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Inversion of the s and p reflectances
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Simple analytic formulas are given for the real and imaginary parts of the dielectric function of an absorbing
medium in terms of the TE and TM reflectances Rs and Rp . An analysis of the formulas shows zero/zero
instability at 0°, 45°, and 90° angles of incidence. The instability (extreme sensitivity to experimental error)
at 45° is related to the result that Rp 5 Rs

2 at 45° incidence, for all absorbing or nonabsorbing media. It is
shown that for materials of large refractive index the deduced values of the real and imaginary parts of the
dielectric function are very sensitive to experimental error, even at the optimum angle of incidence. © 1997
Optical Society of America [S0740-3232(97)02106-6]
1. INTRODUCTION
The optical properties of homogeneous absorbing media
are characterized by the real and imaginary parts nr and
ni of the refractive index n 5 nr 1 ini , or equivalently
by the real and imaginary parts of the dielectric function
e 5 er 1 ie i 5 n2, so that

er 5 nr
2 2 ni

2, e i 5 2nrni . (1)

At a given angle of incidence, measurement of the s
(TE) and p (TM) reflectances Rs and Rp gives two nu-
meric values, which can be matched to the two unknowns
er and e i (or nr and ni). To date, this inversion of the re-
flectance data to obtain the optical constants has been
done numerically,1 although an approximate analytic in-
version near glancing incidence has been given.2 Here
we obtain simple analytic formulas for er and e i in terms
of Rs , Rp and the angle of incidence and use these to de-
termine the sensitivity of er and e i to experimental error.
The normal component q of the wave vector in the ab-

sorbing medium is complex, with3,4

~cq/v!2 5 e 2 e1 sin
2 u 5 er 2 e1 sin

2 u 1 ie i (2)

where e1 is the dielectric constant of the medium of inci-
dence and u is the angle of incidence. We write q 5 qr
1 iqi , so that

qr
2 2 qi

2 5 S v

c D 2~er 2 e1 sin
2 u!, (3)

2qrqi 5 e i~v/c !2. (4)

Thus qr and qi contain a square root within a square root;
for example,

qr 5
v

c H 12 @er 2 e1 sin
2 u

1 A~er 2 e1 sin
2 u!2 1 e i

2#J 1/2. (5)

The s and p reflectances are given by3,4
0740-3232/97/0601355-04$10.00 ©
Rs 5
~q1 2 qr!

2 1 qi
2

~q1 1 qr!
2 1 qi

2 , (6)

Rp 5
~Q1 2 Qr!

2 1 Qi
2

~Q1 1 Qr!
2 1 Qi

2 , (7)

where q1 5 (v/c)cos u is the normal component of the
wave vector in medium 1 and Q1 5 q1 /e1 , Q 5 q/e, so
that4

Qr 5
erqr 1 e iqi

er
2 1 e i

2 , Qi 5
erqi 2 e iqr

er
2 1 e i

2 . (8)

The difficulty in analytically solving for er and e i in terms
of Rs and Rp is that the unknown real and imaginary
parts of e are contained in qr and qi within the square
roots. Section 2 shows how the square roots can be elimi-
nated, and analytic formulas found for er and e i . The in-
termediate expressions are complicated, but the final re-
sults are not. Only the method and the solution will be
given; the details of the intermediate steps are omitted.

2. INVERSION METHOD
We form the quantities

s 5
1 2 Rs

1 1 Rs
5

2q1q2

q1
2 1 qr

2 1 qi
2
, (9)

p 5
1 2 Rp

1 1 Rp
5

2Q1Qr

Q1
2 1 Qr

2 1 Qi
2
, (10)

and note that s2 and p2 contain only squares of qr and
qi after Eq. (4) is used to substitute for the product qrqi in
Qr

2:

Qr
2 5

er
2qr

2 1 e i
2qi

2 1 ere i
2~v/c !2

~er
2 1 e i

2!2
. (11)

Thus s2 and p2 are each equal to expressions that con-
tain a single square root,
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r 5 A~er 2 e1 sin
2 u!2 1 e i

2. (12)

