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Abstract
Seven quantities are found to be invariant for a monochromatic
electromagnetic beam (that is, they have the same value everywhere along
the length of the beam). These quantities are related to the conservation of
energy, momentum and angular momentum. The simplest of them can be
interpreted as the momentum content per unit length of the beam, P ′

z . The
energy content per unit length U ′ depends on position, in general, and we
always have U ′ � cP ′

z . The angular momentum content per unit length J ′
z is

also not an invariant. The six other invariants are integrals over elements of
the Maxwell stress tensor. Examples of the invariants, and of the
non-invariant quantities U ′ and J ′

z , are given for TM and ‘circularly
polarized’ beams based on exact solutions of the Maxwell equations.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Van Enk and Nienhuis [1] and Barnett and Allen [2] introduced
the concepts of cycle-averaged energy, momentum and angular
momentum content per unit length of a monochromatic light
beam:

U ′ =
∫

d2r ū, P ′ =
∫

d2r p̄, J ′ =
∫

d2r j̄.

(1)
Here

∫
d2r stands for

∫ ∞
−∞

∫ ∞
−∞ dx dy = ∫ ∞

0 dρ ρ
∫ 2π

0 dφ and
u, p andj are the instantaneous energy, momentum and angular
momentum densities [3]:

u(r, t) = 1

8π
(E2 + B2), p(r, t) = 1

4πc
E × B,

j(r, t) = r × p.

(2)

We use the notation U ′ since dU = U ′ dz is the energy content
in a thin slice of thickness dz of the beam (which we assume has
net propagation in the z direction), so that U ′ may be viewed
as dU/dz.

In (2) the electric and magnetic fields E(r, t) and B(r, t)
are real. For monochromatic beams of angular frequency ω it
is convenient to write (for example)

E(r, t) = Re{E(r)e−iωt } = 1
2 {E(r)e−iωt + E∗(r)eiωt } (3)

and then in terms of the complex fields E(r) and B(r) we
have the cycle-averaged quantities

ū = 1

16π
[E(r) · E∗(r) + B(r) · B∗(r)]

p̄ = 1

16πc
[E(r) × B∗(r) + E∗(r) × B(r)].

(4)

In the case of steady beams, for which the complex fields
are related by E = ±iB [4, 5], the energy and momentum
densities are time-independent:

u = 1

8π
|E|2 = 1

8π
|B|2, cp = i

8π
E×E∗ = i

8π
B×B∗.

(5)
Likewise all elements of the Maxwell stress tensor are time-
independent when E = ±iB and thus the results to be derived
apply to steady beams at all instants of time.

One might think that U ′, P ′ and J ′ would all be invariants,
i.e. that the energy, momentum and angular momentum
contents per unit length of the beam should not vary along
the beam. But a counter-example to U ′ being independent
of z is known: in section 5 of [4] the energy per unit
length was evaluated exactly for a TM beam based on the
wavefunctionψ10 defined in (34) and it was found to depend on
z. Likewise we shall give a counter-example to the invariance
of J ′

z. However, P ′
z and six more quantities associated with

components of the Maxwell stress tensor are invariants for
electromagnetic beams, as we shall now show.
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Figure 1. The ratio of the energy content to c times momentum
content per unit length, U ′/cP ′

z , of a TM beam constructed from the
wavefunctionψ10. The deviation from unity is greatest for small
β = kb, i.e. for highly focused beams. The value of the smallest β
shown (β = 2) corresponds to a beam converging onto and
diverging from the focal region at a cone half-angle of 45◦. P ′

z is an
invariant (independent of z) and U ′ is dependent on z.

