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Abstract
Seven invariants are derived for a coherent beam of spinless atoms. The
simplest of these arises from the continuity equation and can be interpreted as
the momentum content per unit length in the beam. It is an invariant in the sense
that it does not change along the length of the beam. Six further invariants arise
out of the conservation of momentum and of angular momentum. These are
expressed as integrals over planes normal to the beam propagation direction;
the integrands are composed of elements of a momentum flux density tensor,
analogous to the Maxwell stress tensor in the electrodynamic case.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Seven invariants of electromagnetic beams have recently been derived [1]. Their existence
follows from the conservation of energy, momentum and angular momentum. The simplest of
them can be interpreted as the momentum content per unit length of the beam, but originates
in energy conservation. It turns out that the energy content per unit length of the beam is not,
in general, an invariant (i.e. constant along the length of the beam): energy conservation is
expressed in terms of an energy flux density, and this is c2 times the momentum density.

In this paper we shall derive analogous results for coherent beams of spinless particles, on
the assumption that there exists a probability amplitude �(r, t) for the beam. For such beams
we shall write down conservation laws in terms of a momentum density and a momentum
flux density, and then deduce the existence of seven beam invariants. The properties of
these invariants (and also of non-invariants such as the probability content and angular
momentum content per unit length of the beam) will be illustrated with the help of exact
beam wavefunctions [2–4].

There are some remarkable recent atom beam experiments. Toennies and collaborators
have focused on a 4He atom beam using Fresnel zone plates [5], and diffracted a 4He
beam by nanostructure transmission gratings [6]. Atom laser beams based on Bose–Einstein
condensates have been optically manipulated [7], their temporal coherence has been measured
[8] and a method of continuous detection has been demonstrated [9].
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We shall assume in this paper that a probability amplitude �(r, t) can represent a beam
of atoms of mass M, and further that it evolves in time according to H� = ih̄∂�/∂t , where
H is an effective Hamiltonian, the same as for an atom of mass M in external potential V (r):

H = −h̄2

2M
∇2 + V (r). (1)

For example, for a stable steady-state Bose–Einstein condensate output, the mean field of
the condensate generates an effective potential, so that even if the condensate is in a highly
nonlinear regime, the linear description of beam properties is valid [10].

From the time-evolution (Schrödinger) equation, the well-known equation of continuity
follows

∂|�|2
∂t

+ ∇ ·
{

h̄

M
Im(�∗∇�)

}
= 0. (2)

It may reassure the reader somewhat that the same form of continuity equation holds for the
(completely symmetrical) many-body wavefunction and Hamiltonian for N identical bosons:

�(r1, . . . , rN, t),
−h̄2

2M

N∑
a=1

∇2
a + V (r1, . . . , rN). (3)

In this case we find

∂|�|2
∂t

+
N∑

a=1

∇a ·
{

h̄

M
Im(�∗∇a�)

}
= 0. (4)

If we now define a number density n(r, t) and a many-body probability flux density S(r, t) by

n(r1, t) = N
∫

d3r2 · · · ∫ d3rN |�|2∫
d3r1 · · · ∫ d3rN |�|2 , S(r1, t) = Nh̄

∫
d3r2 · · · ∫ d3rN Im(�∗∇1�)

M
∫

d3r1 · · · ∫ d3rN |�|2 , (5)

we again have a continuity equation, namely

∂n(r1, t)

∂t
+ ∇1 · S(r1, t) = 0. (6)

Proof. We first note that ∂
∂t

∫
d3r1 · · · ∫ d3rN |�|2 is zero, because from (4) it is equal to a

sum of terms each containing an integral of the form
∫

d3ra∇a · Im(�∗∇a�), which is zero
provided Im(�∗∇a�) goes to zero suitably fast as ra tends to infinity. Thus

∂n(r1, t)

∂t
= −∇1 · S(r1, t) − h̄

M

∑N
a=2

∫
d3r2 · · · ∫ d3rN∇a · Im(�∗∇a�)∫

d3r1 · · · ∫ d3rN |�|2 (7)

and the last term is zero as before. �

We shall henceforth assume that an atom beam can be represented by a probability
amplitude �(r, t) which satisfies the continuity equation (2). In the next section we shall
derive a beam invariant from (2), and relate it to the momentum content per unit length of
the beam. In sections 3 and 4 we shall deduce the existence of six more beam invariants,
three arising from the conservation of momentum, and three from the conservation of angular
momentum. Sections 5 and 6 explore these invariants for two members of the set ψ�m of
exact beam wavefunctions (defined in section 5), and section 7 gives the angular momentum
properties of this set.
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2. Conservation of probability