From each of s2 and p2 we obtain expressions for r,
namely rs and rp . Then we eliminate the square roots
altogether in two ways: We form two functions that are
identically zero,

z1~er , e i , s
2, p2, u! 5 rs 2 rp (13)

and, from Eq. (12),

z2~er , e i , s
2, u! 5 ~er 2 e1 sin

2 u!2 1 e i
2 2 rs

2.
(14)

On setting both functions z1 and z2 equal to zero, and
eliminating square roots by solving for them and squar-
ing, we obtain purely algebraic equations for er and e i .
Both are quadratic in e i

2. The condition that the two
quadratics have a common root is expressible in terms of
the coefficients of the two quadratics [see Eq. (14) of Ref.
5]. This condition is in the form Z 5 0, and here Z fac-
tors into two expressions, both linear in er , one of which
contains the physical solution. The expression for the
common root of the two quadratics [Eq. (15) of Ref. 5] then
gives e i

2. The results for er and e i are, expressed in
terms of s, p and C 5 cos2 u,

er

e1
5

c0 1 c1C 1 c2C
2 1 c3C

3

2C@s~1 2 sp ! 2 p~1 2 s2!C#2
,

c0 5 s2~ p 2 s !2,

c1 5 2s~1 2 s2!~2s 2 p 2 sp2!,

c2 5 2~1 2 s2!@ p~ p 2 s ! 2 2s2~1 2 p2!#,

c3 5 2p~1 2 s2!@2s 2 p~1 1 s2!#, (15)

e1

e1
5

s~ p 2 s !u1 2 2Cu@d0 1 d1C 1 d2C
2 1 d3C

3 1 d4C
4#1/2

2C@s~1 2 sp ! 2 p~1 2 s2!C#2
,

d0 5 2s2~ p 2 s !2,

d1 5 4s~1 2 s2!~ p 2 s !,

d2 5 4~1 2 s2!@s2~1 1 p2! 2 p~s 1 p !#,

d3 5 8p2~1 2 s2!2,

d4 5 24p2~1 2 s2!2. (16)

Note that the solutions for e1 and e i have the same de-
nominator, which goes to zero as C 5 cos2 u goes to zero,
namely at grazing incidence. Since er and e i are fixed
quantities, there must be a corresponding zero in the nu-
merator. When C 5 0 there are, in fact, two factors in
the numerators of er and e i that tend to zero at grazing
incidence, namely, s and s 2 p (both Rs and Rp tend to
unity at grazing incidence so s and p both tend to zero).
Physically, no information can be obtained from measure-
ments at glancing incidence, since Rs and Rp are equal to
unity there, for all media and, in fact, for all reflecting
stratifications (Secs. 2 and 3 of Ref. 4). Mathematically,
this manifests itself as a zero/zero instability.6 Section 3
analyzes the consequence of two other zero/zero instabili-
ties and looks at the effect of experimental error on the
deduced optical constants er and e i .
3. SENSITIVITY TO EXPERIMENTAL
ERROR
Experimental measurements of Rs and Rp carry some
small but finite uncertainty, as does the measurement of
the angle of incidence. What is the effect of experimental
error on the deduced values of er and e i? We saw at the
end of the last section that these values become more sen-
sitive to error as glancing incidence is approached.
There are two more values of angle of incidence that
should be avoided: 0° and 45°.
At normal incidence Rs 5 Rp (there is no physical dif-

ference at normal incidence between the TE and TM po-
larizations when the media are isotropic), and when C
5 cos2 u equals unity the numerator and denominator of
the er expression in Eq. (15) both have (p 2 s)2 as a fac-
tor. Likewise, the numerator and denominator of the e i
expression in Eq. (16) both have (p 2 s)4 as a factor.
Thus both expressions show a zero/zero instability at nor-
mal incidence, as expected.
The fact that the inversion fails at normal and glancing

incidence is expected on physical grounds. Less obvious
is the failure at 45° incidence. It is known7–9 that Rp
5 Rs

2 at 45° angle of incidence. The form of Eq. (16)
shows that this must be so: the numerator has the factor
1 2 2 cos2 u, which is zero at 45°. We thus expect a cor-
responding zero in the denominator when C 5 cos2 u
5 1/2. This leads to p 5 2s/(1 1 s2), which implies
Rp 5 Rs

2. It is straightforward to verify from Eqs. (6)
and (7) that at u 5 45° Rp does equal Rs

2. The value of
Rs at 45° is

Rs~45° ! 5
8e1e i

2 1 2erv
2 2 v3

8e1e i
2 1 2erv

2 1 v3

v2 5 2e1$2er 2 e1 1 @~2er 2 e1!2 1 e i
2#1/2%.