2. Conservation of energy

The conservation of energy for an electromagnetic field in free
space reads [3]

∂u

∂t
+ ∇ · S = 0 (6)

where S = c2p is the energy flux density. The cycle average
of (6) gives

0 = ∇ · p̄ = ∂x p̄x + ∂y p̄y + ∂z p̄z . (7)

Let us apply
∫

d2r to (7). The ∂x p̄x and ∂y p̄y terms integrate
to zero: for example,

∫ ∞
−∞ dx ∂x p̄x = p̄x

]∞
−∞ = 0. Thus we

are left with

∂z

∫
d2r p̄z = 0, i.e. P ′

z =
∫

d2r p̄z = constant. (8)

Thus the momentum content per unit length, along the direction
of net propagation of the beam, is an invariant. But note
that this invariance follows from energy conservation and that
momentum enters through the relation S = c2p between the
energy flux density and the momentum density.

We now show that U ′ � cP ′
z . We have, using real fields,

u − cpz = 1

8π
[E2 + B2 − 2(E × B)z]

= 1

8π
[(Ex − By)

2 + (Ey + Bx)
2 + E2

z + B2
z ] � 0 (9)

U ′ − cP ′
z is the integral over an xy (transverse) plane of the

right-hand side. It is non-negative and can only be zero if
Ex = By , Ey = −Bx and Ez = 0 = Bz everywhere. But pure
TEM transversely bounded beams do not exist (theorem 2.1 of
section 2 in [6]), so u = cpz cannot hold everywhere. Thus
the energy content per unit length is, in general, greater than c
times the momentum content. Figure 1 shows the ratio U ′/cP ′

z
for a TM beam based on the wavefunction ψ10 defined in (34).

The elevation gives the ratio of equation (54) to equation (53)
in [4]; the latter invariant is reproduced in (29), but the former
is a complicated function of z and is not reproduced in this
paper.

3. Conservation of momentum

The rate of change of field momentum can be written in terms of
the Maxwell stress tensor (see, for example, section 6.8 of [3]).
We shall reverse its sign so that momentum conservation can
be written in a form analogous to (6), as has been done by
Barnett [7]:

τi j = 1

4π

[
1

2
(E2 + B2)δi j − Ei E j − Bi B j

]
. (10)

In the absence of charges and currents the rate of change of the
momentum density is given by

∂pi

∂t
+

∑
j

∂ jτi j = 0. (11)

(Comparison with (6) shows that τi j can be regarded as the
momentum flux density [7].) Averaging over an integral
number of cycles gives us

∑
j ∂ j τ̄i j = 0. When we integrate

these three equations over the xy plane, the x and y derivatives
give zero as before, so we are left with

∂z

∫
d2r τ̄i z = 0, i = x, y, z. (12)

Thus the invariance of three quantities follows from
momentum conservation:

T ′
xz =

∫
d2r τ̄xz = − 1

4π

∫
d2r [Ex Ez + Bx Bz]

T ′
yz =

∫
d2r τ̄yz = − 1

4π

∫
d2r [Ey Ez + By Bz]

T ′
zz =

∫
d2r τ̄zz

= 1

8π

∫
d2r [E2

x + E2
y − E2

z + B2
x + B2

y − B2
z ].

(13)

(The bars denote cycle-averaging, as elsewhere in this paper. If
we wish to use complex fields, as in (3), Ex Ez is to be replaced
by 1

2 Re(Ex E∗
z ), for example.) These three invariants have the

dimension of U ′, i.e. of energy/length.
The T ′

xz and T ′
yz invariants will often be zero by symmetry.

For example, if (as will always be the case here) the z axis
(x = 0 = y) is taken as the beam axis, the TM beam derived
from the vector potential A = [0, 0, ψ], with ψ independent
of azimuthal angle φ, will have [4]

B = [sinφ,− cosφ, 0]∂ρψ,

E = i

k
[cos φ∂ρ∂z, sin φ∂ρ∂z, ∂

2
z + k2]ψ.

