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Abstract
Barnett and Allen (1994 Opt. Commun. 110 670–8) used a superposition of
Bessel beams to theoretically construct a monochromatic light beam with
finite energy, momentum and angular momentum contents per unit length.
The same superposition of Bessel functions gives solutions of the Helmholtz
equation with exp(imφ) azimuthal dependence, from which exact solutions
of Maxwell’s equations are obtained for three types of beam: TM (or TE),
TE + iTM and ‘CP’ (‘circularly polarized’). The invariants of these three
types of beam are calculated and compared. One remarkable fact is that the
energy and angular momentum contents per unit length are invariants for all
the beams considered, whereas these quantities are in general dependent on
the longitudinal beam coordinate.
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1. Introduction

Barnett and Allen [1] have used the fact that the Helmholtz
equation is separable in cylindrical coordinates ρ, z, φ to
construct a light beam in which the electric field has the form

E(ρ, z, φ) =
∫ k

0
dκ f (κ)

{
(αx̂ + β ŷ)Fm

+
κ

2q
ẑ[(iα − β)Fm−1 − (iα + β)Fm+1]

}
. (1)

Here and henceforth we use as shorthand the notations

q =
√

k2 − κ2, Fm(ρ, φ, z) = eiqz Jm(κρ)eimφ . (2)

Barnett and Allen found expressions for the energy per unit
length, and for the linear and angular momenta per unit length.
Remarkably, all three of these quantities were found to be
independent of z (the longitudinal coordinate of the beam),
whereas only the linear momentum content per unit length
is an invariant in general [2]. Invariants (that is quantities
which are the same anywhere along the length of the beam)
have been shown to follow from conservation laws; there are
seven universal invariants, corresponding to the conservation
of energy, momentum, and angular momentum [2]. These
universal invariants all have the form of an integral of a flux
density over a section of the beam. For example, conservation

of energy is expressed in terms of real fields E(r, t), B(r, t)
by [3]

∂u

∂t
+ ∇ · S = 0, u = 1

8π
(E2 + B2),

S = c2p = c

4π
E × B

(3)

(u is the energy density, S the energy flux density, p
the momentum density of the electromagnetic fields which
constitute the light beam). It follows from (3) that

P ′
z =

∫
d2r p̄z is independent of z (4)

(a bar denotes cycle averaging: the beam is assumed to be
monochromatic). Here and throughout this paper,

∫
d2r

denotes
∫ ∞
−∞ dx

∫ ∞
−∞ dy, i.e. integration over the transverse

coordinates of the beam, at fixed z.
The quantity P ′

z can be interpreted as the longitudinal
momentum content per unit length of the beam: dPz = P ′

z dz
is the momentum content in a slice of thickness dz. Note
that the momentum content per unit length of the beam is
an invariant because of energy conservation; the momentum
enters equation (3) through the relation S = c2p between
the energy flux density and the momentum density. The
energy content per unit length, and the z-component of angular
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momentum content per unit length,

U ′ =
∫

d2r ū, J ′
z =

∫
d2r r × p̄ (5)

are not universal invariants, but they are independent of z for
the Barnett and Allen beam [1].

We shall explore three types of light beams based on
the Barnett and Allen type of wavefunction. These beams
are designated TM, TE + iTM and ‘CP’, with TM denoting
transverse magnetic, TE transverse electric, and ‘CP’ circularly
polarized (the quotation marks are explained in section 4). We
shall evaluate the universal invariants and special invariants for
all three types, and show that all of these beams have a greater
number of invariants than is expected.

2. Construction of fields from solutions of the scalar
Helmholtz equation

Barnett and Allen [1] considered monochromatic beams in
which the x and y components of the electric field have eimφ

dependence, given in equation (1). The associated magnetic
field components have been written out in full by Barnett [4].
We shall use the fact that the Fm of equation (2) satisfy
the Helmholtz equation (∇2 + k2)Fm = 0 to construct the
most general monochromatic beam based on the Fm , and then
consider three special classes of beam.