(17)

We note in passing that the result Rp 5 Rs
2 at 45°

angle of incidence does not hold for reflection from basal
planes of anisotropic crystals (for which the TE and TM
characterizations suffice; see for example Sec. 7–12 of
Ref. 4). In that case we find, for a uniaxial crystal with
ordinary and extraordinary indices no and ne , on using
the results of Sec. 5.1 of Ref. 10, that at 45° incidence

Rs
2 2 Rp 5

16n1no~meno 2 mone!~no
3ne 2 n1

2mome!

~none 1 n1me!
2~n1 1 mo!

4 ,

(18)

where

mo
2 5 2no

2 2 n1
2 me

2 5 2ne
2 2 n1

2. (19)

The inversion solutions for er and e i , Eqs. (15) and
(16), become identities when the exact values of s 5 (1
2 Rs)/(1 1 Rs) and p 5 (1 2 Rp)/(1 1 Rp) are substi-
tuted. (This statement implies, incidentally, that the ex-
pression d0 1 d1C 1 d2C

2 1 d3C
3 1 d4C

4 in Eq. (16) is
identically zero for nonabsorbing media, for which e i
5 0. The numerator Nr of the right-hand side of Eq.
(15) is thus ere1 times the denominator D, and likewise
the numerator Ni of the right-hand side of Eq. (16) is
e ie1 times the same denominator. We have seen above
that the common denominator D is zero at 0°, 45°, and
90° angle of incidence, leading to a zero/zero instability.
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Any region in which D is small is to be avoided, since
there is cancellation between terms of order unity to pro-
duce a small quantity, with a large uncertainty. Thus
the reciprocal of D acts as an error multiplier.
Figure 1 shows the reflectivities Rs and Rp for glass,

silicon, and aluminum at 633 nm. Figure 2 depicts D for
those materials. We see that D can be small even at its
peak, with maximum values of approximately 9.0
3 1023 at 71° for glass (e 5 2.25), 4.1 3 1024 at 72° for
Si(e ' 15 1 0.15i) and 4.9 3 1027 at 76° for Al(e
' 256 1 21i). (The dielectric function values for Al
and Si are taken from Ref. 11, pp. 405 and 565.) For large
values of ueu there is almost complete cancellation of the
terms in D and corresponding cancellation in the numera-
tors of the expressions for er and e i . The terms that can-
cel are of order unity and experimentally come from mea-

Fig. 1. Reflectances Rs and Rp for glass (e 5 2.25), silicon (e
5 15 1 0.15i), and aluminum (e 5 256 1 21i), versus the
angle of incidence u. In all cases the s and p reflectances are
equal at normal incidence, and Rs > Rp at all angles incidence.

Fig. 2. Common denominator D 5 2C@s(1 2 sp) 2 p(1
2 s2)C]2 of inversion formulas (15) and (16) as a function of the
angle of incidence for Al(e ' 256 1 21i), Si(e ' 15 1 0.15i),
and glass (e 5 2.25). The reciprocal of D is a measure of sen-
sitivity to error; note the zeros at 0°, 45°, and 90°.
surements of Rs , Rp and the angle of incidence. The
insensitivity of reflectivities to refractive-index values
when these are large has been noted (see, for example,
Fig. 3 of Ref. 6). Conversely, the deduced values of er
and e i from measurements of Rs , Rp , and u are very sen-
sitive to experimental error.
A more precise measure of the sensitivity to experimen-

tal error is provided by the derivatives of the expressions
for er and e i with respect to the variables C 5 cos2 u, p
5 (1 2 Rp)/(1 1 Rp) and s 5 (1 2 Rs)/(1 1 Rs). For
example, writing r for er /e1 , we have

dr 5
]r
]C

dC 1
]r
]p

dp 1
]r
]s

ds. (20)

On the assumption that the errors in C, p, and s are un-
correlated and random, the root mean square of dr gives
the uncertainty in er /e1 :