(14)

(Here, and elsewhere in this paper, k = ω/c.) Thus the
transverse components of B and E are proportional to sin φ
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or cos φ and integrate to zero over φ. This is also true if ψ has
eimφ dependence: we find

B = ∇ × A = [∂y,−∂x , 0]ψ

=
[

sinφ∂ρ +
im

ρ
cos φ,− cosφ∂ρ +

im

ρ
sin φ, 0

]
ψ (15)

E = i

k
[∇(∇ · A) + k2A] = i

k
[∂x∂z, ∂y∂z, ∂

2
z + k2]ψ

= i

k

[
cosφ∂ρ∂z − im

ρ
sin φ∂z, sin φ∂ρ∂z

+
im

ρ
cosφ∂z, ∂

2
z + k2

]
ψ (16)

on using ∂x = cosφ∂ρ − ρ−1 sinφ∂φ , ∂y = sinφ∂ρ +
ρ−1 cosφ∂φ . Thus Ex E∗

z will still be first order in sinφ and
cos φ and again integration over the azimuthal angle will give
zero T ′

xz and T ′
yz.

4. Conservation of angular momentum

Just as the rate of change of electromagnetic momentum
density is given by the spatial derivatives of the Maxwell stress
tensor in (11), the rate of change of electromagnetic angular
momentum density is given by spatial derivatives of an angular
momentum flux density tensor, defined by Barnett [7] (see also
problem 6.11 of [3]). This is constructed from the momentum
flux density tensor τi j defined in (10):

µ
i =
∑

j

∑
k

εi jk x jτk
 (17)

and the rate of change of the angular momentum density j is
given by [7]

∂ ji
∂t

+
∑



∂
µ
i = 0. (18)

For monochromatic beams, averaging over one cycle gives∑

 ∂
µ̄
i = 0. We again integrate these three equations over

an xy plane. The x and y derivatives integrate to zero for finite
beams. What remains is

∂z

∫
d2r µ̄zi = 0, i = x, y, z. (19)

Thus three invariants result from the conservation of angular
momentum:

M ′
zx =

∫
d2r µ̄zx =

∫
d2r [yτ̄zz − zτ̄yz]

M ′
zy =

∫
d2r µ̄zy =

∫
d2r [zτ̄xz − x τ̄zz]

M ′
zz =

∫
d2r µ̄zz =

∫
d2r [x τ̄yz − yτ̄xz].

(20)

The elements of the momentum flux density tensor appearing
here are the same as those made explicit in the momentum
conservation invariants (13).

5. The invariants of azimuthally symmetric TM
beams

Letψ be any solution of the Helmholtz equation (∇2 +k2)ψ =
0. Then monochromatic fields (with angular frequency ω =

ck) satisfying Maxwell’s equations in free space have the
spatial parts B = ∇ × A, E = i

k [∇(∇ · A) + k2A]. When
A = [0, 0, ψ] and ψ is independent of the azimuthal angle φ,
B and E are given by (14). The resulting z component of the
cycle-averaged momentum density is, from (4) and (14),

p̄z = 1

8πck
Im{(∂ρψ∗)(∂ρ∂zψ)}. (21)

The integral P ′
z = ∫

d2r p̄z = 2π
∫ ∞

0 dρ ρ p̄z gives our first
beam invariant (8). The other invariants are integrals over three
cycle-averaged elements of the momentum flux density tensor,
which we express in terms of complex electric and magnetic
fields:

τ̄xz = − 1

8π
Re(Ex E∗

z + Bx B∗
z )

τ̄yz = − 1

8π
Re(Ey E∗

z + By B∗
z ) (22)

τ̄zz = 1

16π
{|Ex |2 + |Ey|2 − |Ez|2 + |Bx |2 + |By|2 − |Bz|2}.

