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Abstract
We present a family of solutions of the wave equation which are localized in
space–time and have azimuthal dependence, thus enlarging the previously
known set of solutions. These wavefunctions are used to construct two types
of solutions of Maxwell’s equations which represent localized
electromagnetic pulses. The energy, momentum and angular momentum of
these pulses are calculated analytically for simple special cases of the family
of wavefunctions. Solutions of the wave equation with exp(imφ) azimuthal
dependence, but otherwise unrestricted, are shown to result in separation of
angular momentum into spin and orbital parts for two classes of pulse.
However, reversal of the sign of m can produce major changes in the pulse
structure.

Keywords: electromagnetic pulses, azimuthal dependence,
angular momentum

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although wavepacket solutions of the Schrödinger equation
were found in the early days of quantum mechanics [1, 2], it
is only recently that three-dimensionally localized solutions of
the wave equation have been explored [3–16]. In most cases
the exploration was limited to the scalar wave, but Hellwarth
and collaborators [7, 8] constructed an exact localized pulse
solution of Maxwell’s equations and evaluated its energy.
Analytic results for the energy, momentum and angular
momentum for this pulse and for related but even simpler
pulses were recently presented [14]. It was found that in each
case the energy of the pulse was greater than the speed of
light times its momentum. It follows that a transformation to
the zero-momentum frame of the pulse is possible, and this
result has been proven to hold for all space–time localized
solutions of Maxwell’s equations [15]. One consequence is
that localized electromagnetic pulses have an intrinsic angular
momentum along the direction of the net momentum of the
pulse, unchanged by Lorentz boosts along this direction, and
invariant to change of spatial or temporal origin [16].

Most of the localized solutions of the wave equation
that have been presented have no azimuthal dependence: in

cylindrical polar coordinates (ρ, φ and z) the wavefunction
is independent of φ. The exceptions are the Bessel–Gauss
pulses of Overfelt [5], generalized by Kiselev [13]. However,
neither author has applied these solutions to electromagnetic
waves, and although the formal application is straightforward,
the analytic evaluation of the pulse energy, momentum and
angular momentum does not appear tractable. In this paper
we shall present pulse solutions of the wave equation with
azimuthal dependence contained in the factor eimφ , construct
solutions of Maxwell’s equations from them, and analytically
evaluate the energy, momentum and angular momentum for
some special cases.

2. Localized solutions of the wave equation with
eimφ azimuthal dependence

Hillion [6] has shown that the wave equation

∇2ψ = ∂2
t ψ [∂t = ∂/∂(ct)] (1)

is solved by the set of functions

ψ(r, t) = f (s)

b + i(z ∓ ct)
, s = ρ2

b + i(z ∓ ct)
− i(z ± ct).

(2)
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An alternative route to these solutions has been given in [16].
When f (s) is set equal to abψ0/(s + a) we obtain the
Ziolkowski wavefunction [3]

ψZ = ab

ρ2 + [a − i(z ± ct)] [b + i(z ∓ ct)]
ψ0. (3)

(We have put in the factor abψ0 so as to normalize the
wavefunction to ψ0 at the space–time origin.) An oscillatory
solution with wavenumber k obtained by setting f (s) equal to
abψ0e−ks/(s + a), namely

ψk(r, t) = abe−ks

ρ2 + [a − i(z ± ct)] [b + i(z ∓ ct)]
ψ0 (4)

has the plane wave form eik(z±ct) in the region where a and b
are large compared to |z ± ct | and b is large compared to kρ2.
Electromagnetic pulses based on (4) were studied in [16].

We now wish to generate solutions of the wave equation
which have azimuthal dependence. We note that

g

b + i(z ∓ ct)
ψZ, g = x, y, x ± iy (5)

are solutions of the wave equation, as are

h

[b + i(z ∓ ct)]2ψZ, h = xy, x2 − y2, (x ± iy)2. (6)

The wavefunctions obtained by replacing ψZ by f (s)/[b +
i(z ∓ct)] in (5) and (6) are also solutions of the wave equation.

We are particularly interested in azimuthal dependence of
the form eimφ , where m is a positive or negative integer. We
note that x + iy = ρeiφ , and can verify by differentiation that[

ρ

b + i(z − ct)

]|m|
eimφ f (s)

b + i(z − ct)
,

s = ρ2

b + i(z − ct)
− i(z + ct) (7)

is a solution of the wave equation for arbitrary m and any twice-
differentiable function f (s). (Here and henceforth we take the
upper sign, as was done in the calculations of [14].)