Let us define a real momentum density p(r, t) for the state �(r, t) by

p(r, t) = 1
2 {�∗p̂� + �(p̂�)∗}, (8)

where p̂ is the momentum operator −ih̄∇. We see that

p(r, t) = ih̄

2
{�∇�∗ − �∗∇�} = h̄ Im(�∗∇�) = M S(r, t), (9)

i.e. the momentum density divided by the atomic mass is equal to the probability flux density
S = h̄

M
Im(�∗∇�). The continuity equation (2) thus reads

∂|�|2
∂t

+
1

M
∇ · p = 0. (10)

In the case of ‘steady’ beams, where � is an energy eigenstate and evolves in time according
to �(r, t) = e−iEt/h̄ψ(r), the probability density |�|2 = |ψ |2 is independent of time, and
∇ · p = 0. (For beams which oscillate in time we can average over an integral number
of oscillations, denote such averages by a bar and obtain ∇ · p̄ = 0; such extensions will be
understood throughout this paper.) The analogous ‘steady’ electromagnetic beams have energy
and momentum densities, and also the elements of the Maxwell stress tensor, all independent
of time [4, 11].

The first beam invariant follows from ∇ · p = 0 (or ∇ · p̄ = 0): applying
∫

d2r =∫ ∞
−∞ dx

∫ ∞
−∞ dy = ∫ ∞

0 dρ ρ
∫ 2π

0 dφ to ∂xpx + ∂ypy + ∂zpz = 0, we see that the ∂xpx and ∂ypy

terms integrate to zero (we assume throughout this paper that the beam is propagating in the
z direction, although of course there has to be convergence or spreading in the lateral directions).
For example,

∫
d2r ∂xpx = ∫ ∞

−∞ dy
∫ ∞
−∞ dx ∂xpx = 0, since px goes to zero at x = ±∞. What

remains is

∂z

∫
d2r pz = 0, i.e. P ′

z =
∫

d2r pz = constant. (11)

We use the notation P ′
z , since dPz = P ′

z dz is the momentum content in a slice of thickness dz
of the beam, so P ′

z may be viewed as dPz/dz. Thus the momentum content per unit length of
the beam is the same everywhere along the length of the beam, i.e. P ′

z is an invariant of the
beam. But note that this invariance follows not from momentum conservation but from the
continuity equation, and arises because of the proportionality of the probability density flux
to the momentum density, equation (9).

One might think that the probability content per unit length,

N ′ =
∫

d2r|ψ(r)|2, (12)

would also be an invariant (independent of z), but it is not. For wide beams of wavenumber k,
we do, however, have the approximate equality

P ′
z ≈ h̄kN ′ (13)

which arises because in a wide beam each atom carries approximately h̄k of momentum in the
beam propagation direction, so pz(r) ≈ h̄k|ψ(r)|2. An example of this approximate equality
has been given in [4], where the wavefunction (i.e. solution of (∇2 + k2)ψ = 0, which is
Schrödinger’s equation in free space with energy h̄2k2/2M)

ψ10(r) = j1(kR)P10

(
z − ib

R

)
, R2 = ρ2 + (z − ib)2 (14)
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Figure 1. Probability density |ψ |2 and momentum density field-plot for the ψ10 beam, plotted for
kb = 5. The contours are at 0.8, 0.6, 0.4 and 0.2 of the maximum|ψ |2, which occurs at the centre
of the focal plane, i.e. at ρ = 0, z = 0. The arrows show [pz, px ]. The three-dimensional picture
would be obtained by rotating the figure about the z-axis.

was used to evaluate P ′
z and N ′. Writing β for kb, these are, from equations (51) and (50)

of [4],

P ′
z = h̄(2πb)(8β4)−1{2β2 cosh 2β − 2β sinh 2β + cosh 2β − 1} (15)

N ′ = (2πb2)(8β4)−1

{
2β sinh 2β − cosh 2β + 1 − 2β

(
b

z

)
sin 2kz +

(
b

z

)2

[1 − cos 2kz]

}
.