For the azimuthally symmetric TM beam, with complex E

and B given by (14), we saw in section 3 that τ̄xz and τ̄yz are
proportional to cosφ and sin φ, respectively, and thus give zero
on integration over φ. The zz component is independent of φ:

τ̄zz = 1

16π
{k−2[|∂ρ∂zψ |2 − |(∂2

z + k2)ψ |2] + |∂ρψ |2}. (23)

Because of the φ dependence of the elements of the
momentum flux density tensor, there are only two non-zero
invariants of azimuthally symmetric TM beams, namely

P ′
z = 1

4ck

∫ ∞

0
dρ ρ Im{(∂ρψ∗)(∂ρ∂zψ)} (24)

T ′
zz = 1

8k2

∫ ∞

0
dρ ρ{[|∂ρ∂zψ |2 − |(∂2

z + k2)ψ |2] + k2|∂ρψ|2}.
(25)

For comparison, we also give here the expression for the non-
invariant energy per unit lengthU ′ of an azimuthally symmetric
TM beam:

U ′ = 1

8k2

∫ ∞

0
dρ ρ{|∂ρ∂zψ|2 + |(∂2

z + k2)ψ |2 + k2|∂ρψ|2}.
(26)

We note that U ′ − cP ′
z is positive, in accord with (9):

U ′−cP ′
z = 1

8k2

∫ ∞

0
dρ ρ{|∂ρ∂zψ + ik∂ρψ |2 + |(∂2

z + k2)ψ |2}.
(27)

The z component of the angular momentum density is
jz = ρpφ , where pφ = −px sinφ + py cosφ is the azimuthal
component of the momentum density. From (14) we find that
pφ is identically zero for TM beams with ψ independent of
φ, so jz is zero everywhere: there cannot be an azimuthal
component of E × B when one of the fields (B in this case)
is purely azimuthal.

As mentioned at the end of section 2, P ′
z and U ′ were

evaluated analytically for a particular beam wavefunction in [4]
and figure 1 shows the ratio U ′/cP ′

z for this wavefunction,
namely ψ10 defined in (34). For this wavefunction, which
is chosen from a set generalizing the Sheppard and Saghafi

206



Invariants of electromagnetic beams

solution (sin k R)/k R [8, 9] and is the simplest of the set giving
a non-divergent energy per unit length [4], we find

T ′
zz = A2

0

16β6
{8β4C − 28β3S + 54β2C − 60βS

+ 30C + 6β2 − 30} (28)

where β = kb and C = cosh 2β , S = sinh 2β (A2
0 is a constant

of dimension energy/length). For comparison, the momentum
per unit length is (from equation (53) of [4]) given by

cP ′
z = A2

0

16β5
{2β3S − 5β2C + 6βS − 3C − β2 + 3}. (29)

(The energy per unit length U ′ is more complicated, depending
on z; it is given in equation (54) of [4].) The apparent
exponential growth with β arises from the wavefunction: if
we were to normalize |ψ | to unity at the origin in the focal
plane (ρ = 0, z = 0), the above expressions would be divided
by ((sinh β/β2)− (cosh β/β))2 and the leading terms in T ′

zz
and cP ′

z at large β would be A2
0 and A2

0/4, respectively.

6. The invariants of ‘CP’ beams

We saw in the preceding section that TM beams based on
solutions of the Helmholtz equation which are independent of
φ will all have identically zero angular momentum density, so
that all of the M ′ invariants are automatically zero, since these
originate in the conservation of angular momentum. We now
examine ‘circularly polarized’ (‘CP’) beams. Theorem 2.3
of [6] states that ‘beams which are everywhere circularly
polarized in a fixed plane do not exist’; hence the quotes around
‘CP’ (the textbook circularly polarized ‘beam’ is not a finite
beam but an infinite plane wave). However, it is possible
to construct a steady beam (i.e. one in which the complex
fields satisfy E = ±iB) which is circularly polarized in the
plane wave (wide beam) limit. This was done in section 4
of [6], where the polarization properties of this ‘CP’ beam
were discussed in detail. Here we just consider the invariants
of the beam and the non-invariants U ′ and J ′

z . The vector
potential is

A = [−(∂z + ik),−i(∂z + ik), (∂x + i∂y)]ψ. (30)

When ψ is independent of φ, (∂x + i∂y)ψ = eiφ∂ρψ and the
energy density is found from (5) and equation (37) of [6] to
be, on using (∂2

ρ + 1
ρ
∂ρ + ∂2

z + k2)ψ = 0,

u = 1

8π
{k2|(∂z + ik)ψ |2 + |(∂z + ik)∂zψ|2 + |(∂z + ik)∂ρψ |2}.