In quantum mechanics the factor eimφ would be associated
with angular momentum h̄m about the polar (z) axis. We shall
explore the angular momentum properties of pulses derived
from the family of solutions (7) in the following sections.

3. TE + iTM pulses with eimφ azimuthal dependence

Solutions of Maxwell’s equations in free space can be obtained
from solutions of the wave equation as follows (see for
example [17], section 6.4). We set

B = ∇ × A, E = −∇�− ∂t A. (8)

Then provided the scalar potential � and all components of
the vector potential A satisfy the wave equation (1), and also
satisfy the Lorenz condition

∇ · A + ∂t� = 0, (9)

the electric and magnetic fields E and B will satisfy Maxwell’s
equations in vacuum.

A transverse-electric (TE) solution is obtained by
setting [14]

� = 0, A = ∇ × [0, 0, ψ] = [
∂y,−∂x , 0

]
ψ. (10)

This gives the fields

E = [−∂y∂t , ∂x∂t , 0
]
ψ, B = [

∂x∂z, ∂y∂t ,−∂2
x − ∂2

y

]
ψ.

(11)
A transverse-magnetic (TM) solution is obtained by the duality
transformation E → B, B → −E. The dual of the TE field just
given has E = ∇ × A, B = ∂t A. The combination TE + iTM
has

B = ∇ × A + i∂t A, E = iB. (12)

Monochromatic beams in which the complex fields are
related by E = ±iB have energy and momentum densities
which do not oscillate in time, in contrast to general beams,
in which these oscillate with angular frequency 2ω when the
fields oscillate with angular frequency ω. The E = ±iB set
of beams, introduced in [18] and further applied in [19], have
been called steady beams. Pulses clearly cannot be steady in
the same sense, but they share with monochromatic beams the
property that the energy and momentum densities are given by
the simple formulae [15] associated with E = ±iB:

u = 1

8π
|E|2 = 1

8π
|B|2 (13)

cp = ± i

8π
E × E∗ = ± i

8π
B × B∗. (14)

(It is understood in the use of complex fields that the physical
fields are either the real or the imaginary parts of E and B. If
for example the real parts are chosen then the energy density
is given by 8πu = E2

r + B2
r , which is equal to E2

r + E2
i and

hence consistent with (13), since Er + iEi = ±i(Br + iBi) and
so Er = ∓Bi, Ei = ±Br. Likewise the momentum density is
given by 4πcp = Er × Br = ± i

2 (Er + iEi) × (Er − iEi) =
±(Er × Ei) and is thus consistent with (14).)

From (10), (11) and (12) we find that the magnetic field
of a TE + iTM pulse is

B = [
∂x∂z + i∂y∂t , ∂y∂z − i∂x∂t ,−∂2

x − ∂2
y

]
ψ. (15)

The energy density is |B|2/8π ; on using the wave equation this
becomes

u = 1

8π
{|(∂x∂z + i∂y∂t )ψ |2 + |(∂y∂z − i∂x∂t)ψ |2

+ |(∂2
z − ∂2

t )ψ |2}. (16)

The momentum density is iB × B∗/8πc, with components

px = − 1

4πc
Im

{[
(∂y∂z − i∂x∂t)ψ

] [(
∂2

z − ∂2
t

)
ψ∗]}

py = 1

4πc
Im

{[
(∂x∂z + i∂y∂t)ψ

] [(
∂2

z − ∂2
t

)
ψ∗]}

pz = − 1

4πc
Im

{[
(∂x∂z + i∂y∂t)ψ

] [
(∂y∂z + i∂x∂t )ψ

∗]} .
(17)

In cylindrical polar coordinates ρ = √
x2 + y2, z and φ, the x

and y derivatives become

∂x = cosφ∂ρ−ρ−1 sinφ∂φ, ∂y = sin φ∂ρ+ρ−1 cosφ∂φ.
(18)
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Figure 1. The energy and momentum densities for the
m = 1 TE + iTM pulse based on the Ziolkowski wavefunction, with
a = 2b. The energy contours at t = 0 are dashed curves; those at
t = 3b/c are solid curves. The arrows, indicating the longitudinal
and transverse components of the momentum density, are enlarged
at t = 3b/c by a factor of 10 for better visibility. At t = 0 the pulse
is in its focal region, and is most compact. As time increases it
spreads.

