 matrices when the 
stratification is approximated by N layers. These layers can be chosen to have linear variation 
in the acoustic parameters to best represent the actual stratification without undue complexity 
in the resulting matrix elements. It is possible to guarantee unimodularity of the matrices, thus 
making sure that energy conservation and a reciprocity law are automatically satisfied. 
Accuracy is tested against an exactly solvable model stratification, in which the density and 
speed of sound both vary exponentially with depth. 

PACS numbers: 43.20.Fn 

INTRODUCTION 

The reflection and transmission of acoustic waves by an 
arbitrary stratified medium can be calculated by approxi- 
mating the stratification by a set of uniform layers, and using 
matrices to connect the sound field across the layers. '-'n A 
related methodology is used to obtain impulse responses? -9 
In the case of media that support shear as well as compres- 
sional waves, 4 X 4 matrices are required; for fluid media the 
matrices become 2 X 2. An analogous scheme is used in the 
calculation of reflection and transmission of electromagnetic 
waves; for isotropic media there are two sets of 2 X 2 matri- 
ces, one for each of the polarizations of the incident wave. A 
summary of the various methods used, and references (go- 
ing back to Rayleigh) may be found in Chaps. 12 and 13 of a 
recent monograph on reflection. •ø It was noted in Ref. 10 
that a minor reformulation of the problem made the matrix 
elements real in the absence of absorption. This can give a 
fourfold saving in computation time (other things being 
equal), since four matrix products must be found to obtain 
the product of two matrices with complex elements. Further 
gains in accuracy and efficiency can be made by removing 
the approximation that each layer is homogeneous, and let- 
ting its physical characteristics vary so that there is no dis- 
continuity at the boundaries between the layers. ]ø'• An im- 
portant aspect, not previously noted, is that unimodularity 
of the matrices guarantees energy conservation and reci- 
procity. This fact is proved and used in the present paper. 

I. ACOUSTIC WAVES IN A PLANAR STRATIFICATION 

The linearized equation for the acoustic pressurep (the 
time-dependent oscillatory variation associated with the 
acoustic wave) is 

V2 p I c•:p I Vp-Vp=0, (1) 
c: o9t 2 p 

where c and p are the local values of the phase velocity and of 
the density, respectively. In a planar stratification the veloc- 
ity and density are functions only of the depth z. For a plane 

monochromatic wave propagating in the zx plane, solutions 
of ( 1 ) have the form 

p(z,x,t) = e i(Kx- •øt)P(z), (2) 

where o) is the angular frequency of the wave and K is the x 
component of the wave vector, which is a constant of the 
motion. For a planar stratification between uniform media a 
and b, 

K = (a•lca) sin Oa = (wlcb)sin Oh, (3) 

where 0a and 0o are the angles of incidence and refraction. 
(If grazing angles are used, K is proportional to the cosine of 
the grazing angle divided by the local speed of sound.) 

The differential equation for P(z) is [from ( 1 ) and (2) ] 

•(1 •P• P•zz\•--•zz] + q•P= 0, (4) 
where q(z) is the normal component of the wave vector and 
is given by 

q2(z) = •2/C2(Z) -- K 2. (5) 

In media a and b, q takes the constant values 

q, = (•/%)cos 0•, q• = (•/%)cos 0•. (6) 

The reflection and transmission amplitudes r and t are de- 
fined in terms of the fo•s of the acoustic pressure in media a 
and b. Assuming that the sound field is incident from medi- 
um a, these are 

e • + re - iq• • P(z) • te iq•. ( 7 ) 
The reflectance and transmittance are given in terms of the 
amplitudes r and t by 

R = [rl e, T= (Q•/Q,)lt I e, (8) 
where Q, = q•/p•, Qo = q6/pv. 