(31)
Likewise from (5) and B = ∇ × A, the z components of
the momentum density and the angular momentum density
jz = xpy − ypx = ρpφ are given by

cpz = 1

8π

{
k2|(∂z + ik)ψ |2 + |(∂z + ik)∂zψ |2

− |∂2
ρψ |2 − 1

ρ2
|∂ρψ|2

}
(32)

cjz = − ρ

4π
Im{[(∂2

ρ + ik∂z + k2)ψ∗][(∂z + ik)∂ρψ]}. (33)

It is clear from (31) and (32) that u−cpz � 0, so that U ′ � cP ′
z ,

in accord with the general result of section 2.

We shall again use the simplest of the ψ
m =
j
(k R)P
m (

z−ib
R ) set of exact solutions of the Helmholtz

equation [8, 9] which gives convergent integrals for U ′ [4]
and J ′

z , namely

ψ10 = A0

k

[
sin k R

(k R)2
− cos k R

k R

]
z − ib

R
,

R2 = ρ2 + (z − ib)2. (34)

(The factor k−1 has been inserted to give A0 the dimension
of vector potential: see (30).) The diffraction length b (also
known as the Rayleigh length) gives the length of the focal
region of the beam and also determines the beam waist, which
is (2b/k)1/2. It is convenient in performing the differentiations
and integrations to transform to oblate spheroidal coordinates
ξ , η:

ρ = b
√
(1 + ξ 2)(1 − η2), z = bξη,

R = b(ξ − iη).
(35)

The derivatives are written out explicitly in the appendix of [4];
in integrating over a plane of fixed z we also make use of (A.7)
of [4], namely

∫ ∞

0
dρ ρpz = b2

∫ 1

0
dη η−1[η2 + (ζ/η)2]pz, ζ = z/b.

(36)
The results for the momentum, energy and angular momentum
content per unit length of the ψ10 ‘CP’ beam are as follows:

cP ′
z = A2

0

16β5
{4β4(C + S)− 6β3(C + S) + β2(6C + 7S)

− 3β(C + 2S) + 3C − β2 + 3β − 3} (37)

U ′ = A2
0

32β6

{
8β5(C + S)− 8β4(C + S) + 2β3(2C + 3S)

− 3β2C + 2β4 − 4β3 + 3β2 +
1

ζ 6
[2(βζ )4 + 6(βζ )2

+ 15 + 2βζ(4(βζ )2 − 15) sin 2βζ + 3(8(βζ )2 − 5)

× cos 2βζ ]

}
(38)

ωJ ′
z = A2

0

32β5

{
8β4(C + S)− 4β3(C + S)− 2β2C + 6βS

− 3C − 2β4 + 4β3 − 4β2 + 3 +
1

ζ 6
[2ζ 4(β4 + 2β3)

+ 6ζ 2(β2 + β) + 15 + (8(βζ )3 − 12β2ζ 3 − 30βζ )

× sin 2βζ + (8β3ζ 4 + 24(βζ )2 − 6βζ 2 − 15)

× cos 2βζ ]

}
. (39)

In these formulae β = kb, ζ = z/b (so βζ = kz), C =
cosh 2β and S = sinh 2β . Note that P ′

z is an invariant,
independent of z, while U ′ and J ′

z depend on z. The non-
invariance of J ′

z provides the counter-example promised in
section 1.