In the Lorenz gauge, and with all time dependence in the
factor e−iωt , the complex electric and magnetic fields can be
obtained as spatial derivatives of the complex vector potential
A(r), each component of which must satisfy the Helmholtz
equation with k = ω/c [3, 5]:

B(r) = ∇ × A(r), E(r) = i

k
[∇(∇ · A(r)) + k2A(r)]

(6)

(the physical fields are then obtained as the real or imaginary
parts of B(r)e−iωt , E(r)e−iωt ). In the Barnett and Allen case,
E is given in equation (1), and ∇ · E = 0, so

A(r) = (ik)−1E(r) (7)

satisfies the second equality in (6). Since the Fm satisfy the
Helmholtz equation, so do all the components of E and of A.

Letψ1,ψ2 andψ3 all be solutions of (∇2+k2)ψ = 0. Then
the most general monochromatic beam is formed from (6) with

A = [ψ1, ψ2, ψ3]. (8)

In this paper we shall examine three other types of beam:
the TM (or TE), TE + iTM and ‘CP’ beams. These have
vector potentials based on a single solutionψ of the Helmholtz
equation [5–7]:

TM: ATM = [0, 0, ψ], BTM = [∂y,−∂x , 0]ψ (9)

TE: ATE = (ik)−1∇ × ATM = (ik)−1BTM,

ETE = [∂y,−∂x , 0]ψ (10)

TE + iTM: A = k−1[∂y,−∂x , k]ψ,

B = k−1[∂x∂z + k∂y, ∂y∂z − k∂x , ∂
2
z + k2]ψ (11)

‘CP’: A = A1 + k−1∇ × A1, A1 = [−i, 1, 0]ψ. (12)

The TM beam has the simplest vector potential with only
one non-zero component: A is directed along the direction of
beam propagation. The TE beam is the dual [3] of the TM
beam, obtained by setting E → B,B → −E. The TE + iTM
and ‘CP’ beams have the important property that E = iB.
Beams with this property (or with E = −iB) have been termed
steady beams [5, 6]: their energy and momentum densities are
independent of time, in contrast to the oscillation at angular
frequency 2ω which occurs in other beams. The energy and
momentum densities of steady beams with E = iB are simply
expressed in terms of the complex fields E(r) or B(r):

u = 1

8π
|E|2 = 1

8π
|B|2, cp = i

8π
E×E∗ = i

8π
B×B∗

(13)
(for steady beams with E = −iB the sign of p in (13) is
reversed). Likewise all elements of the Maxwell stress tensor
are time-independent when E = ±iB, so no cycle-averaging
is required in the calculation of the beam invariants [2].

In this paper we shall use the fact that Fm(r) defined in (2)
satisfies the Helmholtz equation, and set

ψm(r) = eimφ
∫ k

0
dκ f (κ)eiqz Jm(κρ) (q2 + κ2 = k2).

(14)
Our main interest will be in calculating the invariants of
the various types of beams when these are based on the
wavefunction (14), with m zero or a positive or negative integer.
The only constraint on the function f (κ) is that certain integrals
of | f (κ)|2 over κ should exist.

3. Invariants of TM and TE beams

The TM and TE beams are duals, obtained from each other
by the duality transformation E → B,B → −E. Thus the
energy density u = (8π)−1(E2 + B2) and momentum density
p = (4πc)−1E × B are the same for the TM and TE beams
based on the same wavefunction. Likewise the elements of
the Maxwell stress tensor are unchanged under the duality
transformation. Hence all the seven invariants [2] arising from
the conservation laws are the same for the TM and TE beams.
We shall work with the TM fields, defined in (9).

The wavefunction ψ in (14) is expressed in cylindrical
coordinates ρ, φ, z. In terms of these coordinates the
derivatives that we need (grad, div and curl) are given by

∇ψ = (ρ̂∂ρ + ϕ̂ρ−1∂φ + ẑ∂z)ψ (15)

∇ · A = (∂ρ + ρ−1)Aρ + ρ−1∂φ Aφ + ∂z Az (16)

∇ × A = ρ̂(ρ−1∂φ Az − ∂z Aφ) + ϕ̂(∂z Aρ − ∂ρ Az)

+ ẑ[(∂ρ + ρ−1)Aφ − ρ−1∂φAρ]. (17)

For the TM beam defined in (9) the complex fields are

B(r) = (ρ̂ρ−1∂φ − ϕ̂∂ρ)ψ (18)

E(r) = i

k
[ρ̂∂ρ∂z + ϕ̂ρ−1∂φ∂z + ẑ(∂2

z + k2)]ψ. (19)