The second-order differential equation for P(z) may be 
written as a pair of coupled first-order differential equations 
in P and its derivative divided by the density: 

I dP dD 
--D, p =-qeP. (9) 

p dz dz 
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If one approximates an arbitrary stratification by a set of 
homogeneous layers (represented by the dashed lines in Fig. 
1), p and q take the constant values p. and q. in 
zn •Z•Zn + I, and the solutions of (9) in the nth layer are 

P(z) =P• cos q• (z-- z.) q-Qff LD. sinq• (z--z.), 
D(z) = D. cos q. (z -- z• ) -- Q.P• sin q. (z - z• ), (10) 

where P.,D• are the values of P, D at z=z., and 
Q. = q,,/p,,. Z 2 
Now P and D are continuous at discontinuities in c and/or p 
[ otherwise (4) would not be satisfied at the discontinuities ]; 
continuity at z. + i gives 

Pn+ l = P. COS6n q- O•-lDn sin $., 
Dn+ ! =D. cos6.-Q.P. sin6., (11) Z3 

where 6. = q. (z.+ l -- z. ) =-q.&. is the phase increment 
across the layer. Thus the vector formed from 
P. + 1 and D. + j is related by a matrix to the vector formed 
from P. and D.: 

(P.+l)=( COS6n Qfflsin6n)(P"). (12) D. + t -- Qn sin 6. cos 6. 

•a 

FIG. 2. The same profile as in Fig. 1, approximated by two layers in which 
the parameters vary linearly with depth z. 

This 2 X 2 matrix has unit determinant (even in the presence 
of absorption, when q. is complex). For real q.the matrix is 
real, in contrast to the usual method that makes the off- 
diagonal elements imaginary. Note also that the matrix is 
equal to ( -- ) / times the unit matrix when the phase incre- 
ment 6. = œrr with integer W. If œis an even integer, the layer 
has no effect on the sound field (at the particular frequency, 
thickness, and angle of incidence that make 6. =/rr); if Fis 
an odd integer, the layer reverses the signs of P and D. 

The approximation in which an arbitrary stratification 
is represented by a set of homogeneous layers leads to matri- 
ces such as the one in (12). In the next section we will re- 

move this restriction, and consider representations where p 
and c have arbitrary variation; the example of linear vari- 
ation is shown in Fig. 2. 

Pa 

Zl i 

Zn 

Zn+l t • 

ZN+I z 

Pb 

FIG. 1. A stratification with continuously varying density (or speed), ap- 
proximated by N homogeneous layers. Here N = 5. 

II. MATRIX METHODS FOR NONUNIFORM LAYERS 

The pair of coupled equations (9) may be written as 

dP=pD, dD= _q2p. (13) 
dz dz p 

In z. <z<z. + i, the integral versions of (13), incorporating 
the boundary values at z., are 

P(z) = P.+ d•p(•)D(•), 
n 

ff q2(•)p(•) O(z) = D. - d• p-• . (14) n 

The coupled integral equations can be solved by iteration. 
We set 

P(z) = • Pø•(z), D(z) = • OCi•(z), (15) 
j=o j=o 

and start with p•o• = p•, D •o• = D•. The superscriptj gives 
the degree of the correction in the thickness 6z. 
= Z. + I -- Zn The first iterates are 

P")(z) = D.d•p(•), 

D(t)(z) = -- P•d• q2(•) ,, p(•) (16) 
The second-order iterates (evaluated at z. + • ) are 

P(2)(z.+ I )= dzp(z)Dm(z) 

= -- P. dzp(z) d• q2(•) 
. . p(•)' 

,,.. q2(•)p{I}(g) D(2}(zn+ • ) = -- dz 
,, p(z) 

= -- D. dz q2(z) d•p(•). (17) 
• p(z) ,, 
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To find the matrix relation between P. + • and D. + • and 
P., D• we evaluate (15) at z.+ •. To second order in 
these equations read 

Pn + •.= P. q- D•I• -- P. I2, Dn + 1 •' D. -- P.• -- D. J2, 
(18) 

where 

I 1 = dzp(z), 
n 

ff"+' q2(z) J• = dz p(z) ' n 

J2 = dz q2(z) d•p(•). (19) 
: p(z) . 

The second-order matrix relation is thus 

P"-t- I ) = ( l --'2 II j2)(•: )• Mr1 (•:). (20) D•.•. \ -J• 1- 

Note that by interchange of the order of integration J2 may 
be written in the form 

a• 

so that 

12 + J2 = I•J•. 