(16)

For β = kb � 1, we have, in accord with (13),

P ′
z/N

′ = h̄k

{
1 − β − 1

β(2β − 1)
+ O(e−2β)

}
. (17)

Figure 1 shows the probability density and momentum density associated with the beam
wavefunction given in (14); written out more explicitly, this is

ψ10(r) =
[

sin kR

(kR)2
− cos kR

kR

]
z − ib

R
, R2 = ρ2 + (z − ib)2. (18)

Figure 2 shows h̄kN ′/P ′
z for this wavefunction. Note that the deviation of this ratio from unity

is greatest for tightly focused beams (small β = kb), and within the focal region (|z| < b).
The energy density �∗H� becomes E times the probability density |ψ |2 for ‘steady’

beams (for which �(r, t) = e−iEt/h̄ψ(r) and Hψ = Eψ), so the energy content per unit
length becomes E′ = EN ′ = (h̄2k2/2M)N ′. This is not an invariant: energy conservation for
steady beams is expressed in the continuity equation, and thus in the invariance of P ′

z .

3. Conservation of momentum

Momentum conservation for the electromagnetic field is written in terms of the Maxwell
stress tensor. We wish to write an analogous momentum conservation law for a particle field
described by �(r, t), in the form

∂pi

∂t
+

∑
j

∂j τij = fi, i = x, y, z, (19)
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Figure 2. The ratio of the non-invariant h̄kN ′ to the invariant P ′
z for the ψ10 beam, plotted as a

function of z and of the parameter β = kb. The smallest value shown is β = 2, corresponding to a
very tightly focused beam. As β increases (and the beam widens) the ratio h̄kN ′/P ′

z tends to unity
as 1 + (2β)−1 + O(β−2), for all z.

where pi is a component of the momentum density, defined in (8) or (9), τij are elements of
a momentum flux density tensor, to be derived below, and fi is a component of force density.
From the definition of p(r, t) and Schrödinger’s time evolution equation H� = ih̄∂�/∂t , we
find

∂p
∂t

= 1

2
{(H�)∇�∗ − �∇(H�∗) + (H�∗)∇� − �∗∇(H�)}. (20)

We take H to be given by (1); the right-hand side of (20) splits into potential and kinetic parts.
The potential part simplifies to −�∗�∇V , i.e. a force density f(r, t), as expected. The kinetic
part is

−h̄2

4M
{(∇2�)∇�∗ − �∇(∇2�∗) + (∇2�∗)∇� − �∗∇(∇2�)}. (21)

The ith component of this expression is

−h̄2

4M

3∑
j=1

{(
∂2
j �

)
∂i�

∗ − �∂i∂
2
j �∗ +

(
∂2
j �∗)∂i� − �∗∂i∂

2
j �

}

= −h̄2

4M

3∑
j=1

∂j {2(∂i�
∗)∂j� + 2(∂i�)∂j�

∗ − ∂i∂j (�
∗�)}. (22)

Thus a conservation law of the form (19) does indeed hold, with

τij = h̄2

2M

{
(∂i�

∗)∂j� + (∂i�)∂j�
∗ − 1

2
∂i∂j (�

∗�)

}
. (23)
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This momentum flux density tensor is real and symmetric. Note that it is not the same as the
‘stress tensor for the probability fluid’ [12, 13], namely

Tij = h̄2

4M
[∂i∂j (�

∗�) − (�∗�)−1∂i(�
∗�)∂j (�

∗�)]. (24)

We shall now derive three beam invariants associated with momentum conservation by
operating with

∫
d2r on the steady beam form of (19) (or on the time-averaged (19) in the

case of beams which oscillate). In the absence of external forces, equations (19) then become∑
j ∂j τij = 0, i.e. three equations of the form ∂xτxx + ∂yτxy + ∂zτxz = 0. Applying

∫
d2r

gives zero for the ∂x and ∂y terms, e.g.
∫

d2r ∂yτxy = ∫ ∞
−∞ dx τxy

]y=∞
y=−∞, which is zero because

ψ is bounded in the transverse (x and y) directions, by assumption. Thus we are left with
∂z