^~dr !2& 5 F S ]r
]C D 2^~dC !2& 1 S ]r

]p D 2^~dp !2&

1 S ]r
]s D

2

^~ds !2&G . (21)

A given experiment will have random errors in C, p, and
s of different magnitudes, and each varying with the
angle of incidence. To obtain a simple measure of the ef-
fect of random errors on the deduced value of r 5 er /e1 ,
we take the random errors in C, p, and s to be of the
same order of magnitude, and calculate

Dr 5 F S ]r
]C D 2 1 S ]r

]p D 2 1 S ]r
]s D

2G1/2. (22)

A logarithmic plot of Dr versus angle of incidence is
shown in Fig. 3, for the range u > 55° of practical inter-
est. The physical meaning of Dr is that of an error mul-
tiplier: for a given common value of the root-mean-
square error in C, p, or s, the error in r 5 er /e1 will be
Dr times this error (under the assumptions given above).
We see that glass has a minimum error multiplier of
;27 near u 5 68°, Si ;157 near 78° and Al ;2.1 3 104

near 83°. The reason for the dip in the Dr curve for Si is
that ]r/]C is close to zero near 78°: for nonabsorbing
materials (e i 5 0), the derivative ]er /]C is zero at C
5 2e1/3er 1 O(e1 /er)

3. For large er /e1 this zero is at
approximately (2e1/3er)

1/2 rad from glancing incidence.
For er /e1 5 15 this gives u ' 78°.
The error multiplier DI for I 5 (e i /e1)

2, namely,

DI 5 F S ]I
]C D 2 1 S ]I

]p D 2 1 S ]I
]s D

2G1/2, (23)

is shown in Fig. 4. Its minimum values are for glass
;56 near 66°, for Si ;2.1 3 103 near 76°, and for Al
;2.8 3 105 near 86°. The dip in the silicon curve is due
to ]e i

2/]C passing through zero when e i is zero. The de-
rivative of e i

2 with respect to C is then

1

e1
2 S ]e i

2

]C D
ei50

5
~r 2 1 !~1 2 r 2 C !~rC 1 C 2 1 !

C~1 2 2C !~1 2 C !
.

(24)

We note that, as expected, this is infinite at C 5 1, 1/2,
and 0 (u 5 0°, 45°, and 90°). The derivative is zero when
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C 5 1 2 er /e1 and C 5 e1 /(er 1 e1). For silicon the
latter expression puts the minimum in DI at 75.5°, very
close to the actual location at 75.6°.

4. CONCLUSIONS
Section 3 has demonstrated that extraction of er and e i
from experimental reflectance values is impossible near
u 5 0°, 45°, and 90° and that the error multipliers D21,

Fig. 3. Plot of the error multiplier Dr , which multiplies experi-
mental uncertainties in C 5 cos2 u, p 5 (1 2 Rp)/(1 1 Rp), and
s 5 (1 2 Rs)/(1 1 Rs) to estimate the uncertainty in er /e1 .

Fig. 4. Plot of the error multiplier DI , which gives the uncer-
tainty in e i

22/e1
2 for glass, silicon, and aluminum.
Dr , and DI can be large, even at the optimum angle of in-
cidence. This problem is moderate for glasses (e i zero or
very small, er ; 2 or 3) and more pronounced for materi-
als with large real part of the dielectric constant, particu-
larly if the imaginary part is also large. A typical metal-
lic reflector such as aluminum has very large error
multipliers, so large that one might well be skeptical
about optical constants derived from inversion of u, Rp ,
and Rs measurements.
My conclusions are that accurate inversion of s and p

reflectances is possible for materials of moderate absorp-
tion but that the choice of the range of angle of incidence
is very important, particularly for reflectors with large
real part of the dielectric function. In the latter case the
angle of incidence should be close to arccos(2e1/3er)

1/2 or
arccos@e1 /(er 1 e1)#

1/2 for determination of er and e i , re-
spectively. In all cases the angle of incidence should be
large, from 60° upward.
The error analysis presented above has made assump-

tions about the nature of the errors and about the relative
magnitudes of the uncertainties in the determination of u,
Rs , and Rp . To avoid the latter assumptions, the experi-
menter may wish to estimate random error simply by re-
peated measurements within a range of angles of inci-
dence, and substitution of the measured values into
formulas (15) and (16).
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