1 +I(D. +D.+,) P("(z) = •- (P. -- P. + • ) 2 

x 

1 1 

Din(z) =T (D.-D., ) +T (P" + P•+' ) 
fz dE q2 (•) x../•. _ p-•-•. (27) 

The first equalities in (17) remain valid with the symme- 
trized starting point, and give 

P.• =P• + D•I•--I=(P.+P.•)I:, 

in+ I = D n -- PnJl - «(D.q- Dn+ I )J2, (28) 
Note that there is no cross-coupling of P.+ • to Dn + l in the 
genuinely second-order equations. The corresponding ma- 
trix is 

12/2 1 4 }2/2' 
-- Jl 1 -- J2/2 I' 
s2/2 1 T 

(29) 

That this matrix is exactly unimodular follows from the 
(21 ) identity (22). 

These matrices will be applied to the numerical evalua- 
tion of reflection and transmission amplitudes in Sec. IV. 

(22) First we will consider how an arbitrary set of layer matrices 
determines r and t, and some consequent properties. 

Thus the determinant of M.is equal to I + 1,2J2; this shows 
that the matrices obtained by iterating P and D to second 
order in &. have a correction to unimodularity of order 
(62..a If we had stopped at the first order, the determinant 
of M.would be 1 + I•J•, so the correction to unimodularity 
would be of second order in $z. The significance of uni- 
modularity will be seen in the next section. Here we note 
only that symmetrized starting values for the iteration, 
n•mely, 

p(ol=«(p.+p•+•), D•o}=«(D•+D•+•), (23) 
improve the unimodularity. To first order in $z. (25) gives 

P•.• =P. +•(D. +D.• 
i.+ 1 = i. -- «(Pn + P.+ I )JI. (24) 

so that 

( 1 + I•J•/4)P.+ • = ( 1 - I•J•/4)P.+ 

(1 +I•.t•/4)D.l = (1 --I•J•/4)D. --P.Jp (25) 

The cross coupling of P. + • to D.+ • in (24) has the effect of 
introducing "second-order" terms proportional to I•J• in 
the &coupled relations (25). The corresponding matrix is 

M• =(i + I? )-• (1-I•JJ4 I• ) -- - J• 1 - I•J•/4 ' (26) 
(the prefactor multiplies every element of the matrix). The 
determinant of this matfix is unity, exactly. Does perfect 
unimodulafity persist to second order in the layer thickness 
if the symmetric starting values (23) are used? We have, 
instead of (16), 

III. REFLECTION AND TRANSMISSION AMPLITUDES IN 
TERMS OF THE PROFILE MATRIX 

We have seen how to approximate matrices M. that give 
P• + l ,D.+ • in terms of P.,D•, for an arbitrary variation of 
the acoustical parameters in the nth layer, z•<z<zn + •. Let 
z• and z~ + • be the boundaries of the stratification that is 
represented by N layers, with uniform media a (for z < z• ) 
and b (for z > z•v + l ) lying on either side. From (7) we see 
that the values of P and D at z• and at z•+ • are given by 

p•=d"+re -i", Dl=iQ•(ei"-re-•), ot=qazl, 

P•+ • = te it•, D•v+ • = iQbte itt, 13--qoz•+•. (30) 
Now 

(,,t,) = ... = = M.,v M,,v_ • D,v 
where 

M-- M•M•_ • "'M•" . M•M• (32) 

is the profile matrix, the sequential product of the N layer 
matrices. Let m,• be the elements of this 2 X 2 profile matrix. 
Then from (30) and (31), 

teW l ( m" m'21(ei•+re-i• i.) (33) iQote ½] = \m21 m2,/\iQ.e • - iQore- ' 
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Solving for the reflection and transmission amplitudes r and 
t we find 

r= e l•a QaQ*tn12 -1- m21 -1- iQam22 - iQ, m•, 
QaQbm,2 - m2, + iQam22 + iQ, m,, ' 

(34) 

t = e "•- #• 2iQa det M 
QoQ, m•2 - rn2• + iQam22 + iQbm. 

