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Light in periodically stratified media
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A pedagogical presentation of the propagation of electromagnetic waves in stratified media is given. The
usual 2 x 2 matrix analysis is simplified and generalized. A Bloch factor eigenvalue equation is obtained,
valid for all periodic stratifications. The implications of the band structure of an infinite periodic structure for
reflection by a finite structure are demonstrated. Some features of the reflectivity are shown to be universal.
In the long-wave limit, a periodic stratification with an arbitrary dielectric function profile e(z) within a unit
cell is shown to be equivalent to a homogeneous anisotropic medium, with ordinary and extraordinary dielectric
constants given by e = (e) and e- 1 = (E-1).

1. INTRODUCTION

Electron wave functions in crystals are modified by in-
teraction of the electrons with the periodic ionic lattice
to such an extent that band gaps appear in the spec-
trum of allowed states. This became clear in the early
days of quantum mechanics.1 The history of wave propa-
gation in periodic structures extends back to Newton,
who considered elastic waves on a one-dimensional lat-
tice of masses connected by springs as a model for sound.2

Rayleigh3'4 recognized the possibility of what are now
known as stop bands or band gaps for waves in periodic
structures, particularly in relation to the high reflection
(at certain wavelengths and angles of incidence) by peri-
odically stratified media.

The modern optics of stratifications was advanced by
Abelbs5 ; of special utility are his application of matrices
to wave propagation and his theorem that the Nth power
of a unimodular (one with unit determinant) 2 x 2 matrix
is given by

M1 1 iM12 iMllSN - SN-1

LM2l 22 j L m21SN

m12SN

m22SN - SNi

where

sin(NO)
sin t cos 0 = /2(m1 + 2 2 ).

One can easily prove this result by induction, on us
m11m22 - M12 M21 = 1 and the identity (or recurre
relation)

2(cos 1)SN - SN-1 = SN+1-

The matrices used by Abelbs link electric- and magne
field components at successive layers of the stratificat
For nonabsorbing media these matrices are complex, v
real diagonal elements and imaginary off-diagonal
ments. Matrices that link fields and their derivati
(for example, E and dE/dz for the electromagnetic s or
wave) are entirely real for nonabsorbing media.6 Thi
both simpler and four times faster in numerical work
matrix product AB = (Ar + iA,) (Br + iBj) requires

evaluation of four products if A and B are complex]. In
this paper we shall both simplify and generalize the ex-
isting theory of light propagation in periodically stratified
media. An expression is given for the matrix of a layer
with continuous but otherwise arbitrary dielectric func-
tion variation. The eigenvalue equation for the Bloch
factor in a periodic system is shown to be determined by
the trace of the matrix of a unit cell. When the wave-
length is long compared with the period of the stratifi-
cation, the periodic structure is equivalent to a uniaxial
homogeneous medium, with the ordinary dielectric con-
stant equal to the average of the dielectric function and
the extraordinary dielectric constant equal to the recip-
rocal of the average of the reciprocal of the dielectric
function.

2. ELECTROMAGNETIC WAVES
IN STRATIFIED MEDIA

We consider plane electromagnetic waves incident from a
medium of index nj onto a nonmagnetic planar stratifi-
cation, whose optical properties are contained in the di-
electric function e(z) = n2 (z) [n(z) is the local value of the

(1) refractive index]. For isotropic media, with scalar rather
than tensor dielectric function, any plane wave can be
written as a superposition of an s (or TE) wave and a p
(or TM) wave. The s wave has its electric vector perpen-

(2) dicular to the plane of incidence, and the p wave has its
(2) electric vector in the plane of incidence (and its magnetic

vector perpendicular to the plane of incidence; hence its
sing designation as a TM, or transverse magnetic, wave). We
nce assume that the medium is stratified in the z direction [so

that e = e(z)], and I further take the plane of incidence to
(3) be the (z, x) plane. Then the s wave electric-field vector