∫
d2r τxz = 0, i.e. the invariant

T ′
xz =

∫
d2r τxz = h̄2

2M

∫
d2r

[
(∂xψ

∗)∂zψ + (∂xψ)∂zψ
∗ − 1

2
∂x∂z(ψ

∗ψ)

]
. (25)

(When external forces are present, the rate of change of T ′
xz with z equals

∫
d2r fx .) The other

two invariants, from the other two equations, are

T ′
yz =

∫
d2r τyz = h̄2

2M

∫
d2r

[
(∂yψ

∗)∂zψ + (∂yψ)∂zψ
∗ − 1

2
∂y∂z(ψ

∗ψ)

]

T ′
zz =

∫
d2r τzz = h̄2

2M

∫
d2r

[
2(∂zψ

∗)∂zψ − 1

2
∂2
z (ψ∗ψ)

]
.

(26)

When ψ(r) = ψ(ρ, z), i.e. ψ is independent of the azimuthal angle φ, T ′
xz and T ′

yz will be
zero. To show this we convert to cylindrical polars ρ, z, φ and note that

∂x = cos φ∂ρ − ρ−1 sin φ∂φ, ∂y = sin φ∂ρ + ρ−1 cos φ∂φ. (27)

When ψ is independent of φ, the integrands of T ′
xz and T ′

yz contain the factors cos φ and sin φ,
respectively, and thus integrate to zero over φ.

4. Conservation of angular momentum

We are considering beams of spinless particles, so the angular momentum density is given by

j(r, t) = r × p(r, t), or ji =
∑

j

∑
k

εijkrjpk. (28)

By analogy with the electromagnetic case [1, 14], we define the angular momentum flux
density tensor µ in terms of the momentum flux density tensor τ :

µ�i =
∑

j

∑
k

εijkrj τk�. (29)

Then the rate of change of angular momentum density (in the absence of external torques) is
given by

∂ji

∂t
+

∑
�

∂�µ�i = 0 (30)

For example, jz = xpy − ypx and ∂pi

∂t
+

∑
j ∂j τij = 0, so

0 = ∂jz

∂t
+ x

∑
j

∂j τyj − y
∑

j

∂j τxj

= ∂jz

∂t
+

∑
j

∂j (xτyj − yτxj ) (31)

because τyx = τxy .
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Three more beam invariants follow on the application of
∫

d2r to the three equations (30),
by steps analogous to those used to establish the invariance of T ′

xz, T ′
yz and T ′

zz in section 3.
The beam invariants associated with the conservation of angular momentum are

M ′
zx =

∫
d2r µzx =

∫
d2r[yτzz − zτyz]

M ′
zy =

∫
d2r µzy =

∫
d2r[zτxz − xτzz]

M ′
zz =

∫
d2r µzz =

∫
d2r[xτyz − yτxz].

(32)

When ψ is independent of the azimuthal angle φ, τxz is proportional to cos φ, τyz is
proportional to sin φ and τzz is independent of φ. Thus the integrands of M ′

zx and M ′
zy are

proportional to sin φ and cos φ, respectively, and integrate to zero over φ. The integrand of
M ′

zz is proportional to cos φ sin φ, and also integrates to zero over φ. Thus when the beam
wavefunction is independent of the azimuthal angle, only two beam invariants are nonzero:
P ′

z and T ′
zz.

The angular momentum content per unit length, J′, has the component along the beam
propagation direction J ′

z = ∫
d2r jz,

jz = xpy − ypx = ρpφ (33)

where pφ = cos φpy − sin φpx is the azimuthal component of the momentum density.
When ψ is independent of the azimuthal angle we have from p = h̄ Im(ψ∗∇ψ) that
px = h̄ cos φ Im(ψ∗∂ρψ), py = h̄ sin φ Im(ψ∗∂ρψ), and so pφ is identically zero. The other
two components are not identically zero, but integrate to zero over φ when ψ is independent
of φ, e.g.

jx = ypz − zpy → h̄ρ sin φ Im(ψ∗∂zψ) − h̄z sin φ Im(ψ∗∂ρψ). (34)

We shall see later that J ′
z = ∫

d2r jz is not an invariant: the angular momentum content per
unit length is in general not the same along the length of the beam.