In this paper we consider wavefunctions with eimφ azimuthal
dependence (m = 0,±1,±2 . . .). For such wavefunctions
∂φψ = imψ , and the energy and momentum can be expressed
in terms of ρ, z and t derivatives of the wavefunction:

u = 1

8π
{|(∂ρ∂z − mρ−1∂t)ψ |2 + |(∂ρ∂t − mρ−1∂z)ψ |2

+ |(∂2
z − ∂2

t )ψ |2} (19)

pz = − 1

4πc
Re

{
(∂ρ∂zψ)∂ρ∂tψ

∗ − m

ρ
[(∂ρ∂zψ)∂zψ

∗

+ (∂ρ∂tψ)∂tψ
∗] +

(
m

ρ

)2

(∂zψ)∂tψ
∗
}
. (20)

Instead of px and py we shall work with the radial and
azimuthal components of the momentum density,

pρ = px cos φ + py sin φ, pφ = −px sinφ + py cosφ.
(21)

For the TE + iTM pulse with eimφ azimuthal dependence, these
are

pρ = 1

4πc
Re

{[(
∂ρ − m

ρ

)
∂tψ

] (
∂2

z − ∂2
t

)
ψ∗

}
(22)

pφ = 1

4πc
Im

{[(
∂ρ∂z − m

ρ
∂t

)
ψ

] (
∂2

z − ∂2
t

)
ψ∗

}
. (23)

We note that all of u, pz , pρ and pφ are independent of the
azimuthal angle φ, and that u and pz have terms in m0, m and
m2, while pρ and pφ have only m0 and m terms.

The above results are for any pulse solution of the wave
equation which has eimφ azimuthal dependence. In [14] we
evaluated the total energy, momentum and angular momentum

Figure 2. The angular momentum density for the m = 1 TE + iTM
pulse based on the Ziolkowski wavefunction, with a = 2b (this ratio
is used in all the figures), at ct = 3b. It is negative-definite, for all
positive a and b. The shape of the contours changes as the pulse
propagates, but the integral over all space stays constant, at the value
given in (26).

of a TE + iTM pulse constructed from the m = 0 Ziolkowski
wavefunction ψZ given in (3):

U = π

8

a + b

ab
ψ2

0 , cPz = π

8

a − b

ab
ψ2

0 , Jz = 0.

(24)
(The result that Jz = 0 for any TE + iTM pulse with
wavefunction independent of φ is proved in [16].) For the
wavefunctions (based on ψZ with the upper sign taken in (3))

ψ± = x ± iy

b + i(z − ct)
ψZ = ρe±iφ

b + i(z − ct)
ψZ (25)

we find, by the methods described in [14],

U = π

8

3a + b

b2
ψ2

0 , cPz = π

8

3a − b

b2
ψ2

0 ,

cJz = ∓π
4

a

b
ψ2

0 .

(26)

The energy, momentum and angular momentum densities have
different functional forms for the ψ+ and ψ− wavefunctions,
but have the same total energy and momentum, and the
total angular momenta differ in sign only. We note that
the Lorentz boost required for transformation to the zero-
momentum frame, which was β = (a − b)/(a + b) for ψZ,
now becomes β = (3a − b)/(3a + b). The sign of Jz is
perhaps surprizing, since e+iφ azimuthal dependence would in
quantum mechanics be expected to give a positive Jz.

The energy and momentum densities for theψ+ TE + iTM
pulse are shown in figure 1, and the angular momentum density

jz = xpy − ypx = ρpφ (27)

is shown in figure 2. All of u, p and jz depend on time as
well as on position. However, the total energy, momentum
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and angular momentum

U =
∫

d3r u(r, t), P =
∫

d3r p(r, t),

J =
∫

d3r r × p

(28)

have been shown to be constants [14, 16], and can thus be
evaluated at any time. Figure 1 shows the ψ+ densities at
t = 0 and 3b/c. Figure 2 shows the z-component of the
angular momentum density jz, which is negative-definite. The
change m → −m reverses the sign of Jz, as may be expected.
This result follows from the fact that (23) may be written as

pφ = p(0)φ − m

4πcρ
Im

{
(∂tψ)

(
∂2

z − ∂2
t

)
ψ∗} (29)

where
∫

d3r ρp(0)φ is zero by the arguments given in section 5
of [16].

4. ‘CP’ pulses with eimφ azimuthal dependence

The ‘circularly polarized’ (‘CP’) pulse was introduced in
section 3 of [16]. The inverted commas are used for two
reasons:

(i) pulses cannot be monochromatic and thus the electric and
magnetic field vectors do not periodically orbit elliptical
paths at a given point in space as they do in monochromatic
beams (these elliptical paths define the polarization—see
for example [20]), and

(ii) even for nearly monochromatic pulses, which locally
can resemble a monochromatic beam for a short time,
perfect circular polarization in a fixed plane is not possible
(theorem 2.3 of section 2 of [20]).