The z-dependent parts of U ′ and J ′
z are not singular at

z = 0 (the focal plane) and are even in z, as expected. In the
limit of large β we have

U ′ → cP ′
z, J ′

z → U ′/ω. (40)
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Figure 2. U ′/cP ′
z for the ψ10 ‘CP’ beam. The deviation from unity

is most marked for tightly focused beams (small β = kb). For large
β the ratio of energy to c times momentum content per unit length
tends to 1 + (2β)−1 + O(β−2).

Thus a broad, weakly focused circularly polarized beam can
be thought of as consisting of Einstein photons, each carrying
energy h̄ω, momentum h̄ω/c and angular momentum h̄.

Figures 2 and 3 show U ′/cP ′
z and ωJ ′

z/cP ′
z for the ‘CP’

beam withψ = ψ10. As for the TM beam, the derivations from
unity are most marked for small β = kb for tightly focused
beams.

We now look at the invariants arising out of the
conservation of momentum, given by (13). The ‘CP’ beam
is steady (E = iB by construction), so cycle-averaging is
not necessary. For example, in (13) we have, with E(r, t) =
Er cosωt + Ei sinωt , etc, and Er + iEi = i(Br + iBi) (so
Er = −Bi and Ei = Br )

Ex (r, t)Ez(r, t) + Bx(r, t)Bz(r, t)

= (Er
x cosωt + Ei

x sinωt)(Er
z cosωt + Ei

z sinωt)

+ (Br
x cosωt + Bi

x sinωt)(Br
z cosωt + Bi

z sinωt)

= (−Bi
x cosωt + Br

x sinωt)(−Bi
z cosωt + Br

z sinωt)

+ (Br
x cosωt + Bi

x sinωt)(Br
z cosωt + Bi

z sinωt)

= Br
x Br

z + Bi
x Bi

z = Re(Bx B∗
z ) (41)

(real fields Bx(r, t), etc, on the left, complex fields Bx(r) and
Bz(r) in the final expression). Thus the invariants (13) become,
for steady beams,

T ′
xz = − 1

4π

∫
d2r Re(Bx B∗

z )

T ′
yz = − 1

4π

∫
d2r Re(By B∗

z )

T ′
zz = 1

8π

∫
d2r [|Bx |2 + |By|2 − |Bz|2].

(42)

The magnetic field is B = ∇ × A, where A is given by (30)
for ‘CP’ beams. For ψ independent of the azimuthal angle φ
we find the complex magnetic field to be [6]

Bx = eiφ(sin φ∂ρ + iρ−1 cos φ)∂ρψ + i(∂z + ik)∂zψ

By = −eiφ(cos φ∂ρ − iρ−1 sinφ)∂ρψ − (∂z + ik)∂zψ

Bz = −ieiφ(∂z + ik)∂ρψ.

(43)

Figure 3. The non-invariantωJ ′
z divided by the invariant cP ′

z for the
‘CP’ beam constructed from ψ10. For large β = kb the ratio of ω
times angular momentum content to c times momentum content per
unit length tends to unity as 1 + β−1 + O(β−2).

We see that (for ψ independent of φ) all terms in Bx B∗
z and

By B∗
z contain sinφ or cosφ linearly, and thus integrate to zero

over φ. Thus the invariants T ′
xz and T ′

yz are zero for ‘CP’ beams
with ψ = ψ(ρ, z). The integrand of T ′

zz simplifies (on the use
of (∇2 + k2)ψ = 0) to

|Bx |2 + |By|2 − |Bz|2 = k2|(∂z + ik)ψ |2 + |(∂z + ik)∂zψ|2

− |(∂z + ik)∂ρψ |2 − 2

ρ
Re(∂2

ρψ · ∂ρψ∗). (44)

The T ′
zz invariant for the ψ10 ‘CP’ beam follows from (34)

and (44):

T ′
zz = A2

0

32β6
{8β5(C + S)− 16β4(C + S) + 2β3(12C + 13S)

− 3β2(11C + 8S) + 6β(2C + 5S)

− 15C + 3β2 − 12β + 15}. (45)