5. Invariants of the ψ10 beam

The ψ10 beam wavefunction, given in (14) and more explicitly in (18), is the lowest of the set
[2–4]

ψ�m = j�(kR)P�m

(
z − ib

R

)
eimφ (35)

which has a convergent normalization in any slice of the beam, i.e. for which N ′ = ∫
d2r |ψ |2

exists. (ψ00 = sin kR/kR has a logarithmically divergent N ′: see section 2 of [4].) The
invariant P ′

z and the non-invariant N ′ were evaluated in [4], and are given above in equations
(15) and (16). As we saw in the last section, only two beam invariants are nonzero when the
beam wavefunction is independent of the azimuthal angle: P ′

z and T ′
zz. Thus only T ′

zz (given
in (26)) remains to be evaluated.

In performing the differentiations and integrations it is convenient to transform to oblate
spheroidal coordinates ξ and η, in which

ρ = b
√

(1 + ξ 2)(1 − η2), z = bξη, R = b(ξ − iη). (36)

In oblate spheroidal coordinates we have

ψ10 = j1[β(ξ − iη)]
ξη − i

ξ − iη
, β = kb. (37)



1732 J Lekner

We shall also make use of (A.7) of [4] to evaluate integrals over a plane of fixed z:∫ ∞

0
dρ ρpz = b2

∫ 1

0
dη η−1

[
η2 +

(
z

bη

)2
]

pz. (38)

Differentiations with respect to ρ and z are readily transformed to differentiations with respect
to ξ and η by means of formulae given in the appendix of [4]. We find, with β = kb as before,

T ′
zz = h̄2

2M
(2π)(8β4)−1[(4β3 + 6β) sinh 2β − (6β2 + 3) cosh 2β + 3]. (39)

Large β corresponds to broad, weakly focused beams: the diffraction length b (also known
as the Rayleigh length) gives the length of focal region of the beam, and also determines the
beam waist, which is (2b/k)1/2. Thus when kb is large, the beam waist (2β)1/2k−1 =
(2β)1/2λ/2π is many wavelengths wide, and the focal region is many wavelengths long. At
large β, the ratio of the two nonzero invariants has the limit

T ′
zz

P ′
z

→ h̄k

M
(40)

which is the speed of the atoms in the (wide) beam.

6. Invariants of the ψ21 beam

The beam wavefunction

ψ21 = j2(kR)P21

(
z − ib

R

)
eiφ, R2 = ρ2 + (z − ib)2, (41)

is the next one in the set (35) to have a non-divergent normalization integral N ′ = ∫
d2r |ψ |2.

(Those with �–m odd have the necessary convergence [4].) It is also the simplest of the
convergent subset to have φ-dependence. Replacing eiφ by e−iφ changes the sign of jz, as
expected; see (44).

We shall examine next the properties of beams with wavefunctions which have eimφ

dependence, before evaluating the invariants of the ψ21 beam. From (27) we see that

∂x → cos φ∂ρ − imρ−1 sin φ, ∂y → sin φ + imρ−1 cos φ (42)

when operating on a wavefunction of the form f (ρ, z) eimφ . Thus the x and y components of
the momentum density become

px → h̄ cos φ Im(ψ∗∂ρψ) − mh̄ρ−1 sin φ|ψ |2
py → h̄ sin φ Im(ψ∗∂ρψ) + mh̄ρ−1 cos φ|ψ |2. (43)

The longitudinal (z) component of the angular momentum density (33) then simplifies to

jz = xpy − ypx = ρpφ → mh̄|ψ |2, (44)

i.e. it is just mh̄ times the probability density |ψ |2. Hence the angular momentum component
along the beam propagation direction has the content per unit length of beam given by

J ′
z ≡

∫
d2r jz → mh̄

∫
d2r |ψ |2 = mh̄N ′. (45)

We have already established that N ′ is not an invariant (in general), so J ′
z is not an invariant

either.
The transverse components of angular momentum density integrate to zero over φ: for

example,

jx = ypz − zpy → h̄ρ sin φ Im(ψ∗∂zψ) − z{h̄ sin φ Im(ψ∗∂ρψ) + mh̄ρ−1 cos φ|ψ |2}. (46)
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In the evaluation of the momentum and angular momentum invariants T ′
iz and M ′

zi we
need the elements τxz, τyz and τzz of the momentum flux density tensor. When the beam
wavefunction has the form f (ρ, z) eimφ , these become