We wish to calculate the non-zero beam invariants, and
also the quantities which are not invariant in general, like the
energy content per unit length of the beam U ′, defined in (5).
The time-averaged energy density is [3]

ū = 1

16π
[E · E∗ + B · B∗]. (20)
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In calculating

U ′ =
∫

d2r ū =
∫ ∞

−∞
dx

∫ ∞

−∞
dy ū =

∫ ∞

0
dρ ρ

∫ 2π

0
dφ ū

(21)
from (18) to (20) with the wavefunction (14) we always have
φ-independent terms, since ∂φψ = imψ . Thus the integration
over φ just gives a factor of 2π . We are left with the integration
over ρ, resulting in terms of the type

I 
nn′ =
∫ ∞

0
dρ ρ


∫ k

0
dκ f (κ)Jn(κρ)

×
∫ k

0
dκ ′ f ∗(κ ′)Jn′(κ ′ρ)ei(q−q ′)z . (22)

The value of 
 is 1, 0 or −1. The values of (n, n′) are (m,m),
(m + 1,m) and (m,m + 1), since differentiation with respect
to ρ in the evaluation of the fields gives us [8, section 2.12]

∂ρ Jm(κρ) = ρ−1m Jm(κρ)− κ Jm+1(κρ). (23)

The mixed terms with n �= n′ cancel exactly in U ′ (see
appendix A), so we are left with an n = n′ = m term. As
noted by Barnett and Allen [1], this simplifies with the aid of
Hankel’s integral formula [8, section 14.4], [9, section 8.3],
[10, section 4.9]. For the problem in hand we need it in the
form∫ ∞

0
dρ ρ

∫ k

0
dκ κ f (κ)Jm(κρ)Jm(κ

′ρ) = f (κ ′)

for 0 < κ ′ < k. (24)

The integral
∫ k

0 dκ
√
κ f (κ) must exist and be absolutely

convergent. If f is discontinuous, f (κ ′) on the right-hand side
of (24) is to be replaced by 1

2 [ f (κ ′ − 0) + f (κ ′ + 0)]. We can
rewrite (24) by using Dirac’s delta function (see appendix B
for a discussion of this and of related singular integrals):

∫ ∞

0
dρ ρ Jm(κρ)Jm(κ

′ρ) = κ−1δ(κ − κ ′). (25)

The effect of (24), (25) is to reduce the three integrations (over
ρ, κ and κ ′) to one. We find, for the TM beam,

U ′ = 1
4

∫ k

0
dκ κ| f (κ)|2. (26)

This result is remarkable in two ways: U ′ is independent of
z, despite not being an invariant for an arbitrary TM beam (an
example of a z-dependent U ′ is given in [5] and [2]). Also,
U ′ is independent of m, i.e. it takes the same value for the
infinity of TM beams based on the wavefunctions ψm of (14),
with m an arbitrary integer or zero (the integer value is not
dictated by (23) or (24), which hold for non-integral m, but
by the requirement that ψm be a periodic function of φ with
period 2π).

The cycle-averaged momentum content per unit length of
the beam is always independent of z [2]. It is

P ′
z =

∫
d2r p̄z =

∫ ∞

0
dρ ρ

∫ 2π

0
dφ p̄z . (27)

The cycle-averaged momentum density is given by [3]

p̄ = 1

16πc
(E × B∗ + E∗ × B). (28)

It is convenient to work in terms of the radial and azimuthal
components of the field, given in (18) and (19). In terms of
these we have

p̄z = 1

8πc
Re(EρB∗

φ − EφB∗
ρ). (29)

This is independent of φ when ψ has eimφ azimuthal
dependence. We find that the integrand of p̄z consists of
(16πck)−1(q + q ′)ei(q−q ′)z times the following terms:

κκ ′ Jm+1(κρ)Jm+1(κ
′ρ)− mρ−1{κ Jm+1(κρ)Jm(κ

′ρ)
+ κ ′ Jm(κρ)Jm+1(κ

′ρ)} + 2m2ρ−2 Jm(κρ)Jm(κ
′ρ). (30)

The first term contributes (4ck)−1
∫ k

0 dκ κq| f (κ)|2 to P ′
z , on

use of (25). For m > 0 the last term leads to a special case of
the Weber–Schafheitlin integral:∫ ∞