At large β , T ′
zz has the same leading term as cP ′

z , namely
A2

0e2β/4β .
It remains for us to evaluate the invariants arising

from the conservation of angular momentum, given in (20).
Since 8πτzz given in (44) is independent of φ when ψ is
independent of φ, while τxz and τyz contain cos φ and sin φ
linearly, integration over φ gives zero M ′

zx and M ′
zy . Only

M ′
zz can be non-zero for a ‘CP’ beam with an azimuthally

symmetric ψ . The integrand of M ′
zz is, for a steady beam,

−(4π)−1{x Re(By B∗
z )− y Re(Bx B∗

z )}. For the ‘CP’ beam we
have, from (43),

(x By − y Bx)B
∗
z = −iρ[(∂2

ρ + ∂2
z + ik∂z)ψ][(∂z − ik)∂ρψ

∗]
(46)

so the integrand of M ′
zz is

ρ

4π
Im{[(∂2

ρ + ∂2
z + ik∂z)ψ][(∂z − ik)∂ρψ

∗]}
= ρ

4π
Im{[(ik(∂z + ik)− ρ−1∂ρ)ψ][(∂z − ik)∂ρψ

∗]}. (47)

We find
1

b
M ′

zz = − A2
0

32β6
{8β4(C + S)− 12β3(C + S) + 2β2(7C + 6S)

− 6β(C + 2S) + 6C − 2β2 + 6β − 6}. (48)
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This completes the evaluation of the three non-zero integral
invariants for the ‘CP’ beam based on the ψ10 wavefunction.
The reader may be interested to learn that any errors (of
which the author had made several!) in the formulation and
evaluation of the integral invariants lead to expressions which
depend on z, similar to those obtained for the non-invariants
U ′ and J ′

z .

7. Discussion

It follows from the conservation of energy, momentum and
angular momentum that there exist seven beam invariants,
each in the form of an integral over a section of the
beam:

∫
d2r f (ρ, z, φ) = ∫ ∞

0 dρ ρ
∫ 2π

0 dφ f (ρ, z, φ). These
integrals are independent of z. They give the flux of energy,
and of the components of momentum and angular momentum,
through any plane z = constant perpendicular to the beam
propagation direction. It is interesting that the energy and
angular momentum contents per unit length of the beam are not
constant in general. For example, it is the total flux of energy
that is fixed by energy conservation, not the energy content
per unit length. The momentum per unit length of the beam
is constant, but this is because electromagnetic momentum
density is the energy flux density divided by c2, i.e. this result
originates in the conservation of energy.

Where there are symmetries, the number of independent
non-zero invariants is less than the possible seven. For
example, the TM and ‘CP’ beams based on the ψ10 solution
of the Helmholtz equation have only two and three non-zero
invariants, respectively.

The non-invariants U ′ and J ′
z , giving the energy and

angular momentum content per unit length of a beam, are
strongly dependent on z only in the focal region of a tightly
focused beam. For wide, weakly focused ‘CP’ beams, we
have seen that U ′ ≈ cP ′

z and J ′
z ≈ U ′/ω, in accord with the

idea of a circularly polarized monochromatic beam consisting
of photons of energy h̄ω, momentum h̄ω/c and angular
momentum h̄. We always have U ′ > cP ′

z , equality being
attained only in the limit of an infinite plane wave.

Although the existence of beam invariants is interesting
theoretically, one might expect them to be useful as well.
Applications are most likely in the field of the manipulation of
small particles by laser beams [10–14], since it is the transfer

of momentum and angular momentum to these particles that
results in the forces and torques that are of interest.
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Note added November 2003: An anonymous referee has noted that the
result (8) (and other invariants derived here) can be generalized, for example
by tilting the coordinate system, so that the xy plane is no longer perpendicular
to the net propagation direction. Parallel transport of these surfaces gives a
set of related invariants. All that is required is that the fields vanish at infinity
in the new x and y directions.
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