2M

h̄2 τxz → 2 cos φ Re{(∂ρψ
∗)(∂zψ)} − 2mρ−1 sin φ Im(ψ∗∂zψ) − 1

2
cos φ∂ρ∂z|ψ |2

2M

h̄2 τyz → 2 sin φ Re{(∂ρψ
∗)(∂zψ)} + 2mρ−1 cos φ Im(ψ∗∂zψ) − 1

2
sin φ∂ρ∂z|ψ |2.

(47)

These integrate to zero over φ, so T ′
xz and T ′

yz are zero for eimφ beams. The angular momentum
invariants M ′

zx and M ′
zy are zero for the same reason. However, M ′

zz is the section integral of

xτyz − yτxz = ρ[cos φτyz − sin φτxz] → 2m(h̄2/2M) Im(ψ∗∂zψ), (48)

so

M ′
zz → m

(
h̄2

M

) ∫
d2r Im(ψ∗∂zψ) = mh̄P ′

z

M
. (49)

The results (45) and (49) are consistent with the picture of each atom carrying (on
average) angular momentum mh̄ in orbiting the beam axis, when the wavefunction azimuthal
dependence is eimφ .

We therefore have three nonzero invariants P ′
z , T ′

zz and M ′
zz for beams with eimφ

dependence, of which we need evaluate only the first two, because of (49). For the ψ21

beam, with explicit wavefunction

ψ21 =
{[

3

(kR)3
− 1

kR

]
sin kR − 3

(kR)2
cos kR

}
3ρ(z − ib)

R2
eiφ. (50)

We again transform to oblate spheroidal coordinates to perform the differentiations and
integrations. The intermediate expressions are large, but the results are simple:

P ′
z = (2π)(h̄b)(8β6)−1[(2β3 + 6β) sinh 2β − (5β2 + 3) cosh 2β − β2 + 3] (51)

T ′
zz = (2π)

(
h̄2

2M

)
(8β6)−1[(4β4 + 27β2 + 15) cosh 2β − (14β3 + 30β) sinh 2β + 3β2 − 15].

(52)

The ratio of these invariants has the same wide-beam (large β) limit as we found for the ψ10

beam (equation (40)).
We shall also give the two non-invariants: the probability content per unit length, and the

angular momentum content per unit length. For the ψ21 beam these are functions of z. We use
the ζ = kz in the following:

N ′(z) =
∫

d2r |ψ |2 = (2π)b2(16β6)−1

{
(4β2 + 3) cosh 2β − 6β sinh 2β + 2β2 − 3

+

(
b

z

)4

[(4ζ 2 − 3) cos 2ζ − 6ζ sin 2ζ + 2ζ 2 + 3]

}
. (53)

This function is not singular at z = 0, where it takes the value

N ′(0) = 2πb2(16β6)−1{(4β2 + 3) cosh 2β − 6β sinh 2β − 2β4 + 2β2 − 3}. (54)

The angular momentum content for eimφ beams is (from (45)) mh̄ times the probability content,
so J ′

z = h̄N ′ for the ψ21 beam.
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Figure 3. Probability density |ψ |2 and momentum density field-plot for the ψ21 beam, plotted for
kb = 5. The contours are at 80%, 60%, 40% and 20% of the maximum value of |ψ |2. The arrows
show [pz, px ]. Note that the beam is hollow, in probability and in momentum. Rotation about the
beam (z) axis gives the three-dimensional picture.

Figure 4. The ratio h̄kN ′/P ′
z for the ψ21 beam, shown for kb = 2 to kb = 10 as a function of z.

The focal plane is z = 0. For large β = kb, the ratio h̄kN ′/P ′
z tends to 1 + β−1 + O(β−2), for all z.

The angular momentum content per unit length J ′
z is equal to h̄N ′, from (45).