E = (0, Ey, 0), and the p wave has magnetic-field vector
etic- B = (0, By, 0). It follows directly from the Maxwell curl
[on. equations that, for monochromatic waves of angular fre-
with quency co,
ele-

es
TE
s is
[the
the

Ey(z, x, t) = exp[i(Kx - wt)]E(z),

By(z, x, t) = exp[i(Kx - t)]B(z),

(4)

(5)

where K (the x component of the wave vector) is a
separation-of-variables constant whose existence derives
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from the planar nature of the stratification and whose
constancy implies Snell's law. The functions E(z) and
B(z) satisfy the ordinary differential equations (see, for
example, Sections 1-1 and 1-2 of Ref. 6)

Here W is the (constant) Wronskian of the two basic
solutions F and G,

W = FG'- F'G, W = 0, (15)

d (1 dB) + q 2 B =0, (6)

where q(z) is the local value of the normal component of
the wave vector, given by

q2 (z) = e(z)(02 /c2 - K2 . (7)

If 61 is the angle of incidence and 02 is the angle between
the wave vector and the normal in the homogeneous sub-
strate of index n2 , then

K = nl(c/c)sin 1 = n2(w/c)sin 2, (8)

and

(F, G) FaGb - GaFb,

(F', G) = Fa'Gb - GaFb,

(F, G') FaGb'- GaFb',
(F', G') Fa'Gb'- Ga'Fb'.

(16)

The layer matrix M is unimodular: from the identity
(2.31) of Ref. 6,

det M = W- 2[(F, G) (F', G') - (F, G') (F', G)] = 1. (17)

An important example is that of a homogeneous layer,
for which e(z) and q(z) are constant. We can then take
F = cos(qz) and G = sin(qz), for which W = q and

q2 = n2(c/c)cos 02. (9)

It follows from Eqs. (6) that dE/dz and e-'dB/dz are
continuous at any discontinuity in e(z) (otherwise delta-
function terms would arise in the second derivatives). A
fortiori, E and B are continuous at any discontinuity in
e(z).

Consider a stratification extending from z = a to z = b,
bounded by homogeneous media of indices ni and n2, and
suppose at first that e(z) is continuous for a < z < b.
For the s wave let F(z) and G(z) be two linearly inde-
pendent solutions of the second-order differential equa-
tion d2 E/dz2 + q2E = 0. Then E(z) may be written as a
linear superposition of F and G:

E(z) = fF(z) + gG(z), (10)

where f and g are constants. We will use a layer matrix
M = {mij} that links fields and their derivatives; in the
s-wave case it is defined by

( Eb M1 [
Eb' LM2

M1 2 Ea'\
Mi22 i Ea' 

(11)

where Ea and Ea' represent E (a+) and the derivative of
E(z) at z = a+, and similarly Eb and Eb' stand for E(b-)
and the derivative of E at z = b-. From Eq. (10) and its
derivative we see that

(F, G) = sin 6,

(F', G) = -q cos 8,

(F, G') = q cos 6,

(F', G') = q2 sin .5, (18)

where 5 = q(b - a) is the phase increment across the
layer. The layer matrix in this case is

M - cos 8 q-1 sin 1
-q sin 8 cos4 j (19)

[the same matrix is obtained if we choose F = exp(iqz)
and G = exp(-iqz)].

The matrix elements mij determine the reflection and
transmission amplitudes rs and t of the nlln(z)ln2 struc-
ture; we have, from the definition of M,

( ts exp(iq2 b) _ [iM in 2 1
iq 2 ts exp(iq2 b) J L M2 1 2 2 ]

X exp(iqla) + rs exp(-iqla) ) (20)
iql[exp(iqla)- rs exp(-iqla)]

when exp(iqlz) + r exp(-iqlz) and t exp(iq2 z) are the
forms of E(z) in the medium of incidence and in the sub-
strate. It follows from Eq. (20) that (see Section 12-2 of
Ref. 6)

r = exp(2iqla) qlq2ml2 + M2 1 + iqlm22 - iq2mll

qlq2ml2 - m21 + iqIm 2 2 - q2mll

(21)