(35) 

where det M = m • ,rn22 -- m 12m21 is the determinant of the 
profile matrix. (These results closely follow those derived 
for electromagnetic waves in Ref. 10, Sec. 12-2.) We will 
show that a conservation law and a reciprocity law are both 
satisfied when the profile matrix is unimodular, that is 
detM= 1. 

In the absence of dissipation within any part of the sys- 
tem, and also excluding total internal reflection, all q's and 
Q's are real. No absorption within the stratification also im- 
plies that all the matrix elements are real. Then the reflec- 
tance R = Irl 2 and transmittance T= (Qb/Qo)It 12 are giv- 
en by • 

(QaQ•m,2 + m2,) 2 + (Qam22 - Q,m•,) 2 
R= 

(QaQbm,2 -- m2,) 2 -{- (Qam22 "{- Qbmll) 2 ' 
(36) 

4QaQ, (det M) 2 
T= 

(QaQbm12 -- m2•) 2 -•- (Qam22 -•- Qbm•l) 2 
(37) 

Since there is no dissipation, the incident intensity must be 
equal to the sum of the reflected and transmitted intensities, 
R + T= 1. From the formulas for R and Tabove, 

4Q•Qo det M(det M-- 1) 
R+T=I+ 

(Q•Qbm•2 - m2,) 2 + (Qom22 + Qom•) 2 
(38) 

Thus energy conservation requires det M = 1 or det M = 0. 
In the case of representation by uniform layers, M is a prod- 
uct of unimodular matrices of the type given in (12), so 
det M = 1. Since det M is a continuous function of the ma- 

trix elements, det M = 0 is excluded in the general case. 
Next we compare the reflection and transmission when 

the wave is incident "from below" (from medium b). Equa- 
tion (31 ) still holds, with the same M as before, but now 

Pl=t'e-•, D•= -iQat'e -•, 

=e -• ?d a, Ds+• iQor'e iø, P•+ • + = -- iQ•e- ia + 
(39) 

where r' and t' are the reflection and transmission ampli- 
tudes for incidence from medium b. Thus (33) is replaced by 

iQoe- ia + iQ,?e•j 

t'e-i• • . -=( ml' ml2• (_iQat,e_iCtj (40) \m21 m22/ 

This leads to 

r' = e - 2• Q•Qnm•2 + rn2• - iQ•m22 + iQ, mll 
QoQ, ral2 - tn21 + iQ•m22 q- iQ, mll' 

(41) 

t ' = e "• - • 2iQb 
QoQ, rnn - m2, + iQorn22 + iQ•m. ' 

(42) 

The reciprocity law•4 Qa t' = Q, t [ which implies the impor- 
tant result that the transmittances T= (Qo/Q•)It 12 and 
T'= (Q•/Qo)lt'[ • are equal, even if there is absorption 
within the stratification] is seen to be valid on comparing 
(35) with (42), prooided det M = 1. Another reciprocity 
law, valid only in the absence of absorption, is r' = -- t'r*/ 
t '*. This law, 14 which implies that the reflectance is the same 
from either side, is verified from the equations for r, r', and t' 
given above, independently of the value of det M. 

We have shown that unimodularity of Mis necessary for 
energy conservation and for the reciprocity law T' = T. If 
each layer matrix is unimodular, M will be unimodular, 
since the determinant of a product of matrices is equal to the 
product of their determinants. Thus unimodularity of the 
layer guarantees these laws, and is a desirable characteristic 
in any approximation scheme. Of course, unimodularity by 
itself implies nothing about accuracy or efficiency. These 
will be considered next. 