Figure 3 shows the probability density and momentum density of the ψ21 beam, while
figure 4 shows h̄kN ′/P ′

z for this beam. From (51) and (53) we find that this ratio tends to
unity for wide beams (large β), as we found to be the case for the ψ10 beam in equation (17).
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7. Angular momentum properties of the ψ�m wavefunctions

When b → 0, the ψ�m wavefunctions of equation (35) (with m = 0) become the partial waves
in the expansion of a plane wave, introduced by Rayleigh in the theory of scattering of sound
([15], section 334):

eikz =
∞∑

�=0

i�(2� + 1)j�(kr)P�(cos θ). (55)

Each term on the right-hand side is an eigenstate of the angular momentum operator L =
−ih̄r × ∇. The eigenvalues of Lz and L2 are zero and �(� + 1)h̄2, respectively. It was noted
in [4] that the ψ�m wavefunctions (35) are eigenfunctions of the shifted operator

L̃ = −ih̄(r − rb) × ∇, rb = [0, 0, ib]. (56)

This shift in the angular momentum operator corresponds to the (imaginary) shift in z, by
means of which the ψ�m may be obtained from j�(kr)P�m

(
z
r

)
eimφ .

We shall give some of the properties of L̃ and L̃2. First we note that Lz = −ih̄(x∂y −
y∂x) = −ih̄∂φ is not changed by a translation in the z-coordinate, real or imaginary. Thus
L̃z = Lz and the ψ�m are eigenfunctions of Lz with eigenvalues mh̄. However, Lx and Ly are
changed by the imaginary translation:

Lx = −ih̄(y∂z − z∂y) → L̃x = Lx + h̄b∂y

Ly = −ih̄(z∂x − x∂z) → L̃y = Ly − h̄b∂x.
(57)

There is a corresponding change in L2 = L2
x + L2

y + L2
z :

L̃2 = L2 + h̄2
{
(b2 + 2ibz)

(
∂2
x + ∂2

y

) − 2ib(x∂x + y∂y + 1)∂z

}
= L2 + h̄2

{
(b2 + 2ibz)

(
∂2
ρ + ρ−1∂ρ + ρ−2∂2

φ

) − 2ib(ρ∂ρ + 1)∂z

}
.

(58)

The L̃2 operator has the expected eigenvalues when operating on the ψ�m wavefunctions,
namely �(� + 1)h̄2.

8. Summary

Seven invariants (quantities which are constant along the beam length) exist for coherent atom
beams. These originate from the conservation of particles, the conservation of momentum
and the conservation of angular momentum. The simplest invariant can be interpreted as the
momentum content per unit length of the beam. The probability content per unit length N ′

and the angular momentum content per unit length J ′
z are not invariants in general, but for

wide beams we do have the approximate equalities

P ′
z ≈ h̄kN ′, (13)

J ′
z ≈ h̄mN ′ (45)

corresponding to the picture of each atom carrying an average momentum h̄k in the beam
propagation direction and angular momentum h̄m about the beam direction.

Symmetries reduce the number of nonzero invariants. For beams characterized by
wavefunctions which are independent of the azimuthal angle φ, only two are nonzero: P ′

z

and T ′
zz. For beams which have azimuthal dependence eimφ there are three nonzero invariants

P ′
z , T ′

zz and M ′
zz, but the last is determined by P ′

z .
The beam invariants, and the non-invariant N ′, have been calculated for two exact beam

wavefunctions. These wavefunctions are part of a set which are all eigenstates of a modified
angular momentum operator.



1736 J Lekner

Acknowledgments

The author is grateful to Ashton Bradley and Damien Martin for constructive comments.

References

[1] Lekner J 2004 Invariants of electromagnetic beams J. Opt. A: Pure Appl. Opt. 6 204–9
[2] Sheppard C J R and Saghafi S 1999 Beam modes beyond the paraxial approximation: a scalar treatment Phys.

Rev. A 57 2971–9
[3] Ulanowski Z and Ludlow I K 2000 Scalar field of nonparaxial Gaussian beams Opt. Lett. 25 1792–4
[4] Lekner J 2001 TM, TE and ‘TEM’ beam modes: exact solutions and their problems J. Opt. A: Pure Appl. Opt.

3 407–12
[5] Doak R B, Grisenti R E, Rehbein S, Schmahl G, Toennies J P and Wöll Q 1999 Towards realization of an atomic
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