Nevertheless, the ‘CP’ pulses defined in [14] and [16] by

A = ∇ × [iψ,ψ, 0], B = ∇ × A + i∂t A,

E = iB
(30)

have twist in the fields even when ψ is independent of
the azimuthal angle, and for nearly monochromatic pulses
will have a central region in which the fields are close to
circularly polarized (the polarization of the related ‘CP’ beam
is discussed in section 4 of [20]).

‘CP’ pulses defined by (30) have energy and momentum
densities given by (13) and (14). We shall evaluate these
for general ψ , and then specialize for solutions of the wave
equation which have the azimuthal dependence eimφ , as we
did for TE + iTM pulses. The magnetic field has, from (30),
the components

Bx = (∂x − i∂y)∂yψ − i(∂z + ∂t)∂zψ

By = −(∂x − i∂y)∂xψ − (∂z + ∂t )∂zψ

Bz = i(∂x − i∂y)(∂z + ∂t)ψ.

(31)

The energy density is (|Bx |2 + |By|2 + |B2
z |)/8π . The

momentum density is iB × B∗/8πc; its components are

px = − 1

4πc
Re{[(∂x − i∂y)∂xψ + (∂z + ∂t)∂zψ]

× (∂x + i∂y)(∂z + ∂t)ψ
∗}

py = − 1

4πc
Re{[(∂x − i∂y)∂yψ − i(∂z + ∂t)∂zψ]

× (∂x + i∂y)(∂z + ∂t)ψ
∗}

pz = 1

4πc
Im{[(∂x − i∂y)∂yψ − i(∂z + ∂t)∂zψ]

× [(∂x + i∂y)∂xψ
∗ + (∂z + ∂t )∂zψ

∗]}.

(32)

We now consider wavefunctions which have eimφ

azimuthal dependence, so that ∂φψ = imψ . We shall thus
use (18) in the form

∂xψ = cos φ∂ρψ − im

ρ
sinφψ,

∂yψ = sinφ∂ρψ +
im

ρ
cosφψ.

(33)

Also from (18), without restriction,

∂x ± i∂y = e±iφ

(
∂ρ ± i

ρ
∂φ

)
. (34)

We then find, for eimφ azimuthal dependence, that the energy
density u and also the longitudinal, radial and azimuthal
components of the momentum density are all independent of
the azimuthal angle φ. As for the TE + iTM pulse, u and
pz are of second degree in m, while pρ and pφ are of first
degree in m. The terms of zero degree in m have been given in
equations (11) and (14) of [16], so we shall just give to terms
of first and second degree in m:

u(1) = m

4π
[ρ−1 Re{(∂z + ∂t )ψ

∗(∂z + ∂t)∂ρψ

− (∂ρψ
∗)(∂z + ∂t)∂zψ} − ρ−2[Re(ψ∗∂2

ρψ) + |∂ρψ |2]

+ ρ−3 Re(ψ∗∂ρψ)]

u(2) = m2

8π
[ρ−2(|∂ρψ |2 + |(∂z + ∂t)ψ |2)

− 2ρ−3 Re(ψ∗∂ρψ) + 2ρ−4|ψ |2]

(35)

p(1)z = m

4πc
[ρ−1 Re{(∂ρψ∗)(∂2

ρ + ∂2
z + ∂z∂t )ψ}

− ρ−2 Re{ψ∗(∂2
ρ − ρ−1∂ρ)ψ}]

p(2)z = m2

4πc
[−ρ−3 Re(ψ∗∂ρψ) + ρ−4|ψ |2]

(36)

p(1)ρ = m

4πc
[−ρ−1 Re{(∂2

ρ + ∂2
z + ∂z∂t )ψ

∗(∂z + ∂t)ψ}
+ ρ−2 Re{ψ∗(∂z + ∂t)∂ρψ}] (37)

p(1)φ = m

4πc
[ρ−1 Im{(∂z + ∂t)∂zψ

∗(∂z + ∂t )ψ

− (∂ρψ
∗)(∂z + ∂t )∂ρψ}

+ ρ−2 Im{ψ∗(∂z + ∂t)∂ρψ + (∂ρψ
∗)(∂z + ∂t )ψ}]. (38)
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(a) (b)