IV. NUMERICAL METHODS BASED ON THE LAYER 
MATRICES 

The elements of the profile matrix determine the reflec- 
tion and transmission amplitudes, the profile matrix being 
found as a product of layer matrices. We will consider two 
classes of approximations: Those based on layers that have 
constant acoustical properties (labeled C), and those based 
on layers within which the acoustical properties vary linear- 
ly (labeled L). A subscript on Cot L will give the order in 
layer thickness to which the layer matrix has been calculat- 
ed. The layer matrix in the C•o scheme (stratification ap- 
proximated by homogeneous layers, each layer matrix calcu- 
lated exactly ) has been given in Eq. (12). The corresponding 
C• and C 2 matrices, obtained from (12), are 

1 
-- (qn&n)2/'2 pn&n • -- •Sz,/p,1 -- (q•Sz•)2/2/ ' 

(43) 

One might ask: Why expand in powers of 6z,, when the 
exact matrix is known in simple form? The answer is that in 
approximating a stratification, as in Fig. 1, it is often neces- 
sary to use a large number of uniform layers, each thin (with 
small 8••q, tSz• ). The elements of the matrices in (43) are 
then nearly as accurate, and much faster to calculate, than 
are the exact sinusoidal layer matrix elements in (12), for a 
layer that in any case only approximates the physical profile. 

It is plausible intuitively, on comparison of Figs. 1 and 2, 
that a more accurate representation of a continuously vary- 
ing stratification is in terms of layer matrices which allow 
variation of the acoustical parameters so as to avoid discon- 
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tinuities at the layer boundaries. The simplest variation is 
linear, for example, 

p(z) =p, + (z-z,)6p,,/t5z,, z,<z•z•+,, (44) 
where 8p,, = p,' + • -- p,,. The acoustical parameters are the 
local density p(z) and the local speed of sound c(z). The 
integrals needed for the evaluation of the matrix elements 
(See. IlI) have integrantis p(z) and q•(z)/8(z) = [co2/ 
c a ( z ) -- K :• ]/p (z). The integrals can be found analytically if, 
for example, p(z) and c -z (z) are taken to vary linearly with- 
in a layer. All integrals except I• then contain logarithmic 
furlotions with arguments such as p• + I/Pn' For accuracy 
and speed of computation, these can be expanded in powers 
ofSp,/p,,; the analogous procedure in the case of the electro- 
magneticp wave is carried out in Ref. 10, p. 244. This long 
process can be avoided if we assume the function 
A(z) =q•(z)/p(z) to be linear (compare See. 5.2 of Ref. 
15 ). The corresponding variation in the speed of sound is 
such that c-2(z) is quadratic in z: Assume (44) and 

A(z) =A,' + (z--z,,) ½5-•-•-,' 8A, =A,+• --A,. 
(45) 

Then 

0.12 (.0 2 Z -- Zn 
= + (A,' ) 

(46) 

When p and A = q•/p are assumed linear within each layer, 
the evaluation of the integrals li,Jm,Ir,,J.• is elementary. We 
find 

Im =Sz.(p,, +p. •)/2, 

I, = (Sz.'[3q• + 5dp. ,/p. + ,e./e.+ l + 1/:4. 

J, = (&.)'[3d + 5m+ 

+p.+,d/p. + 3d+, 
Wc note 

integrals 

(47) 

that (22) is satisfied, and that the second-order 
may be written as 

ImJm/2 + (&.)2p.,,+ I (Q2,, _ {•n+l )/12, 
I,J,/2 (&.)Zp.p.+ , (QZ,' z -- -- Q.+,)/12. (48) 

The layer matrices in the schemes Lm and L2 are then 

(•J, •') and (1 --I• --Jz)' (49) \ -- J, 1 

With a symmetrized iteration starting point the correspond- 
ing matrices are given by (26) and (29). We shall label cal- 
culations using these unimodular matrices by UL, and 
respectively. 

V. COMPARISON OF THE METHODS, AND 
CONCLUSIONS 

We shall compare the various schemes of numerical cal- 
culation of reflection and transmission properties by check- 
ing their results against an exactly solvable model stratifica- 
tion, namely, one in which both the density and the speed of 
sound vary exponentially with depthS4: 

p(z) =p,,e • .... •/t, c = c,,e • .... •/t:. (50) 
The general solution • permits a discontinuity in either or 
bothp and c atz• and/or z~+ m, but here we assume continu- 
ity of both acoustic variables at both boundaries, so that the 
lengths I and L are given by 

l=Az/log(pt,/p,,), L=Az/log(ct,/co), (51) 