( Ea A

Ea'/

[Fa

Fa'

( Eb _ Fb
Eb') L FbI

Gab' ( gj ( gj

Gb'] f) (B 

ts = exp[i(qla - q2b)]

(12) X
2iql

qiq2 m12 - M21 + iqlM2 2 - iq2m11

(22)
(13)

Substitution of Eqs. (12) and (13) into Eq. (11) shows that
the layer matrix can be expressed in terms of the funda-
mental field and derivative values at the boundaries of
the layer:

The form of the differential equation for E(z) is the same
as that of the Schr6dinger equation for a particle of mass
m in a potential V(z), where

(z) 2 /C2 2m [ - V(z)]. (23)

M = BA 1 = Wi -(F', G) (FG) 1]
[-(F', G') (F, GI)j

Thus the results derived for the electromagnetic s wave
(14) apply also to quantum particle waves in a z-stratified

medium, as is well known.

d 2 E q2 E = 0,
+qE0

q = n1 (w/c)cos 01,
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CHThe p-wave layer matrix is defined to link the quan-
tities B(z) and e&1 dB/dz, which are continuous at dis-
continuities of e. Let Ba and Bb stand for B(a+) and
B(b-) and Ba and Rb represent the values of e-'dB/dz
at z = a+ and z = b-. Then

(Bb ' M _ 11 M1 2 Ba .

Bb L m21 m22 BaI
(24)

We express B(z) as a linear combination of two indepen-
dent solutions of Eq. (6), say C(z) and D(z). Then, by the
arguments used above, with F, F' and G, G' replaced by
C, C and D, D,

M U- L-(C, D) (CD) j

where, for example, (C, D) CaDb - DaCb and

U = CD-CD, U' = 0

el

ll C2eTCL

z

Fig. 1. Dielectric function profile for a (high-low)4 dielectric
(25) mirror, drawn to scale with n = 1, nh = 2.35 (ZnS), n =

1.38 (MgF2), and n2 = 1.5 (glass). For maximum reflectivity
at normal incidence and wavelength A the layer thicknesses are
dh = A/4nh and di = A/4n (a quarter-wave stack).

(26) It is clear from the definition of the layer matrix that a
stratification of any number N of layers has the matrix

(the Wronskian W = CD' - C'D is not constant for the
p wave; U = Wie is constant). This matrix is also uni-
modular, since

det M = U-2 [(C, D)(C, D) - (C, D)(C, D)] = 1.
(27)

For the homogeneous layer we take C = cos(qz) and
D = sin(qz) [or exp(iqz) and exp(-iqz)] to find that U
Q q/e and

M = [Cos Q` ] sin 8 (28)

The reflection and transmission amplitudes are defined
slightly differently for the p wave if one wishes to retain
rp = r, and tp = t, at normal incidence, where there is no
physical difference between the s and p waves:

exp(iqlz) - rp exp(-iqlz) f- B(z) - 2 tp exp(iq2z).
ni

(29)

Thus the equation analogous to Eq. (20) reads, from
Eq. (24),

n2 t exp(iq2b) = j

iQ2 2 t exp(iq2 b)) L M21

M12

M22

M = MNMN-1 ... M2 M1 - (33)

The results for the reflection and transmission ampli-
tudes given above thus apply to any isotropic stratifica-
tion. For nonabsorbing media e(z) is real, and the s- and
p-wave basic solutions can be taken to be real (if i/ is a
solution of a linear differential equation with real coeffi-
cients, then /* is also a solution and so is q1 + 0*). Thus
the matrices are real in the absence of absorption. En-
ergy conservation is then expressed in the algebraic iden-
tities

R. + T = 1, Rp +Tp = 1, (34)

where R. = r.12, Rp = Irp1 2
, T8 = (q2/ql)ts12 , and Tp =

(q2 /ql)ltp 2. (The reason for the q2/ql factor is discussed
in Section 2-1 of Ref. 6; see especially Figure 2-1.)