Figure 3. (a) The energy and momentum densities for the m = 1 ‘CP’ pulse based on the Ziolkowski wavefunction, with a = 2b. The
energy contours at t = 0 are dashed curves; those at t = 3b/c are solid curves. The arrows, indicating the longitudinal and transverse
components of the momentum density, are enlarged at t = 3b/c for better visibility. The pulse is hollow in momentum and energy,
propagating forward and outward as an annulus. (b) As for (a), but now for the m = −1 ‘CP’ pulse, and at t = 0 and 4b/c. Note the vortex
ring structure, most marked at t = 0, where momentum backflow is strong. Note also the differences between this diagram and that of (a): it
is remarkable that reversal of the sign of m produces qualitative changes in the pulse.

The total energy, momentum and angular momentum of
the ‘CP’ pulse resulting from the Ziolkowski wavefunction (3)
were evaluated in [14]:

U = π

8

a + 3b

a2
ψ2

0 , cPz = π

8

a − 3b

a2
ψ2

0 ,

cJz = π

4

b

a
ψ2

0 .

(39)

The results for the m = ±1 solutions of the wave equation
given in (25) are

U = π

8

a + b

ab
ψ2

0 , cPz = π

8

a − b

ab
ψ2

0 ,

Jz =



0 (m = 1)
π

4
ψ2

0 (m = −1).

(40)

We note that the angular momentum in (39) results from twist in
the fields: the wavefunction ψZ has no azimuthal dependence.
When azimuthal dependence is introduced, it can cancel or
enhance the angular momentum contained in the azimuthally-
independent part.

Figure 3(a) shows the energy density and the longitudinal
and radial momentum densities of the ψ+ ‘CP’ pulse, and
figure 4 shows the angular momentum density jz = ρpφ for
the m = 1 pulse. Figures 3(b) and 5 show the corresponding
results for the m = −1 pulse. There are positive and negative
parts of jz for the m = 1 pulse, which exactly cancel in the
integral Jz = ∫

d3r jz, while the m = −1 pulse has a positive-
definite angular momentum density.

Figure 4. The angular momentum density for the m = 1 ‘CP’ pulse
based on the Ziolkowski wavefunction with a = 2b, at ct = 3b. It
has positive and negative regions, whose shape changes as the pulse
propagates, but the integral over all space is always zero.

5. Discussion

We have shown how the Hillion class of axially symmetric
solutions of the wave equation can be enlarged to include
azimuthal dependence. When the simplest of these
wavefunctions are applied to generate electromagnetic pulses
of the TE + iTM and ‘CP’ types, the energy, momentum and
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Figure 5. As for figure 4, but now for the m = −1 ‘CP’ pulse, at
ct = 3b. In contrast to the m = 1 case, the angular momentum
density is positive-definite. The integral over all space is constant in
time, the value being given by (40).

angular momentum all change. In the TE + iTM case the
azimuthally-dependent wavefunction gave non-zero angular
momentum (as expected), but of opposite helicity to that
expected. In the ‘CP’ cases the angular momentum is non-zero
for wavefunctions independent of the azimuthal angle, and we
found that the simplest azimuthally-dependent wavefunctions,
with m = ±1, respectively cancel and enhance the angular
momentum of the pulse. The fact that the cancellation is exact
when m = +1 could be interpreted as being the cancellation
of spin and orbital angular momentum, with values +1 and
−1 respectively, since a vector field has spin 1 (see for
example [21]), and m = ±1 corresponds to orbital angular
momentum 1 in scalar particle wavemechanics.

The practice of separating the angular momentum content
of light beams into orbital and spin components is well
established: see problems 7.19–7.21 in [17] and the reprint
collection [22]. Bartlett [23] has considered a class of beams in
which the fields are constructed from wavefunctions composed
of products of an amplitude, a plane wave, and eimφ times
a Bessel function of order m. For these beams the angular
momentum flux separates into spin and orbital parts, and the

orbital part is proportional to m. However, the beam invariants
arising out of the conservation of angular momentum [24] do
not appear to separate into spin and orbital parts, in general.

The expressions for the angular momentum of the
classical electromagnetic pulses considered here can likewise
be considered to consist of a spin part (independent of m)
and an orbital part (proportional to m), at least in the case
of wavefunctions with eimφ azimuthal dependence. However,
as we have seen, reversal of the sign of m can produce major
changes in the pulse structure.

When the wavefunctions have more complicated
azimuthal dependence, the separation into spin and orbital
parts is not obvious, for pulses or for beams.
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