where Az = z•+ • -- z• is the thickness of the inhomogen- 
eous layer. A (nonabsorbing) layer is characterized by three 
dimensionless parameters Pb/P,,, Ct,/C,, and 
= 2rrAz/g,,, where g, is the wavelength in medium a. The 
exact reflectance and transmittance are easily calculated 
from the Bessel function solution 14 of Eq. (4), provided the 
thickness/wavelength parameter coAz/c,, is not too large. 
For large thickness parameter (say greater than ten}, the 
arguments of the Bessel functions become large, the Bessel 
functions become difficult to calculate from their series ex- 

pansions, and one must use their asymptotic forms, or _gen- 
eral expression '4 for r and t in the short-wave limit. In the 
same high-frequency, short-wave, or thick-layer limit, large 
numbers of matrices are required to calculate r and t correct- 
ly. In that limit it is better to use the general expressions 
derived in Ref. 14. In the opposite long-wave (or low-fre- 
quency, or thin-layer) limit, very few matrices are needed, 
and the second-order methods are much more accurate than 

the first-order methods, for the same number of layer matri- 
ces N. We will give the actual errors for seven matrix algor- 
ithms in an intermediate case, coAz/co = 2, with p• = 2po, 
c o: (4/3)%. Ten matrices were used in each case. The re- 
fiectance was calculated at four angles of incidence, 0 ø to 45 ø 
in 15 ø steps, over which range it varied from 0.07917 at nor- 
mal incidence to 0.40968 at 45' [the critical angle for this 
case is arcsin (•) •48.6ø]. Table I gives the average absolute 
fractional error in the reflectance, and the average value of 
det M -- I (proportional to the violation the R + T = I and 
T' = T laws), the averages being taken over the four angles 
of incidence. 

We first note that the error could have been reduced in 

each case by increasing the number of matrices from N = 10. 

TABLE I. Comparison of seven matfix algorithms, all using I0 matrices. 
The letters C, L, and U stand for constant, linear, and unirnodular. The 
subscripts denote the order in &, to which the matrices are evaluated. The 
figures are for a stratification in which density and speed vary exponentially 
(parameters are given in the text). 

Method C, L• C: L• C• UL, UL: 

Av•r•8• 
error(%) 19 19 2.0 0.8 1.3 1.2 0.2 

Average of 
detM--I 2 2 10 -• 10 -z 0 0 0 
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The purpose here is to compare the relative errors. At first 
sight it appears surprising, on comparing Figs. I and 2, that 
the C• and L• methods give almost the same results. This is 
because in all the Cmethods, the (constant) acoustic param- 
eters for each layer were chosen to be the exact values at the 
middle of the layer. Thus the C, and L1 matrix elements are 
almost the same [note p,, etc. thus have different meanings 
in (43) and in (47) and (49) ]. Even in second order, the L2 
method is only a factor of 2 or so more accurate, for the same 
reasons. The improvement in det M- 1, which should be 
zero, is however significant. Of the three methods that have 
det M= 1 (to within the numerical precision available), 
C• and UL• have comparable accuracy in the reflectance, 
and are comparable in programming simplicity. However, 
C, is considerably longer to execute, since the sine and co- 
sine matrix elements take an order of magnitude longer to 
compute than ones involving only simple arithmetic opera- 
tions. The unimodular second-order method based on linear 

variation of acoustic parameter (UL2) is our preference, fol- 
lowed by UL• if very simple matrix elements are required, 
for example in order to use a small programmable calcula- 
tor. 

We note also that the matrix method can also be used to 

generate the sound field wavefunctions within the stratifica- 
tion, which are produced in the more usual numeric solution 
of the differential equation. •6'•? The acoustic pressure field 
may be found in the same way as the electromagnetic fields, 
as a by-product of the calculation of the reflection ampli- 
tude: See Ref. 10, pp. 247, 248. 

In summary, we have fqrmulated the acoustic reflection 
problem in terms of a product of 2 X 2 layer matrices, shown 
that these matrices should be unimodular for energy conser- 
vation and a reciprocity theorem to hold, and given two 

methods that have unimodularity built in and are simple to 
program. 
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