3. PERIODIC STRUCTURES

We now consider periodic stratifications, such as the
high-low multilayer mirror configuration shown in
Fig. 1.

We first discuss propagation of waves in an infinite
periodic structure. If one period has matrix M, the fields
and their derivatives at a corresponding point one period
along are given by

( n+l ) M( n) (35)

X exp(iq1 a) - rp exp(-iq1 a)
iQj[exp(iqia) + rp exp(-iqla)]

where Q1 = q1 /e, and Q2 = q2/e2 . This gives

-rp = exp(2iqla)

X Q1Q2M12 + M21 + iQlM22 - iQ2Mr1

Q1Q2M12 - M2 + M22 + iQ2M

(30)

(31)

2 tp = exp[i(qla - q2b)]

Q1Q2m12 - m21 + iQim2 2 + iQ2 m 1 (32)

where i represents E or B and /' represents E' or B =
6&1 dB/dz. In an infinite structure these positions (one
period along from each other) are equivalent, and so the
two vectors in Eq. (35) are proportional:

(36)n+l i' ,B f n'a

qn+l' / 0 fn I

The Bloch factor /3 is determined from the condition that
Eqs. (35) and (36) together, namely,

(M - /31I) ( =0, (37)

have a solution other than zero. [I = diag(1, 1) is the 2 X
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2 identity matrix.] The condition for nonzero solutions is
det(M - /3I) = 0, which reduces to

/32 - 2 cos 0 + 1 = 0,

when tr M = 2 cos and det M = 1 are used.
quadratic (38) has solutions

11

(38)

The

/3± = cos 0 ± (cos2 0 - 1)1/2 = exp(±io). (39)

Note that /3± have unit modulus if cos 2 0 < 1, but that, if
cos 2 q > 1, the solutions are real and not equal to unity.
Thus, if the magnitude of the trace of M exceeds 2, the
solutions will grow or decay exponentially; no propagating
waves are possible. The condition cos2 ek > 1 thus gives
the band gaps or the stop bands of the structure. The
band edges are given by cos2 0 = 1; they occur when is
a multiple of 7T. When Icos ob I> 1, O is complex, with the
real part a multiple of ir and the imaginary part S = Im 4
given by

e = Icos 01 + (cos2 0 - 1)1/2.

0

(40)

In infinite periodic stratifications, the propagation is
entirely determined by the trace of the matrix for a single
period. We may expect (and we shall shortly show this to
be true) that finite periodic structures reflect strongly in
the stop bands. The As and 0p values for the high-low
stack of Fig. 1, repeated to infinity, are shown in Fig. 2.
They are calculated from the matrix of the unit cell, a
high-low bilayer, which for the s wave is given by

[Cl qj'si - Ch qhiSh

L qlsl cl ,Lqh Sh Ch

CICh - ql qhSISh

L -qSlCh - qhClSh

qh leCsh + qj lS1Ch

CICh - qlqh'lSlSh

0

Re (VP

w=O

Im cop 2 > § .
00 300 600 9C

Re qs 
inRe qp

IM

I0
1

8.
00 300 600 900 -'

Fig. 2. Real and imaginary parts of qs and p for the
ZnS - MgF2 high-low structure as a function of the angle
of incidence. The upper plot is for the design frequency c0 for
high reflectivity at normal incidence, at which dh = Ah/4 and
dl = Al/4 (the A/4 stack) and thus Ah = v1/2. 81. The lower
plot is drawn for o = 1.3wo.I (41)

where cl = cos o5 , s = sin 61, q, = (W 2 /c2 - K2 )1 /2, and
the phase increment 81 is q1d, with d, as the thickness
of the low-index layer; the parameters for the high-index
layer are defined in the same way. Half of the trace of
this unit-cell matrix is, for the s wave,

if

COS 0 = CCh -
1

I2SlSh(qljqh + qh'ql)

= COS(81 + h) - SSh[(ql/qn)"
2

- (qh/ql )
2

]
2
.