0
dρ ρ−1 Jm(κρ)Jm(κ

′ρ) = (2m)−1

[
min(κ, κ ′)
max(κ, κ ′)

]m

(31)
(see [8, section 13.42, equation (1)]). The middle terms can
be evaluated in terms of the more general integral formula
11.4.33 of [11], resulting in exact cancellation of the term
arising from (31). Thus we are left with

cP ′
z = 1

4k

∫ k

0
dκ κq| f (κ)|2. (32)

The results (26) and (32) are in accord with the inequality
U ′ � cP ′

z proved in [2], since q = √
k2 − κ2 � k, the range of

κ having been constrained to (0, k) in (14) to avoid exponential
growth of the wavefunction with z.

The same methods enable us to evaluate the invariant T ′
zz

arising from the conservation of momentum. We find

T ′
zz = 1

16π

∫
d2r(|Eρ |2 + |Bρ|2

+ |Eφ|2 + |Bφ|2 − |Ez|2 − |Bz|2)
= 1

4k2

∫ k

0
dκ κq2| f (κ)|2. (33)

The two other invariants arising from the conservation of
momentum (T ′

xz and T ′
yz) are zero for TM beams based on

wavefunctions with eimφ azimuthal dependence (see section 3
of [2]).

Likewise two of the three invariants due to the
conservation of angular momentum are zero. The non-zero
invariant is, from [2] and (19) (note that Bz is zero for TM
beams),

M ′
zz =

∫
d2r [x τ̄yz − yτ̄xz]

= − 1

8π

∫
d2r Re[(x Ey − y Ex)E

∗
z ]

= − 1

8π

∫
d2r ρ Re(EφE∗

z )

= 1

8π

m

k2

∫
d2r Im{(∂zψ) · (∂2

z + k2)ψ∗}. (34)

Now when ψ is given by (14) we have

∂zψ = ieimφ
∫ k

0
dκ q f (κ)eiqz Jm(κρ)

(∂2
z + k2)ψ = eimφ

∫ k

0
dκ κ2 f (κ)eiqz Jm(κρ).

(35)
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Thus the use of (25) gives

M ′
zz = m

4k2

∫ k

0
dκ κq| f (κ)|2. (36)

Finally we shall evaluate the angular momentum content
per unit length of the TM beam based on ψm of (14). The
angular momentum density is, when cycle-averaged,

j̄z = ρ p̄φ = ρ

8πc
Re[(E × B∗)φ] = m

8πck
Re{ψ(∂2

z + k2)ψ∗}
(37)

so the angular momentum content per unit length of the beam
is

J ′
z = m

4ck

∫ k

0
dκ κ| f (κ)|2. (38)

Comparison of (26) with (38) and of (32) with (36) shows that

ωJ ′
z = mU ′ and k M ′

zz = mcP ′
z. (39)

These equalities relate the angular momentum to the energy,
and the angular momentum flux to the momentum. They are
consistent with the picture of the beam consisting of photons
of energy h̄ω, momentum h̄ω/c and angular momentum h̄m.

4. Invariants of TE + iTM beams

The TE + iTM beam complex magnetic field was given in (11).
The complex electric field is E(r) = iB(r); the field is steady,
so equations (13) give the energy and momentum densities.
For wavefunctions like (14) with eimφ azimuthal dependence,
we have

∂xψ = (cosφ∂ρ − imρ−1 sinφ)ψ

∂yψ = (sinφ∂ρ + imρ−1 cosφ)ψ.
(40)

The radial, azimuthal and longitudinal components of B(r) are
therefore

Bρ = cosφBx + sinφBy = k−1∂ρ∂zψ + imρ−1ψ

Bφ = − sin φBx + cosφBy = (kρ)−1im∂zψ − ∂ρψ

Bz = k−1∂2
zψ + kψ.

(41)

The energy density is (8π)−1[|Bρ |2 + |Bφ|2 + |Bz|2]; the z-
component of the momentum density is (i/8πc)(Bρ B∗

φ −
BφB∗

ρ). The methods of the previous section give us, for the
TE + iTM beam with ψm ,

U ′ = 1
2

∫ k

0
dκ κ| f (κ)|2

cP ′
z = 1

2k

∫ k

0
dκ κq| f (κ)|2.