(42)

For the p wave the arguments of the trigonometric func-
tions remain unchanged, but qj is replaced by Q = ql/el
and qh is replaced by Qh = qh/eh in the matrix elements.
Thus

COS Up, = ClCh -
1
12S1Sh(Q 

1
Qh + Qh

1
Ql)

= cos(5 + h) - Slsh[(QZ/Qh)"
2

- (Qh/Q) 2 ]2 .

0
0 1 2

w/wo

Fig. 3. Band structure parameter = arcos(1/2 tr M) for a A/4
stack as a function of the frequency, drawn for normal incidence
onto the high-low stack of Fig. 1. The stop band is centered at
the design frequency oo, with half-width given by Eq. (44).

Figure 2 shows the real and imaginary parts of 'k, and
Xp as a function of the angle of incidence 01. We see
from the figure that, at the design frequency for high
reflectivity, the infinite high-low stack does not permit
s-wave propagation at any angle of incidence, whereas the
p wave can propagate for 012 53°. At co = 1.3coo both

polarizations can propagate into the stack near normal
incidence, but at higher angles the s and p polarizations
begin (at different angles of incidence) to reflect totally.
The band edges at which this happens are given by the
location of cos2 0 = 1.

The band structure as a function of frequency is shown
in Fig. 3, in which is plotted the real and imaginary
parts of 0 versus co at normal incidence. The stop band
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(cos 2
0 > 1, 4 complex) is between coo - A &w and coO + A wt,

where

A c) 2 ./nh - niA = - arcsin(
0 IT nh + nj

(44)

At normal incidence the phase increments ah and 81 for
the quarter-wave stack are both equal to (/2)(w/wO)-

n2
- tp
ni

2iQlSN-1

Q1 Q2 m1 2 - 2 1 + iQl(m22 - N) + Q2(m11 - UJN)

(51)

For nonabsorbing media the reflectance is Rp = 1 - Tp,
where

TP q2 t 12 = 4QlQ2SN-2
P q, P (Q1Q2 m12)

2
+ M212 + Q1

2
(m22 - UN)

2
+ Q2

2
(mll - N)

2
+ 2QiQ2SN-2

(52)

Thus cos 4 is periodic in w, with period 2co. At oblique
incidence the s and p waves have different stop bands.

We now look at the optical properties of finite pe-
riodic structures. The reflection and transmission am-
plitudes are given by Eqs. (21) and (22) for the s wave
and Eqs. (31) and (32) for the p wave, where in each
case the mu are the matrix elements of the whole struc-
ture. Thus, for N periods (for example, N bilayers of the
high-low stack), the matrix elements are those of the Nth
power of the unit-cell matrix and are given by Eq. (1). It
is convenient to define the quantity

SN-1 sin[(N - 1) - ]_ SNi _ in[N - )4= cos 4)- sin 4) cot(N4)),
U -SN - sin(NO)

(45)

where cos 4) is half the trace of the unit-cell matrix.
Then we have, for the s wave,

r= qlq2mi2 + M21 + iql(m22 - oN) - iq2(mll - UJN)

qlq2ml2 - m21 + iql(m22 - UN) + iq2(mll - UN)

(46)

= 2iqSN-1

qiq2m12 - m21 + iqi(m22 - ON) + iq 2 (mll - UN)

(47)

(I have omitted the phase factors multiplying r3 and t8 ;
these are the same for the p-wave reflection and transmis-
sion coefficients and do not feature in any experiment that
does not compare reflection and transmission phases.7 )

For nonabsorbing media the reflectance and the trans-
mittance are given by

The forms for the reflectance and the transmittance have
been obtained by use of the facts that det M = 1 and
tr M = 2 cos 0 (M is the unit-cell matrix) and the identity

UN
2 -

2 o-N cos 0 + 1 = [(sin O)/sin(N 0)]
2

= SN 2 . (53)

When No is a multiple of or and (N - 1)4 is not, UN is
infinite and

qi - q2

ql + q2

- r _ Q1 - Q2.
Q1 + Q2

(54)

These are the reflection amplitudes of the bare substrate.
When (N - 1)0 is a multiple of 7r and N4) is not, UN is
zero and r, and r, are the same as the reflection ampli-
tudes of a single period of the structure (supported by the
substrate). Thus, for large N, there will be many passes
of the reflectivity through the bare substrate and single-
period values as the wavelength or the angle of incidence
varies.