(42)

The inequality U ′ � cP ′
z [2] is satisfied, since q � k. Note

that these values of energy and momentum content per unit
length are twice those of the TM beam.

The angular momentum density is independent of time,
since the momentum density is independent of time. It is given
by

jz = ρpφ = ρ

8πc
i(B × B∗)φ = ρ

4πc
Im(BρB∗

z ). (43)

We find (see appendix C)

ωJ ′
z = 1

2k

∫ k

0
dκ κ(mk + κ2/2q)| f (κ)|2. (44)

To calculate the invariants consequent on the conservation
of momentum we need (in general) to evaluate integrals over
three of the cycle-averaged elements of the momentum flux
density tensor (the negative of the Maxwell stress tensor),
namely

τ̄xz = − 1

8π
Re(Ex E∗

z + Bx B∗
z )

τ̄yz = − 1

8π
Re(Ey E∗

z + By B∗
z )

τ̄zz = 1

16π
{|Ex |2 + |Ey|2 − |Ez|2 + |Bx |2 + |By|2 − |Bz|2}.

(45)

In the case of steady beams, with complex fields related by E =
±iB, the momentum flux density tensor is time-independent,
and cycle-averaging is not necessary; the formulae (45)
simplify to

τxz = − 1

4π
Re(Bx B∗

z ), τyz = − 1

4π
Re(By B∗

z )

τzz = 1

8π
{|Bx |2 + |By|2 − |Bz|2} = 1

8π
{|Bρ |2+|Bφ|2−|Bz|2}.

(46)
Since Bx = cosφBρ − sin φBφ and By = sinφBρ + cosφBφ ,
we see from the TE + iTM field components given in (41)
that wavefunctions with eimφ dependence will have τxz and τyz

linear in sin φ and cosφ, with no other azimuthal dependence,
and so the integral invariants T ′

xz = ∫
d2r τ̄xz and T ′

yz =∫
d2r τ̄yz will be zero. The remaining integral invariant arising

out of the conservation of momentum is, for the TE + iTM
beam with wavefunction (14),

T ′
zz =

∫
d2r τzz = 1

2k2

∫ k

0
dκ κq2| f (κ)|2. (47)

The invariants arising out of the conservation of angular
momentum are [2]

M ′
zx =

∫
d2r [yτ̄zz − zτ̄yz]

M ′
zy =

∫
d2r [zτ̄xz − x τ̄zz]

M ′
zz =

∫
d2r [x τ̄yz − yτ̄xz].

(48)

For the TE + iTM beam under consideration, τxz and τyz are
linear in sinφ and cosφ, so M ′

zx and M ′
zy are zero. The

integrand of the M ′
zz invariant is

xτyz − yτxz = ρ

4π
Re{(sin φBx − cosφBy)B

∗
z }

= − ρ

4π
Re(BφB∗

z ). (49)

This gives us the remaining non-zero invariant,

M ′
zz = m

2k2

∫ k

0
dκ κq| f (κ)|2. (50)

Note the proportionality between the momentum content per
unit length and the angular momentum flux density integrated
over a beam section:

mcP ′
z = k M ′

zz . (51)
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5. Invariants of the ‘CP’ beam

The textbook circularly polarized ‘beam’ is not a finite beam
but the transversely infinite plane wave

E(r) = E0eikz(x̂ ± iŷ), B(r) = ∓iE(r) (52)

in which the electric and magnetic vectors rotate (at fixed z) in
the xy plane as time progresses. Theorem 2.3 of [7] shows that
finite beams cannot be everywhere exactly circularly polarized
in a fixed plane; hence the quotation marks around ‘CP’. Beams
which are approximately circularly polarized (and come closer
to pure circular polarization as the beam gets wider) were
discussed in section 4 of [7]. Those with positive helicity
have the vector potential given in (11), namely

A = k−1[−(∂z + ik),−i(∂z + ik), ∂x + i∂y]ψ. (53)

Where ψ is well represented by eikz , the fields resulting
from (53) are as given by the upper sign in (52). For general
ψ we have

(∂x + i∂y)ψ = eiφ(∂ρ + iρ−1∂φ)ψ (54)

and this becomes eiφ(∂ρ − mρ−1)ψ for wavefunctions with
azimuthal dependence given by eimφ . For such wavefunctions
the magnetic field B = ∇ × A has components given by

k Bρ = ieiφ{∂z(∂z + ik) + ρ−1∂ρ + mρ−1(∂ρ−ρ−1)−m2ρ−2}ψ
k Bφ = −eiφ{∂z(∂z + ik) + ∂2

ρ − mρ−1(∂ρ − ρ−1)}ψ
k Bz = −ieiφ(∂ρ − mρ−1)(∂z + ik)ψ.