At the band edges, where cos 4 = +1 and 4) is a mul-
tiple of vr, SN2 = N 2 . Thus the transmittance goes to
zero as N-2 at the band edges, and the reflectance is
1 - O(N- 2 ). Within the band gaps cos 4) = 1/2 tr M has
magnitude greater than unity, and 4) is a multiple of gr

plus an imaginary part given by Eq. (40):

Im X = log[Icos 1 + (cos 2 - 1)1/2].

Then SN2 increases exponentially with N,

N = sinh(N Im f) 2
5N=[sinh (Imif) 

(55)

(56)

and thus the s and p transmittances tend to zero expo-
nentially with the number of periods.

R = sl = qlq~m12)2 + - ~ l2 + q1224qq2 SN-2

R81r8 2 1 -(qjq 2M1 2)2 + Mn2 1
2 + q1

2(M2 2 - U-N)
2 + q2

2 (MI, - ON) 2
+ 2qlq2SN-

2

Ts El ItI12 = 1- R (49)

The p wave has a different unit-cell matrix and thus
different 4 and UN. The reflection and transmission am-
plitudes are, again omitting the phase factors,

-rP

Q1Q2 M12 + M21 + iQ(M 2 2 - UN) - iQ2(Mll - ON)

Q1Q2M12 - M21 + iQ(M 2 2 - OUN) + iQ2(Mll - UrN)

(50)

The results (46)-(56) hold for waves in any finite peri-
odic stratification. In particular, two facts are universal:
1 - R = O(N-2) at the band edges, and R approaches
unity exponentially with N inside the stop bands. The
construction of the matrices does not assume homogene-
ity within parts of a unit cell (as is assumed in Refs. 8
and 9, for example). We do not have to assume plane-
wave eigenstates. When the unit cell consists of two
homogeneous layers, the matrices used here are sim-
pler; compare Eq. (41) with the matrices in Section II of
Ref. 8.

, (48)

-
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1R

0
0 1 2

w/wo

Fig. 4. Frequency dependence of the normal-incidence reflectiv-
ity of a dielectric multilayer, drawn for 20 ZnS-MgF2 bilayers
on glass. The multilayer is tuned for high reflectivity at = 00
(it is a quarter-wave stack at the design frequency).

Figure 4 shows the normal-incidence reflectivity for a
20-bilayer high-low stack as a function of frequency, and
Fig. 5 shows the s and p reflectivities for the same 20-
bilayer stack at co = wo and w = 1.3wo, both as a function
of the angle of incidence. The stack parameters are the
same as those in Figs. 1-3. The corresponding curves
for a 4-bilayer stack can be found in Figs. 12-3 and 12-4
of Ref. 6.

mode ray direction always coincides with that of the or-
dinary wave vector (K, 0, q). The extraordinary-mode
ray direction does not coincide with (K, 0, q) in gen-
eral. When the optic axis is normal to the reflecting sur-
face, the ray direction of the extraordinary wave is along
[(eo/ee)K,0, qj.

We now consider waves in a periodic stratification made
up of isotropic component layers. Form birefringence is
the name given to the way in which such a structure be-
haves like an anisotropic homogeneous medium in the
limit when the wavelength is large compared with the pe-
riod (see Ref. 9, Section 14.5.2 of Ref. 10, and Section 6.8
of Ref. 11). The equivalent homogeneous medium is uni-
axial, with optic axis normal to the stratifications. To
see this, we write the Bloch factor /3 [which, according to
Eq. (39), has eigenvalues exp(±io)] as exp(±iqd), where
d is the thickness of one unit cell of the stratification and
q is interpreted as the normal component of the effective
wave vector, which is thus (K, 0, q) and (K, 0, qp) for
the s(TE) and p(TM) polarizations. Since q, and qp are
different (being determined by the trace of M, and Mp),
we have a correspondence with the normal components q0
and q, of the ordinary and extraordinary waves.