(55)
Note that the azimuthal dependence is exclusively in a phase
factor in these field components. The energy and momentum
densities are consequently independent of φ. For steady beams
with E = iB these are

u = 1

8π
{|Bρ |2 + |Bφ|2 + |Bz|2}

cpz = i

8π
(BρB∗

φ − BφB∗
ρ).

(56)

From (55) and (56) we find

U ′ =
∫

d2r u = 1
2

∫ k

0
dκ κ−1(k + q)2| f (κ)|2 (57)

cP ′
z = c

∫
d2r pz = 1

2k

∫ k

0
dκ κ−1q(k + q)2| f (κ)|2. (58)

Again the inequality cP ′
z � U ′ is satisfied, since q =√

k2 − κ2 � k.
The angular momentum density is given by (43) and (55).

The consequent angular momentum content per unit length of
the beam is

ωJ ′
z = 1

2

∫ k

0
dκ κ−1(k + q)2{m + 1 + κ2/2kq}| f (κ)|2. (59)

The invariants associated with the conservation of
momentum are integrals over the momentum flux density
tensor elements τxz, τyz and τzz , given in (46). Since

Bx = cos φBρ − sinφBφ, By = sinφBρ + cosφBφ
(60)

we see from (46) and (55) that the integrals over the azimuthal
angle of τxz and τyz will be zero, as they were for the TE + iTM
beam. This leaves one non-zero invariant associated with
momentum conservation, namely

T ′
zz =

∫
d2r τzz = 1

2k2

∫ k

0
dκ κ−1q2(k + q)2| f (κ)|2. (61)

The invariants associated with the conservation of angular
momentum are given in (48). Again only M ′

zz of the three
invariants is non-zero, because of the azimuthal dependence
of τxz and τyz. We find, from (49) and (55),

M ′
zz = − 1

4π

∫
d2r ρ Re(BφB∗

z )

= m + 1

2k2

∫ k

0
dκ κ−1q(k + q)2| f (κ)|2. (62)

These results will be discussed and compared with those
for other beams in the next section.

6. Summary and discussion

Barnett and Allen [1] wrote down a solution of Maxwell’s
equations in terms of a superposition of Bessel beams [12, 13].
Bessel beams are based on scalar solutions of the Helmholtz
equation (∇2 + k2)ψ = 0 of the form eiqz Jm(κρ)eimφ , where
κ2 + q2 = k2. These solutions correspond to a delta-function
amplitude f (κ) in the wavefunction (14), leading to divergent
integrals for all of the physical quantities considered here, such
as the energy content per unit length of the beam. They are thus
physically unrealizable, although finite-aperture truncations
are realizable (see for example [14]). The wavefunctions of
the Barnett and Allen type do result in convergent integrals for
these physical quantities, provided the relevant integrals over
| f (κ)|2 are convergent.

We have calculated five invariants for three types of beams,
based on wavefunctions expressed as superpositions of Bessel
beams. The results are summarized in table 1.

The three types of beams we have considered share some
remarkable properties:

(i) There are two more non-zero invariants than expected
(only P ′

z , T ′
zz and M ′

zz are known to be independent of
z for an arbitrary beam [2]).

(ii) The results for U ′, P ′
z and T ′

zz are all independent of m. For
example, an infinity of beams, with m = 0,±1,±2, . . . in
the wavefunction (14) share the same value for the energy
content per unit length of the beam.