For the high-low stack, cos q5
8 and costl are given

by Eqs. (42) and (43). In the long-wave limit we have
q1d, << 1 and qhdh << 1; expansion of Eqs. (42) and (43)
in powers of q1d and qhdh gives, with

4. FORM BIREFRINGENCE

A pencil of light entering an anisotropic material, such
as a crystal of calcite, is in general split into two beams:
calcite is doubly refracting, or birefringent. The optical
properties of anisotropic materials are characterized by a
tensor dielectric function. 0 "l For a given angle of inci-
dence of a plane electromagnetic wave onto a given crys-
tal face, two plane-wave modes are possible within the
crystal. For a uniaxial crystal, such as calcite, these are
called the ordinary and extraordinary modes. The con-
figuration of interest in relation to planar stratified media
is one in which the optic axis of a uniaxial material co-
incides with the surface normal. Then the ordinary and
extraordinary modes have wave vectors (K, 0, q) and (K,
0, q), where 2"3

qo2 = co2/C2- K2 , q 2 = e 2/-c2 (e/e)K 2 ,

(57)

1

R

0

IRs

l l
Ii~~~~~~~~~~~~~~~~~~~~

lI 

I I
I I

Iw~wO iiI"\ /I

00 300 600 900

(1

1

where e0 = nO and e, = ne2 are the ordinary and extraor-
dinary dielectric constants for the crystal. The electric-
field vectors of the ordinary and extraordinary modes are
along the directions

E0 - (0, 1, 0),

R

(58)

From Maxwell's equation for the curl of E we find that
Be (0, 1, 0). Thus the normal mode o and e field direc-
tions in the crystal correspond to the s and p wave char-
acterizations used in isotropic media. (This holds only
when the optic axis is normal to the reflecting surface of
the crystal.)

When a narrow beam is incident onto the crystal, it is
refracted into two beams whose directions are those of
E X B (i.e., along the Poynting vector). The ordinary-

0
900

Fig. 5. Reflectivities of a 20-bilayer high-low stack as a func-
tion of the angle of incidence at (top) = wo and (bottom) =
1.3wo. The parameters are the same as those in Fig. 2. The
stop-band edges are at 53.10 for the p waves when = co and
at 41.4' for the s wave and 59.70 for thep wave when co = 1.3oo.
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qs2 E8 J2/C2 - K2 , (59)

qp es /C2 - ( )K 2

(60)

for the TE and TM waves [compare with the expressions
for q. 2 and qe 2 in Eqs. (57)], that

C. = fheh + fi1,
eh fe

~P f Eel + fh 
(61)

We expand cos Up = 1/2
and set qp2

= e6( 2
C

2

e = (e) as above and

s (b - a)2

ep
fb d b

= fa [dz/.F(z)1 f dS7

tr Mp as 1 - 12qp2(b - a)2 + ...

- (ed/ep)K 2 to find the same

Ab I b

I 0 fa dezf
d;/e-(),

(68)

which reduces to

1 /1\
_P =-

fh =dh
dh + di dh + di

(62)

are the fractions of total volume occupied by the high-
and low-index in the medium. The expressions (61)
have been obtained by electrostatic considerations or
by a Bloch-wave dynamical argument9"1 as in Section 3.
Note that the effective anisotropy ee - e0 cannot be posi-
tive:

ep - es hEl + fi E)h (63)

Thus the ordinary s or TE wave experiences a larger
effective refractive index than does the extraordinary p
or TM wave. An experimental demonstration of form
birefringence may be seen in Refs. 14 and 15, for example.