(iii) The TM (or TE) beam shares four of its five
invariant values with those of the coherent superposition
(TE + iTM)/

√
2 (the factor 1/

√
2 has been inserted to give

the same normalization).
(iv) The TM and TE beams have energy and angular

momentum contents in accord with the customary view
of beams consisting of photons each carrying energy h̄ω
and angular momentum h̄m (when the wavefunction has
azimuthal dependence eimφ ). The other beams have a more
complicated relationship between energy and angular
momentum.
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Table 1. Invariants of three types of generalized Bessel beams. The entries in the table give the multiplier M in the integral
1
4

∫ k
0 dκ κ| f (κ)|2 M; γ = (k + q)2/κ2.

U ′ cP ′
z ωJ ′

z T ′
zz kM ′

zz

TM or TE 1 q/k m q2/k2 mq/k
(TE + iTM)/

√
2 1 q/k m + κ2/2kq q2/k2 mq/k

‘CP’/
√

2 γ γ q/k γ [m + 1 + κ2/2kq] γ q2/k2 γ (m + 1)q/k

(v) The ‘circularly polarized’ beams have M ′
zz proportional to

m+1 rather than to m, for azimuthal dependence eimφ . This
suggests an orbital component (h̄m in photon terms) and
a spin component (h̄) in the angular momentum of these
beams. Such orbital-spin decomposition is discussed in
the reprints in section 2 of [15]. Note however that the
m-dependence of J ′

z is more complicated.

Appendix A. U ′ for the TM beam

The energy content per unit length of the beam is, from
equations (18), (19) and (21),

U ′ = 1

8k2

∫ ∞

0
dρ ρ

∫ k

0
dκ f (κ)

×
∫ k

0
dκ ′ f ∗(κ ′)ei(q−q ′)z{integrand} (A.1)

where the integrand is the sum of three terms, namely

κκ ′[κκ ′ Jm(κρ)Jm(κ
′ρ) + (k2 + qq ′)Jm+1(κρ)Jm+1(κ

′ρ)]
− mρ−1(k2 + qq ′)[κ Jm+1(κρ)Jm(κ

′ρ)
+ κ ′ Jm(κρ)Jm+1(κ

′ρ)]+2m2ρ−2(k2+qq ′)Jm(κρ)Jm(κ
′ρ).

(A.2)

The first term can be integrated with the help of (25), and
yields (26). The second and third terms are zero when m = 0.
For m > 0 integral over ρ of the third term is

m(k2 + qq ′)
[

min(κ, κ ′)
max(κ, κ ′)

]m

(A.3)

on using (31). To evaluate the integral overρ of the second term
we use the Weber–Schafheitlin type integral 11.4.33 of [11].
The result is the negative of (A.3), i.e. the integrals of the
second and third terms cancel exactly.

Appendix B. Singular integrals over products of
Bessel functions

We consider the singular integral (25) as a limit as a → ∞ of

Wm(a; κ, κ ′) ≡
∫ ∞

0
dρ ρe−ρ2/a2

Jm(κρ)Jm(κ
′ρ)

= 1
2 a2e−(κ2+κ ′2)a2/4 Im(

1
2κκ

′a2) (B.1)

where Im is the modified Bessel function of order m. The
result (B.1) is known as Weber’s second exponential integral,
and is discussed in section 13.31 of [8]. The leading term in
the asymptotic expansion of Im(z) is ez/

√
2πz, so as a tends

to infinity the right-hand side of (B.1) tends to the asymptotic
value

Wa = 1
2 |a|(πκκ ′)−

1
2 exp[−(κ − κ ′)2a2/4]. (B.2)

This expression peaks at κ = κ ′, with maximum value
proportional to |a| and width of the peak proportional to |a|−1.
The limit as a → ∞ is thus a delta function, in accord
with (25):∫ ∞

0
dρ ρ Jm(κρ)Jm(κ

′ρ) = lim
a→∞ Wm(a; κ, κ ′)

= (κκ ′)−
1
2 δ(κ − κ ′). (B.3)

We shall also need the limit as a tends to infinity of the
integrals

Vm(a; κ, κ ′) =
∫ ∞

0
dρ ρ2e−ρ2/a2

Jm+1(κρ)Jm(κ
′ρ). (B.4)

Differentiation of (B.1) with respect to κ , with use of

∂κ Jm(κρ) = m

κ
Jm(κρ)− ρ Jm+1(κρ) (B.5)

gives us

Vm(a; κ, κ ′) =
(m

κ
− ∂κ

)
Wm(a; κ, κ ′)

= 1
4 a4e−(κ2+κ ′2)a2/4{κ Im(κκ

′a2/2) − κ ′ Im+1(κκ
′a2/2)}.

(B.6)

In performing first the differentiation and then the limiting
process of letting a tend to infinity, we need to include the next
term in the asymptotic expansion of Im : we use

Wm(a; κ, κ ′) ∼ Wa

{
1 − 4m2 − 1

4κκ ′a2
+ · · ·

}
(B.7)

and find the corresponding leading asymptotic parts of Vm :

Vm(a; κ, κ ′) ∼ Wa{ 1
2 (κ − κ ′)a2 + 1

4 (m + 1
2 )

× [κ + 3κ ′ − 2m(κ − κ ′)]/κκ ′ + O(a−2)}. (B.8)

Appendix C. J ′
z for the TE + iTM beam

The angular momentum density is, from (41) and (43),

jz = ρ

4πck
Im{(k−1∂ρ∂zψ +imρ−1ψ)(∂2

zψ
∗ +k2ψ∗)}. (C.1)

Use of (23) and the first part of (35) gives

k−1∂ρ∂zψ + imρ−1ψ = ieimφ
∫ k

0
dκ f (κ)eiqz

×
{

mρ−1
(

1 +
q

k

)
Jm(κρ)− κq

k
Jm+1(κρ)

}
. (C.2)

Thus, on use of the second part of (35), the angular momentum
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density simplifies to

jz = ρ

4πck
Re

{∫ k

0
dκ f (κ)eiqz

[
mρ−1

(
1 +

q

k

)
Jm(κρ)

− κq

k
Jm+1(κρ)

] ∫ k

0
dκ ′ (κ ′)2 f ∗(κ ′)e−iq ′z Jm(κ

′ρ)
}
.

(C.3)

The angular momentum content per unit length of the beam is
therefore

J ′
z = 1

2ck
Re

{∫ ∞

0
dρ ρ

∫ k

0
dκ f (κ)

×
∫ k

0
dκ ′ (κ ′)2 f ∗(κ ′)ei(q−q ′)z[integrand]

}
(C.4)

where the integrand equals
[(

1 +
q

k

)
m Jm(κρ)− κq

k
ρ Jm+1(κρ)

]
Jm(κ

′ρ). (C.5)

Use of (25) evaluates the contribution of the Jm(κρ)Jm(κ
′ρ)

term to J ′
z as

( m

2ck2

) ∫ k

0
dκ κ(k + q)| f (κ)|2. (C.6)

For the remaining part we need to make use of the limit as
a → ∞ of the integrals Vm of appendix B. The contribution
to J ′

z contains two types of delta-function terms:

lim
a→∞

|a|
2
√
π

exp[−(κ − κ ′)2a2/4] = δ(κ − κ ′) (C.7)

which we saw in (B.3), and also

lim
a→∞

|a|3
4
√
π
(κ−κ ′)2 exp[−(κ−κ ′)2a2/4] = δ(κ−κ ′). (C.8)

(The function on the left of (C.8) peaks at κ − κ ′ = ±2/|a|,
with maximum value proportional to |a| and width of the peaks
proportional to |a|−1; it may be regarded as two delta functions
of strength 1/2, spaced infinitesimally to the left and right of
κ = κ ′.)

The contribution of the Vm integrals to J ′
z is of the form

− 1

4ck2

∫ k

0
dκ κq f (κ)eiqz

×
∫ k

0
dκ ′ κ ′2 f ∗(κ ′)e−iq ′z Vm(a; κ, κ ′) + c.c.

= − 1

4ck2

∫ k

0
dκ

∫ k

0
dκ ′ f (κ) f ∗(κ ′)κκ ′ei(q−q ′)z

× {
qκ ′Vm(a; κ, κ ′) + q ′κVm(a; κ ′, κ)

}
. (C.9)

The asymptotic expansion as a → ∞ gives us the two delta
functions (C.7) and (C.8), the contribution to J ′

z being

−m

2ck2

∫ k

0
dκ κ

(
mq − κ2

2q

)
| f (κ)|2. (C.10)

The total angular momentum per unit length of the beam is
thus

J ′
z = m

2ck2

∫ k

0
dκ κ(mk + κ2/2q)| f (κ)|2. (C.11)
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