The previously known results of the last paragraph
apply only to the case in which the unit cell is com-
posed of two homogeneous layers. The long-wave limit
can be generalized to an arbitrary dielectric function pro-
file within the unit cell. To second order in the cell thick-
ness divided by the wavelength, the single-period matrix
for the s wave is [Eq. (12.96) of Ref. 6]

1-| f dz q2 (Z) (b-z)

L -fa dz q
2

(Z)

b - a
ab -

1 fdz q2(Z) (Z - a)

(the unit cell extends from z = a to z = b = a + d). Thus

rb

cos AS = 1/2 tr Ms=1 - 1 /2 (b - a) dz q2 (Z) +

(65)

We expand cos (bs as 1 - /2q 8
2 (b - a)2 + ... and put

qs2 = e 02 /c2 K2 and q2 (Z) = e(z)(0
2/c 2 - K2 . Then

Eq. (65) gives

es= (e)b -a Ja dz e(z). (66)

For the p wave the unit-cell matrix is given by
Eq. (12.100) of Ref. 6 to second order in the cell thickness:

(69)
1 fb dz
b -a a e (z)

The expressions (66) and (69) for the ordinary and extraor-
dinary dielectric constants of the equivalent homogeneous
but anisotropic medium reduce to Eqs. (61) in the special
case of a unit cell made up of two homogeneous layers.

We have thus shown that, in the long-wave limit, any
periodically stratified isotropic medium can be replaced by
a homogeneous uniaxial medium, with optic axis normal
to the stratification, and that E. = (e) and e- 1 = (e-l).
Since the harmonic mean of a set of positive quantities is
never more than its arithmetic mean, it follows that e, will
not exceed e, provided that e(z) is positive everywhere.

The reader may have noticed a curious feature of the
proofs given above: we have used the periodicity of the
stratification to define a Bloch wave vector through 0 =
qd, where the cosine of 0 is half of the trace of the matrix
for a unit cell, but the thickness d of the unit cell drops out
of the expressions for the equivalent ordinary and extra-
ordinary indices of the equivalent homogeneous medium
in the long-wave limit. Could it be that the e,, = (e) and
6e = (e'l' results apply also to disordered finely lay-
ered media? The following argument suggests that they
do: consider a stratification that appears disordered on
a fine scale (e.g., the nanometer scale) but is actually pe-
riodic on a larger scale (e.g., the period is in the tens of
nanometers range). The above proof then applies, pro-
vided that the wavelength of the radiation is larger still
(e.g., hundreds of nanometers). It seems plausible that
nonperiodic finely layered media can be represented in
the long-wave limit by an effective uniaxial medium with
e,, and e, given by Eqs. (66) and (69); the only difference is
that disordered media will scatter more: they will show
reflection from variations in the dielectric function e(z),
even in the long-wave limit.

5. SUMMARY

We have used matrices that link fields and their deriva-
tives to simplify the usual treatment of light propagation
in periodically stratified media. An arbitrary variation
of the dielectric function within a unit cell of the stratifi-

1 - dz [q 2
(z)/e (z)]f d; E(!)

MP = L fb 

-|dz q2(Z)/,6(Z)

fb dz e(z)

b b
1- dz e ) d;~

(k = q(dh + d) = qd,

op = qp(dh + di) = qpd,

where

* (67)
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cation is permitted, instead of the piecewise constant form
previously assumed. The band structure and the opti-
cal properties are determined by the trace of the unit-cell
matrices for the s and p polarizations. The reflectivity
shows universal properties with the number of layers N;
for example, the reflectivity at the band edges (which oc-
cur at values of frequency, wavelength, or angle of inci-
dence for which the trace of the unit-cell matrices has
magnitude 2) differs from unity by a term of the order of
N-2. The existing results for the form birefringence of
periodically stratified media in the long-wavelength limit,
valid for a piecewise constant dielectric function, are gen-
eralized, and we find that the equivalent ordinary and
extraordinary dielectric constants are given by e = (e)
and Eee1 = (e-l). It is suggested that the same relations
remain valid in disordered finely layered media.
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